九年级数学下第三章圆

合集下载

北师大版九年级数学下册3.1圆 课件(共32张PPT)

北师大版九年级数学下册3.1圆 课件(共32张PPT)

根据圆的定义,“圆”指 的是“ 圆周 ”,而不 是“圆面”。
O
A
确定一个圆的要素:
一是圆心, 二是半径, 圆心确定其位置, 半径确定其大小.
O
A
如图,连接圆上任意两点的线段 叫做弦,如AB; 经过圆心弦叫做直径, 如直径CD. 我们知道,圆上任意 两点的部分叫做圆弧, 简称弧. 圆的任意一条直径的两个 端点分圆成两条弧,每一 弧都叫做半圆. 弧包括优弧和劣弧,大于半圆的弧叫做优弧,小于 半圆的弧叫做劣弧. 如图中,以A,D为端点的弧有两条:优弧ACD(记 作ACD),劣弧ABD(记作AD或ABD).
B
C
已知圆P的半径为3,点Q在圆P外,点R在圆P上,点 H在圆P内,则PQ___3 = < > ,PR____3,PH_____3. 如图, △ ABC中,∠C=90°,BC=3,AC=6, CD
3 5 为中线,以C为圆心,以 2 为半径作圆,则点A、
B 、 D 与圆 C 的关系如何? 点A在圆外,点B在圆内, 点D在圆上.
解(1)过点A作AD⊥BC,垂足为D, 在Rt△ABC中,∠ABC=30°,AB=220, ∴AD=110(km),110÷20=5.5,12-5.5=6.5>4, ∴A城市受这次台风影响; A (2)在BD及BD的延长线上分别取E,F D 两点,使AE=AF=160千米.由于当A点距 台风中心不超过160千米时,将会受到 台风的影响.所以当台风中心从E点移到 B F点时,该城市都会到这次台风的影响. 在Rt△ADE中,由勾股定理,得DE= 30 15 所以EF=2DE=60 15 (3)当台风中心位于D处时,A市所受这次台风的 风力最大,其最大风马牛不相及力为12110/20=6.5级
(1)分别以点A、点B为圆心,以2cm的长为半径 画圆,两圆的交点即为所求。 P

3.7北九数学下第三章圆第七节切线长定理

3.7北九数学下第三章圆第七节切线长定理
B
A D
O
F
例题1图
E
C
2015.01
• 变式1:如图,△ABC的内切圆⊙O与BC,CA,AB分 别相切于点 D,E,F,且AB=9cm,BC=14cm, CA=13cm,求AF,BD,CE的长。(知识技能2)
A F O E
B
D 第 2题
C
2015.01
随堂练习
已知O的半径为3cm,点P和圆心O的距离为6cm,过P 作O的两条切线,求这两条切线的长。
2015.01
2、由(6)得出定理:
切线长定理:从圆外一点引圆的两条切线,它们的切 线长相等,圆心和这一点的连线平分两条切线的夹角 .
A
O B
P
2015.01
证明:切线长定理:从圆外一点引圆的两条切线,它们的切 线长相等,圆心和这一点的连线平分两条切线的夹角. 已知:如图,PA、PB是⊙O的两条切线,A、B是切点。 求证:PA=PB,PO平分∠APB 证明:连接OA、OB ∵PA、PB是⊙O的切线 ∴∠PAO=∠PBO=90° 在Rt△POA和Rt△POB中 ∵OA=OB,OP=OP ∴Rt△POA ≌Rt△POB ∴PA=PB ,PO平分∠APB A
∴AB= AB BC 10 24 26
2 2 2 2
∵⊙O分别与AB,BC,CA相切于D,E,F ∴OD⊥AB,OE⊥BC,OF⊥AC, BE=BD, AF=AD,CE=CF 又∵∠C=90°∴四边形OECF为正方形 ∴EC=FC=r∴BE=24-r,AF=10-r ∴AB=BD+AD=BE+AF=34-2r=26 ∴r=4 即⊙O半径为4
切线是到圆心距离等于圆的半径的直线,
而切线长是线段的长度,指过圆外一点做圆的切 线,该点到切点的距离。

北师大版九年级数学下册第三章2圆的对称性

北师大版九年级数学下册第三章2圆的对称性

于点E,AD=OB,试说明 B︵D

= DE
,并求∠A的度数.
解析 设∠A=x°.∵AD=OB,OB=OD,∴OD=AD.
∴∠AOD=∠A=x°.∴∠ABO=∠ODB=∠AOD+∠A=2x°.
∵AO=AB,∴∠AOB=∠ABO=2x°.


∴∠BOD=2x°-x°=x°,即∠BOD=∠AOD.∴ BD = DE .在△AOB中,由三角形的内
解析 ∵ A︵E = B︵D ,∴∠BOD=∠AOE=32°, ∵∠BOD=∠AOC,∴∠AOC=32°,∴∠COE=32°+32°=64°. 答案 D
点拨 本题在求角的度数时运用了转化思想,在同圆或等圆中,利用圆心 角、弧、弦之间的关系可以实现角、线段、弧之间的转化.
题型二 利用圆心角、弧、弦之间的关系证明线段相等 例2 (2019江苏南京中考)如图3-2-3,☉O的弦AB、CD的延长线相交于 点P,且AB=CD.求证:PA=PC.


圆心角的度数,因为∠BOA=2∠COD,所以 AB 的度数= CD的度数的2倍,所


以在同圆或等圆中, AB =2 CD ,所以B项正确.C、D项错误.
4.如图3-2-2,AB、CD是☉O的两条直径,弦BE=BD,则 A︵C 与 B︵E 是否相等?为 什么?
图3-2-2
解析 A︵C= B︵E .理由:连接AC.∵AB、CD是☉O的直径,且∠AOC=∠BOD,
2.如图3-2-1,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形 各边仅有一个交点,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影 部分的面积是( )
图3-2-1 A.4π B.3π C.2π D.π 答案 D 利用圆的对称性,可知阴影部分的面积恰为大圆面积的四分之

北师大版九年级数学下册《圆》PPT课件

北师大版九年级数学下册《圆》PPT课件

2. 圆心为 O 的两个同心圆,半径分别为 1 和 2,
若OP= 3 ,则点 P 在( D )
A.大圆内
B.小圆内
o
C.小圆外
D.大圆内,小圆外
要点归纳
P d O
r
Od P
r
P
dO r
P O
Rr
点 P 在⊙O 内 d<r 点 P 在⊙O上 d=r
点 P 在 ⊙O 外 d>r 点 P 在圆环内 r<d<R
劣弧:AF, AD,AC,AE.
F
O
E
(
( (( ((
(
((
优弧:AFE, AFC,AED,AEF. (2) 请写出以点 A 为端点的弦及直径. A
C
弦 AF,AB,AC.其中弦 AB 又是直径. (3) 请任选一条弦,写出这条弦所对的弧.
答案不唯一,如:弦 AF,它所对的弧是 AF.
知识要点
1. 根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.
r rO· r
A
有点组成的图形.定点就是圆心,定长就是 C r r E
半径,以点 O 为圆心的圆记作 ⊙O,读作
“圆 O ”.
有关概念
固定的端点 O 叫做圆心,线段 OA 叫做半径,一
般用 r 表示.
确定一个圆的要素 一是圆心,确定其位置;二是半径,确定其大小.
同心圆 圆心相同,半径不同
等圆
能够重合 的两个圆 叫做等圆.
系?
P
d O
r
Od
r
P
Pd O r
点 P 在 ⊙O 内 点 P 在⊙O上
d< r d =r
点 P 在⊙O 外
d >r
练一练:

九年级第三章圆知识点总结

九年级第三章圆知识点总结

九年级第三章圆知识点总结九年级的数学学科中,第三章圆是一个重要的知识点。

圆是一个几何图形,是由平面上的所有与定点距离相等的点组成的。

在这个章节中,学生需要掌握圆的性质、圆的表达式和圆与直线的关系等内容。

下面将从不同的角度对这些知识点进行总结。

一、圆的定义和性质圆是一个几何图形,它由平面上的所有与定点距离相等的点组成。

圆的性质有以下几点:1. 圆的半径:圆的半径是从圆心到圆周上任意一点的距离,用字母r表示。

2. 圆的直径:圆的直径是通过圆心并在圆上的一条直线段,它的长度是圆的两倍,用字母d表示。

3. 圆的周长:圆的周长是圆周上的一段弧所对应的长度,用字母C表示。

圆的周长可以通过公式C = 2πr来计算,其中π是一个常数,约等于3.14。

4. 圆的面积:圆的面积是圆内部所包围的区域的大小,用字母A表示。

圆的面积可以通过公式A = πr^2来计算。

二、圆的表达式在数学中,我们常常需要用到圆的表达式来描述一个圆。

圆的表达式一般有两种形式:标准方程和一般方程。

1. 标准方程:标准方程是以圆心和半径为依据的表达式形式。

标准方程的一般形式为:(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径的长度。

2. 一般方程:一般方程是以圆的一般性质为依据的表达式形式。

一般方程的一般形式为:x^2 + y^2 + Dx + Ey + F = 0,其中D、E、F为常数。

三、圆与直线的关系圆与直线之间有一些重要的关系。

下面将介绍一些常见的关系:1. 切线:切线是与圆相切并且只与圆相交于切点的直线。

切线与半径的关系是垂直关系,切线与圆的切点处的切线段等于半径的长度。

2. 弦:弦是连接圆上任意两点的直线段。

弦的长度小于等于直径的长度。

3. 弧:弧是圆上的一段曲线。

圆周上的任意两点可以确定一个弧。

4. 正切线:正切线是一条通过圆外一点且与圆相切的直线。

正切线的长度等于该点到圆心的距离。

综上所述,九年级第三章圆是一个重要且有趣的数学知识点。

九年级数学下册 第三章 圆 3.8 圆内接正多边形课件 北师大下册数学课件

九年级数学下册 第三章 圆 3.8 圆内接正多边形课件 北师大下册数学课件
是_________,所以在圆内依次截取等于_________的。D。2.圆的两条弦AB,AC分别是它的内接正 三角形与内接正。★★3.(2019·徐州鼓楼区模拟(mónǐ))正六边形的周长为12,
Image
12/10/2021
第四十五页,共四十五页。
第四十页,共四十五页。
当圆周角的顶点(dǐngdiǎn)在优A B弧 18°.
上时,AB所对的圆周角为
当圆周角的顶点在劣弧 A B上时,AB所对的圆周角为 180°-18°=162°,
∴综上所述答案为:18°或162°.
答案:18°或162°
第四十一页,共四十五页。
【一题多变】
已已知知圆圆内内接接正正三三角角形形(zhè(nzɡhèsnāɡn sjāinǎojixǎíonɡx)í的n3ɡ)面的积面为积为,则,该则圆的该内圆接的正内 边边形形的的边边心心距距是是 (( B ))
径,外接圆半径和高的比是(
)D
A.1∶2∶ B.2∶3∶4 3
C.1∶ ∶2 D.1∶2∶3
3
第四十四页,共四十五页。
内容(nèiróng)总结
8 圆内接正多边形。正多边形:_______________,_______________的多边。这个圆叫做这
No 个正多边形的___________.这个多边形叫。2.尺规作图:(1)因为与半径相等的弦长所对的圆心角。
第三页,共四十五页。
第四页,共四十五页。
这个(zhè ge)圆叫做这个(zhè ge)正多边外形接的圆___________.这个多边形
做圆内接正多边形.
第五页,共四十五页。
【探究二】应用(yìngyòng)等分圆周的方法作正多边形: 1.应用量角器,根据相等的圆心角所对的弧____相__等__(_xi,āngděng) 把360°的圆心角n等分,依次连接各个分点,得到圆内 接正n边形.

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

北师大版九年级数学下册第三章3.5确定圆的条件课件(共28张PPT)

判断:
1、经过三点一定可以作圆。(× )
2、三角形的外心就是这个三角形两边垂直平分 线的交点。(√ )
3、三角形的外心到三边的距离相等。(× )
4、等腰三角形的外心一定在这个三角形内。 (×)
1、某一个城市在一块空地新建了三个 居民小区,它们分别为A、B、C,且三个 小区不在同一直线上,要想规划一所中学,
书P125 练习
小结:
课后日记: 今天学了什么:___________ 今天的收获是:______________ 有不明白的地方吗?_______ 它是:_________________
A
如图:⊙O是△ABC的
外接圆, △ABC是⊙O
的内接三角形,点O是
O C △ABC的外心
B
外心是△ABC三条边的垂
直平分线的交点,它到三角
形的三个顶点的距离相等。
如图,请找出图中圆的圆 心,并写出你找圆心的方法?
A
O C
B
画出过以下三角形的顶点的圆
A
O ●
B
C
(图一)
A
O ●

B
C
(图二)
A O ●
(1)只有确定了圆心和圆的半径,这个圆的位 置和大小才唯一确定。
(2)经过一个已知点能作无数个圆!
(3)经过两个已知点A、B能作无数个圆!这 些圆的圆心在线段AB的垂直平分线上。
(4)不在同一直线上的三个点确定一个圆。
(5)外接圆,外心的概念。
巩固新知 应用新知
2、如图,
一 根 5m 长 的 绳
于直角三角形斜边中点,钝角三角形的外心位于三角形外.
老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握.

第一章 直角三角形的边角关系 第三章 圆 单元整体复习课 课件-北师大版九年级数学下册

第一章 直角三角形的边角关系 第三章 圆 单元整体复习课 课件-北师大版九年级数学下册
70°
∴AC=AB,
∴∠CBA=∠BCA=70°,
分析 画弧操作知AC=AB, 则∠CBA=∠BCA=70°
∵l1∥l2,
∴∠CBA+∠BCA+∠1=180°,
∴∠1=180°-70°-70°=40°,
l1∥l2,知∠CBA+∠BCA+∠1=180°
故答案为:40°.
∠1度数
典例分析2
知识点2--圆的对称性
分析
解:∵OB=OC,
∴∠OCB=∠OBC=40°, 由圆周角定理∠A= ∠BOC

∴∠BOC=180°-40°-40°
=100°,

∴∠BOC=180°-2 ∠OBC
∴∠A= ∠BOC=50°.

故选:A.
典例分析4
知识点3--圆周角与圆心角的关系
如图,AB是⊙O的直径,C和D是⊙O上两点,连接AC、
运用勾股定理与直角三角形的边角关系解决生活中的实际问题;
3.掌握并能运用以下知识解决问题:圆的有关性质:相关概念,对称性,
圆周角与圆心角关系,确定圆的条件,与圆有关的位置关系:点、直线与
圆的位置关系,与圆有关的运算:弧长面积的计算,圆的内接正多边形相
关运算。
复习要求
1.知识建构环节,需要大家暂停屏幕,根据给出的思维导图查阅课本,往
构造直角三角形
分析
锐角三角函数定义
10
5
5
典例分析2
知识点2--特殊的三角函数值
已知a为锐角,且sin(a - 10°)=
A.50°
B.60°
C.70°


解:∵sin60°= ,
∴a - 10°=60°,
即a=70°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
AD
据垂径定理,D是AB的中点,C是
由题设得
? 1 AB ?
1AB ? 7.2,CD
? 7.2 ? 3.6,
?
2.4,
HANB 的?中1点M,NCD?就1.是5.拱高. 2
2
2
OD ? OC ? DC ? R ? 2.4.
在Rt △OAD中,由勾股定理,得
? 在直径为650mm 的圆柱形油槽内装入一些油后,截 面如图所示 .若油面宽AB = 600mm ,求油的最大深 度.
A
60D0
B
O ? 650
C
随堂练习P补10
挑战自我
驶向胜利 的彼岸
? 1、要把实际问题转变成一个数学问题来解决 .
? 2、熟练地运用垂径定理及其推论、勾股定理,并 用方程的思想来解决问题 .
C

o E
?解:连接 C.
设弯路的半径为Rm,则OF ? (R ? 90)m.
F
?OE ? CD, D ? CF ? 1 CD ? 1 ? 600 ? 300(m).
的三角形 的特点.
O
2
2
根据勾股定理, 得 OC 2 ? CF 2 ? OF 2,即
R2 ? 300 2 ? ?R ? 90?2.
解这个方程 , 得 R ? 545 .
想一想 P补 7
垂径定理三角形
已知:如图,直径CD⊥AB,垂足为E .
⑴若半径R = 2 ,AB = 2 3 , 求OE 、DE 的长.
⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长.
⑶由⑴ 、⑵两题的启发,你还能编出什么其他问题?
C
⑴d + h = r ⑵ r 2 ? d 2 ? (a )2
?3、对于一个圆中的弦长a、圆心到弦的距离d、圆半径r 、弓形 高h,这四个量中,只要已知其中任意两个量,就可以求出另外 两个量,如图有:
a
h
2
⑴d + h = r
d
⑵ r2 ? d 2 ? (a )2
O
2
独立作业P911 1
挑战自我
? P93:习题3.2
1题
驶向胜利 的彼岸
?祝你成功!
结束寄语
下课了 !
? 形成天才的决定因素应该 是勤奋.
随堂练习P92 4
赵州石拱桥
驶向胜利 的彼岸
解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm ,
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
据垂径定理,D是AB的中点,C是AB 的中点,CD就是拱高.
由题设 AB ? 37.4,CD ? 7.2,
11
AD ? AB ? ? 37.4 ? 18.7,
? 2 . 如图,某地有一圆弧形拱桥 ,桥下水面宽为 7.2米,拱顶 高出水面2.4米.现有一艘宽 3米、船舱顶部为长方形并 高出水面2米的货船要经过这里 ,此货船能顺利通过这 座拱桥吗?
? 相信自己能独 立完成解答.
做一做P补 6
船能过拱桥吗
驶向胜利 的彼岸
? 解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm,
种语言要相 互转化 ,形成 整体,才能运 用自如 .
想一想P91 2
垂径定理的应用
驶向胜利 的彼岸
? 例1 如图,一条公路的转变处是一段圆弧 (即图中弧
CD,点o是弧CD的圆心),其中CD=600m,E 为弧CD上的
一点,且oE⊥CD垂足为 F,EF=90m. 求这段弯路的半径 .
老师提示: 注意闪烁
? 这段弯路的半径约为545m.
随堂练习P932
赵州石拱桥
驶向胜利 的彼岸
? 1.1300多年前,我国隋朝建造的赵州石拱桥 (如图)的桥 拱是圆弧形 ,它的跨度(弧所对是弦的长 )为 37.4 m, 拱高 (弧的中点到弦的距离 ,也叫弓形高 )为7.2m, 求桥拱的半 径(精确到 0.1m).
?你是第一 个告诉同 学们解题 方法和结 果的吗?
OA2 ? A D2 ? OD2 ,
即R2 ? 3.62 ? (R ? 2.4)2.
解得 R≈3.9(m). 在Rt △ONH 中,由勾股定理,得
OH ? ON 2 ? HN 2 , 即OH ? 3.92 ? 1.52 ? 3.6.
? DH ? 3.6 ? 1.5 ? 2.1 ? 2. ∴此货船能顺利通过这座拱桥 .
2
2
OD ? OC ? DC ? R ? 7.2.
7.2
A
37.4
C
D
B
在Rt △OAD中,由勾股定理,得
OA2 ? A D2 ? OD2 , 即R2 ? 18.72 ? (R ? 7.2)2.
解得 R≈27.9(m).
R
O
答:赵州石拱桥的桥拱半径约为 27.9m.
做一做P补 5
船能过拱桥吗
驶向胜利 的彼岸
九年级数学(下)第三章 圆
2. 圆对称性(2) 垂径定理的应用
想一想 P90 1
垂径定理三种语言
驶向胜利 的彼岸
? 定理 垂直于弦的直径平分弦 ,并且平分弦所的两条弧 .
C
A M└ ●O
D
如图∵ CD是直径,
B
CD ⊥AB,
∴AM=BM,
A⌒C =B⌒C,
A⌒D=B⌒D.
? 老师提示:
? 垂径定理是 圆中一个重 要的结论 ,三
2
O
E
A
B
D
在a,d,r,h中,已知其中任意两 个量,可以求出其它两个量.
做一做P补 8
垂径定理的应用
驶向胜利 的彼岸
? 在直径为650mm 的圆柱形油槽内装入一些油后,截 面如图所示 .若油面宽AB = 600mm ,求油的最大深 度.
O
A
┌E
B
D
600
想一想P补 9
垂径定理的逆应用
驶向ห้องสมุดไป่ตู้利 的彼岸
相关文档
最新文档