房间温湿度控制系统定稿 (2)汇总
居室温湿度监控系统设计

收 稿 日期 :0 8— 4— 8 20 0 0 作 者 简 介 : 春 起 (9 0一) 男 , 津人 . 家庄 耳l 技术 学 院 高级 工 程 师 刘 16 , 天 石 j 业
第 6期
刘 春起 : 室 温 湿 度 监 控 系统 设 计 居
3 3
R9
= =
码 管 显示 “ r一” “ , H一” 时分 别表 示 可 对 温 度 、 度 湿
进 行 操作 ; 当数 码管 显示 “ 一” “ 一” 表示 可 一d , ~s 时 对 下位 机传 来 的数 据 进行 显 示 . 对 下 位机 进 行 设 可
本高 , 不易 用 单 片机 控 制 . 基 于 单 片 机 的 R 4 5 而 S 8
讯 系统 在家居 方面 应用 价值较 高 .
2 系统 简介
上位机 可对 下位 机 ( 自控 ) 可 设定 相对 湿度 控制 目标 . 电复位 后 , 上 位机 不 对 下 位机 进 行 操 控 , 上 如 下 位机 会 自动 把 各 室 环 境 湿 度 参 数 设 定 为 默 认 值 4 % R 当采集 到的环 境数 据超 过 测量 范 围时 , 5 H. 系 统 会 自动报 警 , 提示采 取相应 的措 施 .
测量 范 围 : 度 为 0℃ ~ +5 温 0℃ , 度 小 于 ± 精
0. 5℃ .
较 高 , 温线 性度为 ±0 5℃ ; 测 . 精度 较高 , 敏度为 l 灵 t t 信 号 容易 处理 ,  ̄ ;, A/ 且价 格 便 宜 , 合 本 系统 使 适
用.
相对 湿 度 : 5 R +2 % H~ 十7 %R 精 度 小 于 5 H,
20 0 8年 1 2月
室内温湿度控制系统报告汇总

室内温湿度控制系统设计报告新电八队室内温湿度控制系统摘要:本文利用89C52单片机设计一个温室大棚的温湿度检测控制系统,对室内的温湿度进行检测控制并实时显示。
其中温湿度传感器采用DHT11数字温湿度传感器,通过89C52单片机的处理把温湿度值显示在1602A液晶上。
并实时判断温湿度值是否满足设定的温湿度范围,若超出设定范围,通过89C52启动温湿度控制系统,达到恒温恒湿的目的。
关键字:89C52;DHT11;1602A液晶显示;温湿度控制系统目录摘要 (1)1本系统主要研究内容 (3)基本要求 (3)1.2发挥部分 (3)2系统总体设计 (3)系统的组成 (3)系统的工作原理 (4)3单元电路设计 (6)单片机系统设计 (6)传感器的设计 (8)液晶显示装置设计 (9)光声报警系统与温湿度控制系统设计.............................. 错误!未定义书签。
温湿度系统设计. (13)4软件设计 (14)初始化模块 (14)温湿度检测模块 (14)温湿度判断控制模块 (15)1602液晶显示模块 (15)报警模块 (15)系统整体软件程序 (16)5系统测试 (16)6总结 (17)参考文献: (17)附录 (18)1本系统主要研究内容设计一个室内温湿度检测装置,检测和显示室内的温度、湿度,并在温度、湿度超过设置的范围是采取相应的措施,使得温度达到设置的范围。
基本要求(1)采集温度传感器数据,在显示器上显示室内的温度。
(2)采集湿度传感器数据,在显示器上显示室内的湿度。
(3)可以通过按键来设定目标温度和湿度的范围。
发挥部分(1)当温度和湿度超过设置的范围时用蜂鸣器发出不同的声音报警,并且用LED灯指示是温度还是湿度超出了预设的范围。
(2)用两个电机模拟对温度和湿度的控制,当温度和湿度超出设置范围时控制两个电机动作,调节温度和湿度达到预设的范围。
电机1正转(顺时针)表示加热,反转(逆时针)表示制冷。
室内温湿度检测系统设计

室内温湿度检测系统设计一、引言室内温湿度是影响人们居住和工作环境的重要因素之一,过低或过高的温湿度都会给人们带来不适。
对于室内温湿度的监测和控制就显得至关重要。
在现代智能家居和办公环境中,室内温湿度检测系统已经成为了必备的设备。
本文将介绍一种基于传感器技术的室内温湿度检测系统的设计方案。
二、系统需求1.实时监测室内温度和湿度数据;2.将监测数据传输到用户手机或电脑等终端设备;3.提供可视化界面,以便用户更直观地了解室内环境情况;4.能够根据监测数据进行智能控制,实现温湿度自动调节功能;5.具有实时报警功能,当室内温湿度超出合理范围时能够及时通知用户。
三、系统设计1.硬件设计(1)温湿度传感器选择温湿度传感器是整个系统的核心部件,选择合适的传感器能够保证系统的准确性和稳定性。
一般来说,DHT系列传感器是比较常用的选择,例如DHT11和DHT22,它们能够准确地测量室内温湿度。
(2)微控制器选择在本设计方案中,我们选择了Arduino作为微控制器,它具有开源特性、易学易用等优点,能够很好地满足系统的要求。
(3)无线模块选择为了实现数据传输到用户终端设备的功能,我们选择了无线模块,如Wi-Fi模块或者蓝牙模块。
(4)显示屏选取为了实现可视化界面的要求,我们需要选择合适的显示屏,例如OLED显示屏或者液晶显示屏。
2.软件设计(1)传感器数据采集通过Arduino微控制器对温湿度传感器进行数据采集,得到实时的室内温湿度数据。
(2)数据传输将采集到的数据通过选取的无线模块传输至用户手机或电脑等终端设备,以便用户随时随地地监测室内环境情况。
(3)可视化界面通过选择的显示屏展示室内温湿度数据,并可以根据用户需求设计合适的界面,使用户能够直观地了解室内环境情况。
(4)智能控制根据监测的温湿度数据,系统可以实现智能控制功能,自动调节室内温湿度,提高居住和工作环境的舒适度。
(5)实时报警当室内温湿度超出合理范围时,系统能够实时地向用户发送报警信息,以便用户及时采取相应措施。
室内温湿度监测系统设计与实现

室内温湿度监测系统设计与实现引言:随着人们对生活质量要求的提高,室内环境的舒适度也成为人们关注的焦点之一。
室内温湿度是影响室内环境舒适度的两个重要因素。
为了实现室内温湿度的监测和控制,设计和实现一套室内温湿度监测系统成为了一项有意义且有挑战性的任务。
一、系统设计方案室内温湿度监测系统主要由传感器、数据处理器、数据存储器和显示器组成。
传感器负责采集室内温湿度数据,数据处理器进行数据分析,数据存储器存储监测数据,显示器用于展示温湿度信息。
1. 传感器选择合适的传感器是确保监测系统准确度和稳定性的重要保证。
常用的温湿度传感器有电容式传感器和电阻式传感器。
根据实际需求和预算,可以选择合适的传感器进行室内温湿度数据的采集。
2. 数据处理器数据处理器是核心组成部分,负责将传感器采集的数据进行处理和分析,得出温湿度的趋势和变化。
常用的数据处理器包括微处理器、单片机和计算机。
根据系统的规模和复杂度,可以选择适合的数据处理器进行温湿度数据的处理。
3. 数据存储器数据存储器用于将监测到的温湿度数据进行存储,以便进行历史数据查询和分析。
常见的数据存储器包括内存芯片、硬盘和云存储。
根据系统的容量和安全性要求,可以选择适合的数据存储器进行数据的存储。
4. 显示器显示器用于将监测到的温湿度数据进行展示,以便用户能够直观地了解室内环境的变化。
常用的显示器有液晶显示屏和LED显示屏。
根据实际需求和显示效果要求,可以选择合适的显示器进行温湿度数据的展示。
二、系统实现过程室内温湿度监测系统的实现过程可以分为硬件设计和软件编程两个主要步骤。
1. 硬件设计硬件设计部分主要包括传感器的连接与布局、数据处理器的选型和连接、数据存储器的选型和连接、显示器的选型和连接等。
根据实际情况和系统设计方案,合理布局和选型是保证系统功能和性能的重要环节。
2. 软件编程软件编程部分主要包括数据采集与处理的算法设计、数据存储与查询的代码编写、数据展示的界面设计等。
温湿度控制系统总体设计

温湿度控制系统总体设计1.系统组成(1)传感器:负责检测环境的温度和湿度值,并将数据传输给控制器。
(2)控制器:接收来自传感器的数据,并根据设定的目标值,通过控制执行器来调整环境温湿度。
(3)执行器:负责根据控制器的指令,调整环境中的温湿度。
常用的执行器包括加热器、制冷器、加湿器和除湿器等。
(4)人机界面(HMI):提供用户与系统进行交互的界面,用户可以通过HMI设定目标温湿度值、查看当前环境温湿度等信息。
2.总体设计原则在进行温湿度控制系统总体设计时,需要考虑以下几个原则:(1)准确性:系统应具备高精度的温湿度监测和控制能力,能够满足用户的要求。
(2)可靠性:系统应具备稳定的性能和较低的故障率,能够在长时间运行中保持良好的工作状态。
(3)灵活性:用户应能够根据实际需求设定不同的目标温湿度值,并能够实现自动调整。
(4)可扩展性:系统应具备良好的扩展性,能够方便地对系统进行升级和扩展。
3.系统工作原理(1)传感器不断监测环境的温湿度值,并将数据传输给控制器。
(2)控制器接收来自传感器的数据,并与用户设定的目标温湿度值进行比较。
(3)如果当前环境温湿度值与目标值相差过大,控制器将通过控制执行器来调整环境温湿度。
(4)执行器接收到控制器的指令后,根据指令进行相应的操作,如打开加热器、启动制冷器等。
(5)当环境温湿度值接近目标值时,控制器将停止对执行器的指令,直到下次调整需要。
4.功能设计(1)设定目标温度和湿度值:用户可通过HMI设定所需的目标温湿度值。
(2)温湿度实时监测:系统能够实时监测环境温湿度值,并将数据显示在HMI上。
(3)自动控制:系统能够根据目标值自动调整环境温湿度,保持在设定的范围内。
(4)报警功能:当环境温湿度超出设定的范围时,系统能够发出警报,提醒用户注意。
(5)数据记录和分析:系统能够记录环境温湿度的变化,并提供数据分析功能,帮助用户了解环境变化趋势。
5.硬件设计6.软件设计温湿度控制系统的软件设计主要包括控制算法的实现和人机交互界面设计。
室内温湿度控制系统报告汇总

室内温湿度控制系统设计报告新电八队室内温湿度控制系统摘要:本文利用89C52单片机设计一个温室大棚的温湿度检测控制系统,对室内的温湿度进行检测控制并实时显示。
其中温湿度传感器采用DHT11数字温湿度传感器,通过89C52单片机的处理把温湿度值显示在1602A液晶上。
并实时判断温湿度值是否满足设定的温湿度范围,若超出设定范围,通过89C52启动温湿度控制系统,达到恒温恒湿的目的。
关键字:89C52;DHT11;1602A液晶显示;温湿度控制系统目录摘要 (1)1本系统主要研究内容 (3)1.1基本要求 (3)1.2发挥部分 (3)2系统总体设计 (3)2.1系统的组成 (3)2.2系统的工作原理 (4)3单元电路设计 (6)3.1单片机系统设计 (6)3.2传感器的设计 (8)3.3液晶显示装置设计 (9)3.4光声报警系统与温湿度控制系统设计........................... 错误!未定义书签。
3.5温湿度系统设计 (13)4软件设计 (14)4.1初始化模块 (14)4.2温湿度检测模块 (14)4.3温湿度判断控制模块 (15)4.41602液晶显示模块 (15)4.5报警模块 (15)4.6系统整体软件程序 (16)5系统测试 (16)6总结 (17)参考文献: (17)附录 (18)1本系统主要研究内容设计一个室内温湿度检测装置,检测和显示室内的温度、湿度,并在温度、湿度超过设置的范围是采取相应的措施,使得温度达到设置的范围。
1.1 基本要求(1)采集温度传感器数据,在显示器上显示室内的温度。
(2)采集湿度传感器数据,在显示器上显示室内的湿度。
(3)可以通过按键来设定目标温度和湿度的范围。
1.2 发挥部分(1)当温度和湿度超过设置的范围时用蜂鸣器发出不同的声音报警,并且用LED灯指示是温度还是湿度超出了预设的范围。
(2)用两个电机模拟对温度和湿度的控制,当温度和湿度超出设置范围时控制两个电机动作,调节温度和湿度达到预设的范围。
温湿度监控系统方案(两篇)

引言概述:温湿度监控系统是一种用于实时监测和记录环境中温度和湿度变化的设备。
它可以广泛应用于各种场合,如仓储、冷链物流、医院、实验室等。
本文将详细介绍温湿度监控系统方案(二)的原理、组成部分、工作原理以及优势。
通过本文的阐述,读者将能够全面了解该系统方案,并为相关领域的应用提供参考。
正文内容:1. 系统原理1.1 温湿度传感器温湿度传感器是温湿度监控系统的核心组件,可感知环境中的温度和湿度。
目前市场上常用的温湿度传感器有热电偶、电阻式温湿度传感器、共振式温湿度传感器等。
这些传感器均能够通过电子元件将温度和湿度转化为电信号,并传送给系统主控板。
1.2 系统主控板系统主控板是温湿度监控系统的核心控制单元,负责接收传感器传来的信号,并进行数据处理和存储。
现代系统主控板通常采用微处理器和存储器,能够实现对温湿度数据的快速处理和存储。
2. 组成部分2.1 传感器模块传感器模块是温湿度监控系统的基础组件,在系统中负责感知环境中的温度和湿度。
传感器模块通常由温湿度传感器和信号转换电路组成,能够将感知到的温湿度数据转化为电信号,并传送给系统主控板。
2.2 数据采集模块数据采集模块是温湿度监控系统的重要组成部分,负责接收和整理传感器模块传来的数据,并将其传送给系统主控板。
数据采集模块通常包括数据接收器、数据处理单元和数据传输接口等。
2.3 数据存储模块数据存储模块是温湿度监控系统的关键组件之一,负责存储系统采集到的温湿度数据。
现代的数据存储模块常采用可擦写存储器(EEPROM)或闪存等,可以实现大容量的数据存储和快速读写。
2.4 数据显示模块数据显示模块是温湿度监控系统的用户界面组件,负责将系统采集到的温湿度数据以可视化的形式展示给用户。
数据显示模块通常由液晶屏、按钮和指示灯等组成,用户可以通过操作按钮了解系统的工作状态和当前温湿度数据。
3. 工作原理温湿度监控系统的工作原理是,在环境中布置多个传感器模块,每个传感器模块感知一个特定区域的温湿度,并将数据传输给系统主控板。
温湿度控制系统方案

环境温湿度监控系统设计方案设计原则1、先进性:系统软件与硬件均采用成熟的最新技术手段自主研发,并保持一定前瞻性,能适应整个行业未来的科技发展需要;2、可靠性:系统的设计以及硬件研发,选用较成熟的最新成熟技术;不干扰其它设备的正常运行;3、运行管理方便:4、可扩展性强: 采集设备采用分布式系统架构,容易增加监控设备;5、接口丰富:系统提供基于RS485的MODBUS协议、SNMP协议、RS232串口等智能设备监控开发接口;同时系统还提供第三方接口,便于第三方软件兼容。
6、施工简化:设备提供标准的通讯接口,采用统一的标准系统接线,以及分布式网络连接,现场施工操作简单。
7、技术支持能力强:承建单位技术实力强,服务完善8、建设时间短:在较短的时间内完成系统的安装调试系统性能1.4.1 先进性整个系统技术保持一定前瞻性,采用的设备和技术能适应将来的科技发展。
1.4.2 可靠性所选设备具有良好的电磁兼容性和电气隔离性能,系统安全可靠性高,有足够的抗干扰能力,不影响被监控设备正常工作。
设备研发与选用采用高可靠的工业级标准,保障系统7×24小时不间断运行1.4.3 稳定性系统成熟稳定,支持各种智能设备的接口通讯协议1.4.4 实时性系统数据能通过网络实时传输与保存,用于日后的查询与分析。
1.4.5 实用性系统性能价格比高,整个系统施工简化、易维护、易使用、运行费用低。
1.4.6扩展性系统采用分布式架构设计,能够适应不断增加设备的扩展需求,当系统扩容时,只需简单增加相关设备即可。
1.4.7灵活性系统构成方式简单,功能配置灵活,充分利用现有的计算机资源,能满足不同业务部门的需要。
1.4.8 维护性系统运行可在线运行诊断和检测,能及时发现系统各功能单元故障情况,便于系统故障的维护处理。
2、系统各功能模块实现2.1温湿度监控(有线组网方式)1、监控内容对于各个重要环境安装带液晶显示的温湿度传感器,2、实现方式通过安装带液晶显示的温湿度传感器对环境温湿度实时监测,既可在温湿度传感器表面实时看到当前的温度和湿度数值,亦可通过温湿度传感器的RS485智能接口与协议转换器设备采用TCP/IP方式将信号接入监控服务器平台,由监控平台软件进行温湿度的实时监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六届大学生电子设计竞赛初赛房间温湿度控制系统参赛学院:电气与信息工程学院指导老师:参赛队员及学号:任吉龙 2011302516项敏剑 2011302523钱调整 2011302518目录摘要 (1)引言 (2)一、方案设计 (2)二、方案选择 (2)2.1传感器选择方案 (2)2.2显示器选择方案 (3)2.3 单片机主芯片选择方案 (3)三、详细说明及参数计算 (4)3.1 硬件部分 (4)3.1.1硬件设计 (5)3.1.2控制系统 (5)3.1.3测量部分 (6)3.1.4显示部分 (8)3.1.5控制部分 (10)3.2 软件部分 (11)四、其它功能拓展 (12)4.1 房间灯光控制和调整 (12)4.2 室内空气净化控制 (13)4.3 其它拓展 (13)五、结论 (13)六、附件 (14)房间温湿度控制系统(E题)摘要本设计为基于单片机的温湿度检测控制系统,采用模块化、层次化设计。
用新型的智能温湿度传感器DHT11,主要实现对温度、湿度的控制,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机STC89C52进行数据的分析和处理,为显示提供信号,显示部分采用字符型LCD1602液晶显示器显示所测温度和湿度值,控制部分采用加湿设备、除湿设备、加温设备、降温设备控制温湿度的高低。
关键词温湿度 DHT11 单片机 STC89C52 控制引言温湿度与人类的生活有着密切的关系。
室内的温度、湿度不但对人体健康有影响,而且对物品的存放也有影响。
室内温度、湿度过高,会使衣服发霉、虫蛀,各种食品发霉变质。
因此,应该经常注意调整,使室内保持适宜的温度和湿度。
因此我们需要一种造价低廉、使用方便且计算精确的温湿度控制仪器。
利用单片机对温、湿度控制,具有控温、湿精度高、功能强、体积小、价格低,简单灵活等优点。
我们可以通过基于单片机的温湿度检测控制系统,采用模块化、层次化设计。
用新型的智能温湿度传感器,主要实现对温度、湿度的控制,将温度湿度信号通过传感器进行信号的采集并转换成数字信号,再运用单片机进行数据的分析和处理,为显示提供信号,显示部分采用液晶显示器显示所测温度和湿度值,控制部分采用加湿设备、除湿设备、加温设备、降温设备控制温湿度的高低。
本设计思路要求系统电路简单、集成度高、工作稳定、调试方便、检测精度高,具有一定的实用价值。
一、方案设计设计思路设计控制器使用单片机STC89C52,数字温湿度传感器使用DHT11,用LCD1602液晶屏实现温湿度显示,用加湿设备、除湿设备、加温设备、降温设备控制温湿度的高低,所以本设计能满足设计任务要求。
基于单片机控制的数字温湿度控制系统,本系统属于多功能温湿度计,可以设置上下报警温湿度,当温湿度不在设置范围内时,可以报警并且进行控制。
二、方案选择2.1传感器选择方案方案一:选用DS18B20温度传感器作为温度检测模块。
DS18B20是一线式数字温度传感器。
具有独特的单线式接口方式。
测量范围在—55℃~125℃,—10℃~85℃,误差范围在-\+0.5℃。
最高精度可达0.0625℃。
HS1101是电容式湿度传感器。
可测量相对湿度范围在0%~100%RH。
误差为-\+2%RH。
方案二:选用DHT11作为设计的温湿度检测模块。
DHT11是一款集成型的数字温湿度一体传感器。
它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。
传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。
因此该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。
测量范围20%~90%RH,0℃~50℃。
测温精度为-\+2℃,测湿精度为-\+5%RH。
完全符合本次毕业设计的要求。
经上述分析,方案一虽然精度更精确。
却稍显复杂。
方案二即便不能实现方案一的高精度测量。
却也能满足设计要求。
且简便易行。
可靠稳定。
具有超高的性价比。
故选择方案二。
2.2显示器选择方案方案一:采用12864液晶显示屏。
液晶显示模块是128×64点阵的汉字图形型液晶显示模块,可显示汉字及图形,内置8192个中文汉字(16X16点阵)、128个字符(8X16点阵)及64X256点阵显示RAM(GDRAM)。
可与CPU直接接口,提供两种界面来连接微处理机:8-位并行及串行两种连接方式。
具有多种功能:光标显示、画面移位、睡眠模式等。
方案二:采用HJ1602液晶显示屏。
HJ1602A 是一种工业字符型液晶,能够同时显示16x02 即32个字符。
(16列2行)。
1602只能显示字母、数字和符号能显示16*2个字符,但寄存器不止32个,有一些显示效果,如字符一个个显示、字符从左到右或从右到左显示等等,显示效果简单。
总结:在编程使用方面,两者难度差不多,原理差不多,都是写指令、写地址、写数据等等。
当然12864液晶屏显示更全面、字符更多。
相比于1602液晶屏、12864能更形象具体的实现显示功能。
不过1602液晶屏也能实现设计的要求。
网上买比较廉价,最低的六块钱左右。
而12864液晶显示屏最便宜的也要四十块钱。
从造价方面考虑,当然是价格低廉的优先。
而HJ1602A就是最好的选择。
2.3 单片机主芯片选择方案方案一:AT89C51是美国ATMEL公司生产的低电压,高性能CMOS型8位单片机,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大。
其片内的4K程序存储器是FLASH工艺的,这种单片机对开发设备的要求很低,开发时间也大大缩短。
写入单片机内的程序还可以进行加密,这又很好地保护我们的劳动成果。
再者,AT89C51目前的售价比8031还低,市场供应也很充足。
AT89C51可构成真正的单片机最小应用系统,缩小系统体积,增加系统的可靠性,降低系统的成本。
只要程序长度小于4K,四个I/O口全部提供给用户。
可用5V电压编程,而且擦写时间仅需lOms。
AT89C51芯片提供三级程序存储器加密,提供了方便灵活而可靠的硬加密手段,能完全保证程序或系统不被仿制。
PO口是三态双向口,通称数据总线口,因为只有该口能直接用于对外部存储器的读/写操作。
方案二:STC89C51系列单片机的指令系统和AT89C51系列的完全兼容,但实际操作起来却存在很多问题:(1)AT89C51不带ISP下载,要用下载器才行,STC89C52可以用你的USB转串口下载,下载软件可以到STC厂家网上去下。
(2)STC单片机执行指令的速度很快,大约是AT的3-30倍,尽管快是好事,但这样一来,你在AT上好使的程序在STC上不一定好用,最典型的例子就是那些对时序有严格要求的模块,用STC时注意得加长延时,大约是AT的10—30倍就差不多,这一点自己调试就知道了。
(3)STC单片机对工作环境的要求比较低,电压低于5伏时仍然正常工作,甚至3伏到4伏之间都还可以工作,然而这样的环境下AT肯定不行了,所以当一个系统用STC单片机好用,但用AT的单片机不工作时,直接查最小系统,看单片机的供电是否正常。
比较这两种方案,由于在学校期间学过数字电路、单片机原理、C语言程序设计,综合考虑单片机的各部分资源和作为学生能够获得的资源,经过对比此次设计要求,我选择用STC系列芯片完成。
而且学校也提供了相应的硬件操作平台,实际操作起来比较方便,故STC为更合理的选择。
三、详细说明及参数计算3.1 硬件部分设计图如图3-1所示测量部分控制系统控制部分显示部分图3-1 总体设计框图3.1.1硬件设计主机与主要部件的选择:根据总体功能和性价比及其运行速度等因素的考虑,选用MCS-51系列的STC89C52为主机,满足上面的要求而且设计方便,不需要再存储扩展。
数据存储片内设有128B,外部有8279的256B,而由于存入的数据是随时更新的且不计小数位,存入 8个16进制数字,其总共需要的容量只有16B,已经够用。
外部模温度、湿度采样,选用DHT11能够满足要求。
系统各部件的连接方式和原理图请见附件:DHT11和单片机之间用单总线传输,DHT11的数据口与单片机的P1^7相连。
液晶显示器的RS,RW和E分别与单片机的P2^5,P2^6,P2^7相连,数据输入口DB0-DB7分别与单片机P00-P07口相连。
设置按键、按键加、按键减、确认刷新按键分别的单片机的P2^0,P2^1,P2^2,P2^3相连。
单片机P1^3,P1^5分别为温度超过或低于上下限控制脚, P1^4,P1^6分别为湿度超过或低于上下限控制脚。
控制脚通过控制加湿设备、除湿设备、加温设备、降温设备,调节温度及湿度。
3.1.2控制系统STC89C52单片机简介STC89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的STC89C52单片机可为您提供许多较复杂系统控制应用场合。
STC89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,STC89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。
其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。
8052单片机的引脚功能MCS-51系列单片机一般采用40个引脚,双列直插式封装,用HMOS工艺制造,其外部引脚排列如图3-2所示。
其中,各引脚的功能为:8052单片机的引脚⑴主电源引脚Vcc(40脚):接+5V电源正端Vss(20脚):接电源地端一般Vcc和Vss间应接高频去耦电容和低频滤波电容。
⑵控制信号线RST/VPD(9脚):复位信号输入端,复位/掉电时内部RAM的备用电源输入端ALE/ (30脚):地址锁存允许/编程脉冲输入。
用ALE锁存从P0口输出的低8位地址;在对片内EPROM编程时,编程脉冲由此输入。
图3-2 STC89C52外部引脚图PSEN/ (29脚):外部程序存储器读选通信号,低电平有效。
EA/VPP(31脚):访问外部存储器允许/编程电压输入。
EA为高电平时,访问内部存储器;低电平时,访问外部存储器。
对片内EPROM编程时,此脚接21V 编程电压。
⑶多功能I/O口引脚8052单片机设有4个双向I/O口(P0、P1、P2、P3),每一组I/O口线都可以独立地用作输入或输出口[4]。