数值逼近第三章样条插值和曲线拟合

合集下载

数值分析 董玉林第三章 函数逼近与曲线拟合

数值分析 董玉林第三章 函数逼近与曲线拟合

3、交错点组
定义4
若函数 f x 在其定义域的某一区间 a,b
上存在 n 个点 xk | k 1, 2,..., n, 使得
1 f xk max f x
f x k 1, 2,..., n; ,
2 f xk f xk1 , k 1, 2,..., n 1;
则称点集 xk | k 1, 2,..., n 为函数 f x 在区间
为 f x 与 Pn x 在a,b 上的偏差。
. 注:显然 f , Pn 0, f , Pn 的全体组成一个集合, 它有下界0
若记集合的下确界为
En inf f , Pn inf max f x Pn x
Pn H n
Pn H n a x b
则称 En 为f x 在 a,b 上的最小偏差。
二、函数逼近问题的一般提法
对于函数类 A 中给定的函数 f ,x 要求在另一类 较简单的且便于计算的函数类 B中寻A找一个函
数 ,使P x与 之P差 x在 某f种x度量意义下最小。
注:本章中所研究的函数类 A通常为区间 a上,b的 连续函数,记做 ; C而a函,b数 类 通常是代B数多
项式或三角多项式。
四、一致逼近的概念
定义1 设函数 f 是x区间 上a,b的 连续函数,对于任意给定
的 ,如果存在多项式 P,使x不等式
f x Px
成立,则称多项式 P 在x区间 上a,一b致逼近于函数 。f x
五、一致逼近多项式的存在性
定理 1(维尔斯特拉斯定理) 若f (x)是区间[a, b]上的连续函数,则对于任意给定的
➢ 切比雪夫多项式的极值性质 Tn (x) 的最高次项系数为 2n-1 (n = 1, 2, …)。
➢ 在区间[-1,1]上,在所有首项系数为1的n次多项式 pn x

常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。

函数逼近是指找到一个已知函数,尽可能地接近另一个函数。

而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。

本文将讨论常用的函数逼近和曲线拟合方法。

一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。

它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。

插值法的优点是精度高,缺点是易产生龙格现象。

常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。

拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。

牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。

2. 最小二乘法最小二乘法是一种常用的函数逼近方法。

它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。

通常采用线性模型,例如多项式模型、指数模型等。

最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。

最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。

最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。

数值分析Ch3函数逼近与曲线拟合

数值分析Ch3函数逼近与曲线拟合
与正交,权函数等概念。
正交,这就需要引进范数与赋范线性空间,内积
3.1 函数逼近的基本概念
• 定义 设集合 S 是数域 P 上的线性空间,元 素 x1 , x2 , , xn S ,若存在不全为零的数 1 , 2 , , n P ,使得 1 x1 2 x2 n xn 0 则称 x1 , x2 , , xn 线性相关,否则,若仅对
数 值 分 析
Computational Method
Chapter 3 函数逼近
第三章 函数逼近与曲线拟合 设函数 y f x 的离散数据(有误差)为
x y

x0 y0
x1 y1
x2 y2

xn yn
希望找到简单函数 Px 整体上有 是某度量, 0 是指定精度。
f x Px
1 x1
2 x2 x 2 , 1 1 1 , 1 x , x , 3 2 2 3 x3 3 1 1 2 , 2 1 , 1
xn , 1 xn , 2 xn , n1 1 2 n1 n xn 1 , 1 2 , 2 n1 , n1 k 1 xk , i i ( k 1,2,, n) 简写为: k x xk i 1 i , i

x

2

(连续) f x Ca, b
b
常见范数:
f x 1 f x dx • 1范数: a ,
• 2-范数:
f x 2
2 f x dx a b
1 2
f x max f x • 范数: , a ,b

数值计算方法插值与拟合

数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。

插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。

本文将介绍插值和拟合的基本概念和常见的方法。

一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。

插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。

二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。

2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。

3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。

三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。

2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。

3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。

四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。

五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。

六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。

插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。

插值与拟合

插值与拟合

且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为

数值计算3-插值和曲线拟合

数值计算3-插值和曲线拟合

数值计算...........3.-.插值和曲线拟合插值法是实用的数值方法,是函数逼近的重要方法。

在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。

用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。

寻找这样的函数φ(x),办法是很多的。

φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。

函数类的不同,自然地有不同的逼近效果。

在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。

根据测量数据的类型:1.测量值是准确的,没有误差。

2.测量值与真实值有误差。

这时对应地有两种处理观测数据方法:1.插值或曲线拟合。

2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。

MATLAB中提供了众多的数据处理命令。

有插值命令,有拟合命令,有查表命令。

一维插值插值定义为对数据点之间函数的估值方法,这些数据点是由某些集合给定。

当人们不能很快地求出所需中间点的函数值时,插值是一个有价值的工具。

例如,当数据点是某些实验测量的结果或是过长的计算过程时,就有这种情况。

interp1(x,y,xi,method)x和y为既有数据的向量,其长度必须相同。

xi为要插值的数据点向量。

method插值方法,‘nearest’/‘linear’/‘cubic’/‘spline’之一,分别为最近点插值/线性插值/分段三次Hermite插值/三次样条插值。

例x=[1.0 2.0 3.0 4.0 5.0]; %输入变量数据xy=[11.2 16.5 20.4 26.3 30.5]; %输入变量数据yx1=2.55; %输入待插值点xy11=interp1(x,y,x1,'nearest') %最近点插值方法的插值结果y12=interp1(x,y,x1,'linear') %线性插值方法的插值结果y13=interp1(x,y,x1,'cubic') %三次Hermite插值方法的插值结果y14=interp1(x,y,x1,'spline') %样条插值方法的插值结果y11 =20.4000y12 =18.6450y13 =18.6028y14 =18.4874plot(x,y)或许最简单插值的例子是MATLAB的作图。

3插值曲线拟合

3插值曲线拟合

1 在[-5, 5]上, 用n=11个等距分点作分段线 2 1 x
例4 对 y
性插值和三次样条插值, 用m=21个插值点作图,比较结果. x
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000
1 在[-5, 5]上, 用n=11个等距分点作分段线 2 1 x
四种插值方法比较
函数
格式
功能
zi=interp2(x,y,z,xi,yi)
二维插值。Z为由已知点的值组成的 矩阵,参量x与y是与z同维的已知点 的矩阵,且必须是单调的。xi与yi为 需要插值的点。若xi与yi中有在x与y 范围之外的点,则相应地返回NaN。
此格式默认x=1:n、y=1:m,其中 [m,n]=size(z)。再按 zi=interp2(x,y,z,xi,yi)情形进行计算。
x=-1:0.1:1; y=1./(1+9*x.^2); xi=-1:0.1:1; yi=interp1(x,y,xi); plot(x,y,'r-',xi,yi,'*')
例2. 在普通V带设计中,带轮的包角α与包角系数ka之间的关系如 表所示。求α=133.5°时的包角系数ka。
包角与包角系数
包角 ( °) 包角系 数 包角 ( °) 90 100 110 120 125 130 135 140
例 6 在飞机的机翼加工时, 由于机翼尺寸很大, 通常在图 纸上只能标出部分关键点的数据. 某型号飞机的机翼上缘 轮廓线的部分数据如下:
x=[0 4.74 9.05 19 38 57 76 95 114 133 152 171 190] y=[0 5.23 8.1 11.97 16.15 17.1 16.34 14.63 12.16 9.69 7.03 3.99 0] xi=[0:0.001:190] yi=interp1(x,y,xi,'spline') plot(xi,yi)

数值分析实验报告--实验3--函数逼近与曲线拟合

数值分析实验报告--实验3--函数逼近与曲线拟合

数值分析实验三:函数逼近与曲线拟合1曲线逼近方法的比较1.1问题描述曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的。

考虑实验2.1中的著名问题。

下面的MATLAB程序给出了该函数的二次和三次拟合多项式。

x=-1:0.2:1;y=1./(1+25*x.*x);xx=-1:0.02:1;p2=polyfit(x,y,2);yy=polyval(p2,xx);plot(x,y,’o’,xx,yy);xlabel(‘x’);ylabel(‘y’);hold on;p3=polyfit(x,y,3);yy=polyval(p3,xx);plot(x,y,’o’,xx,yy);hold off;实验要求:(1) 将拟合的结果与拉格朗日插值及样条插值的结果比较。

(2) 归纳总结数值实验结果,试定性地说明函数逼近各种方法的适用范围,及实际应用中选择方法应注意的问题。

1.2算法设计对于曲线拟合,这里主要使用了多项式拟合,使用Matlab的polyfit函数,可以根据需要选用不同的拟合次数。

然后将拟合的结果和插值法进行比较即可。

本实验的算法比较简单,此处不再详述,可以参见给出的Matlab脚本文件。

1.3实验结果1.3.1多项式拟合1.3.1.1多项式拟合函数polyfit和拟合次数N的关系1 / 13首先使用polyfit函数对f(x)进行拟合。

为了便于和实验2.1相比较,这里采取相同的参数,即将拟合区间[-1,1]等分为10段,使用每一段区间端点作为拟合的数据点。

分别画出拟合多项式的次数N=2、3、4、6、8、10时,f(x)和多项式函数的图像,如图1所示。

Matlab 脚本文件为Experiment3_1_1.m。

Figure 1 多项式拟合与拟合次数N的关系可以看出,拟合次数N=2和3时,拟合效果很差。

增大拟合次数,N=4、6、8时,拟合效果有明显提高,但是N太大时,在区间两端附近会出现和高次拉格朗日插值函数类似的龙格现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样条插值和曲线拟合
2.,作4次多项式的等距插值,求,并比较与的差别,如果用分段插值,那么结果将如何?
解:(1)先作差商表
所以:,故:。

(2)若采用分段插值,则在上,,所以:
,结果一样。

4.对在中用等距分段Hermite 3次插值,其余项是什么?
解:若对在中用等距分段Hermite 3次插值,则在每个小区间上,由第二章定理8知:
由于,所以在上,
注意右端与无关,故在上,有:。

5.对函数,在区间上用等距线性插值、等距Hermite 3次插值、等距样条插值,问步长应取多少才能保证各自的截断误差小于?
解:因为,所以
,因此。

若在区间上用等距线性插值,则误差为:
欲使,只须。

若在区间上用等距Hermite 3次插值,则误差为:
欲使,只须
若在区间上用等距样条插值,则由定理5,有:
欲使,只须。

7.对,在上取5个等距节点,求3次自然样条插值。

解:取节点,作差商表:
对于自然样条,,按公式(10)形成方程组:
解得:。

由(9)式即得样条函数的表达式(略)。

11.对于3次样条函数,如果给定的条件是,如何给出边界条件使得唯一确定。

解:由于在上是3次多项式,故在上是1次多项式,而且满足,因此可表示为
于是积分两次并利用
(为未知量)可定出积分常数:
事实上,积分两次后,记
,再由
可定出。

于是:
即:
若考虑在上,有两边的应
相等,即:,
整理并记,得:
若给定边界条件,则形成方程组:
该方程组的系数矩阵为严格对角占优矩阵,故唯一确定。

12.若是实轴上个由小到大排列的点,考虑一个上的函数,它在上是一个二次多项式,并且是已知值,又在内节点上连续,这样的称为二次样条插值。

试证这样的二次样条插值有很多,并问加上何种条件才能使它唯一,给出求的方程。

解:由于在每个小区间上,有3个待定系数,于是在上共有个待定系数,。

要满足的条件是:
通过型值点:,共
有个方程;
的一阶导数连续,即
共有个方程。

这样总共有个方程,而待定系数有个,于是可以有很多。

若要使它唯一确定,加上即可。

事实上:考虑在上是一个二次多项式,可以写成:,若记为未知量,则:,再由得,故
,再由得:
再由为已知,从而由,可求得,且由递推关系知是唯一确定的。

15.证明满足周期边界条件的3次样条插值函数也具有极小模性质,即:
,其中是二阶导数连续函数,且,,。

证:设是二阶导数连续,且满足,,
的任意一个函数,令
,则。

由:
得:
故:。

证毕
16.证明:贝齐尔曲线。

证:因
17.对于贝齐尔曲线,若要求,问应是什么?
解:由得:,即:

再由得:,解得:
18.利用作图定理证明:。

证:利用数学归纳法。

当时:
成立。

假设当时有:,则当时:
故由数学归纳法知,对任意有:。

19.证明:。

证:因为:,两边求导得:
故:。

相关文档
最新文档