曲线拟合和插值运算原理和方法
数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
曲线拟合与插值方法的数学原理

曲线拟合与插值方法的数学原理现代科学技术的发展离不开数学的支持,而在数学领域中,曲线拟合与插值方法是一种常用的数学原理。
本文将从数学角度探讨曲线拟合与插值方法的原理及其应用。
曲线拟合是指利用已知的数据点,通过一定的数学方法找到与这些数据点最为契合的曲线。
在实际应用中,往往通过曲线拟合方法来预测未知数值,从而达到分析数据、优化设计等目的。
而曲线插值则是指通过已知数据点之间的光滑曲线来逼近实际函数的方法。
曲线插值要求插值函数通过所有给定的数据点,从而保证精确度要求。
曲线拟合与插值方法的数学原理主要涉及到数值分析、逼近论、微积分等数学知识。
在曲线拟合中,常用的方法包括最小二乘法、最小二乘多项式拟合、最小二乘非线性拟合等。
最小二乘法是一种通过最小化误差平方和来确定未知参数的优化方法,能够有效降低数据测量误差对拟合结果的影响。
在曲线插值方法中,常用的技术包括拉格朗日插值、线性插值、样条插值等。
这些方法通过不同的插值基函数来逼近实际函数,其中拉格朗日插值是一种广泛应用的方法,它通过已知数据点构造一个插值多项式,从而达到对函数的逼近效果。
曲线拟合与插值方法在实际应用中有着广泛的应用。
例如,在工程领域中,曲线拟合与插值方法能够对大量的实验数据进行处理,从而找到数据背后的规律,为工程设计提供支持。
在金融领域中,曲线插值方法被广泛用于股票市场走势的分析与预测,通过对历史数据的插值拟合,为投资决策提供参考。
此外,在地理信息系统、生物医学和社会科学等领域,曲线拟合与插值方法也有着重要的应用价值。
总之,曲线拟合与插值方法作为一种重要的数学原理,在现代科学技术领域中有着广泛的应用。
通过对曲线拟合与插值方法的深入研究和探讨,我们能够更好地理解数据背后的规律,为科学研究和工程实践提供强大的支持。
希望本文能够对读者对曲线拟合与插值方法有所启发和帮助。
常用数值分析方法3插值法与曲线拟合

p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
第三章(曲线拟合)

y1 y0 a x1 x0 y1 y0 b y0 x0 x1 x0
第4章 插值法
代入式(4―3)得
y1 y0 P ( x1 x0 ) 1 ( x ) y0 x1 x0
《 计 算 方 法 》
(4―4)
图 4.1
第4章 插值法
A(x0,y0),B(x1,y1),C(x2,y2)的抛物线来近似地代替f(x),见图
4.2。
第4章 插值法
《 计 算 方 法 》
图 4.2
第4章 插值法
§3 代数多项式插值的存在唯一性
《 计 算 方 法 》
线性插值和二次插值都属于代数多项式插值。对 于一般的代数插值问题,就是寻求一个不高于n次的代数 多项式 Pn(x)=a0+a1x+a2x2+…+anxn (4―9)
现要构造一个二次函数
φ(x)=P2(x)=ax2+bx+c 近似地代替f(x),并满足插值原则(4―2)
《 计 算 方 法 》
(4―6) (4―7)
P2(xi)=yi, i=0,1,2,… 由(4―7)式得
2 ax0 bx0 c y0 2 ax1 bx1 c y1 ax 2 bx c y 2 2 2
第4章 插值法
10 9
《 计 算 方 法 》
§ 曲 线 拟 合 法
§ 数 值 微 分
§
8
§ 7 牛 顿 前 差 和 后 差 插 值 多 项 式
§ 6 牛 顿 均 差 插 值 多 项 式
§
5
§ 4 代 数 多 项 式 的 余 项
§ 3 代 数 多 项 式 插 值 的 存 在 唯 一 性
第四章插值和曲线拟合

在实际问题和科学实验中所遇到的函数y=f(x),往往
没有解析表达式 , 只能根据试验观察或其它方法提供一
系列点的函数值; 有时尽管可以写出表达式,但是比较
复杂, 直接使用它感到不方便。我们经常需要利用已知
的数据去寻求某个简单的函数φ (x)来逼近f(x),即用φ (x)
作为f(x)的近似表达式。本章的插值法和曲线拟合就是
φ (xi) = yi ,
插值法的几何意义
插值法的几何意义就是通过n+1个点: (xi,yi) (i=0,1,2,…,n) 作一条近似曲线y= φ (x) 代替y=f(x)。如下图所示。 y=f(x) (xn,yn) y= φ (x) y
(x1,y1) (x0,y0) (x2,y2)
(xn-1,yn-1)
三、n次拉格朗日插值
仿照P2 (x)的构造方法,可得出 Pn(x)=L0(x)y0+L1(x)y1+…+Ln(x)yn 其中 L0(x)=[(x-x1)(x-x2)…(x-xn)]/ [(x0-x1)(x0-x2)…(x0-xn)] Lk(x)= [(x-x0)…(x-xk-1)(x-xk+1) …(x-xn)] /[(xk-x0)…(xk-xk-1)(xk-xk+1) …(xk-xn)] ( k = 0, 1, …, n ) 这就是n次拉格朗日插值多项式。 也可写为 n n n x x k P ( x ) L ( x ) y y n i i i x x i 0 i 0 k 0 , k i i 或 k
线性插值举例
例 解 或 已知 1001/2 =10,1211/2 =11 求 1151/2 P1(x) = y0+(y1-y0)/(x1-x0)*(x-x0) P1(115) = 10+(11-10)/(121-100)*(115-100)
插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。
它们在数据分析、模型构建和预测等领域发挥着重要作用。
本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。
插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。
它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。
原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。
主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。
•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。
•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。
曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。
它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。
原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。
然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。
应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。
主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。
•曲线拟合可以选择不同的函数形式和参数,灵活性较高。
•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。
插值与拟合算法分析

插值与拟合算法分析在数学与计算机科学领域,插值与拟合算法是两种常用的数据处理技术。
插值算法通过已知数据点之间的内插来估算未知数据点的值,而拟合算法则通过求取最佳拟合曲线或函数来逼近已知数据点。
本文将对插值与拟合算法进行详细分析,并比较它们在不同应用中的优缺点。
一、插值算法插值算法主要用于通过已知数据点之间的内插来估算未知数据点的值。
常用的插值算法包括拉格朗日插值、牛顿插值、样条插值等。
这些算法根据插值函数的不同特点,适用于不同类型的数据处理。
1. 拉格朗日插值拉格朗日插值是一种基于代数多项式的插值方法。
它通过构造一个全局多项式函数来拟合已知数据点,并推导出未知数据点的估算值。
拉格朗日插值算法具有简单易懂、计算效率高等优点,但在处理大量数据点时可能会出现龙格现象,导致插值结果有一定误差。
2. 牛顿插值牛顿插值是一种基于差商的插值方法。
它通过计算差商的递推关系,构造一个分段多项式函数来拟合已知数据点。
相比于拉格朗日插值,牛顿插值算法具有更高的数值稳定性和精度,并且可以方便地进行动态插值。
3. 样条插值样条插值是一种基于分段函数的插值方法。
它将整个数据区间划分为若干小段,并使用不同的插值函数对每一段进行插值。
样条插值算法通过要求插值函数的高阶导数连续,能够更好地逼近原始数据的曲线特征,因此在光滑性较强的数据处理中常被使用。
二、拟合算法拟合算法主要用于通过最佳拟合曲线或函数来逼近已知数据点。
常用的拟合算法包括最小二乘拟合、多项式拟合、非线性拟合等。
这些算法可以使拟合曲线与已知数据点尽可能地接近,从而进行更精确的数据分析和预测。
1. 最小二乘拟合最小二乘拟合是一种通过最小化残差平方和来求取最佳拟合曲线的方法。
它利用数据点与拟合曲线的差异来评估拟合效果,并通过求取最小残差平方和的参数值来确定拟合曲线的形状。
最小二乘拟合算法广泛应用于线性回归和曲线拟合等领域。
2. 多项式拟合多项式拟合是一种通过多项式函数来逼近已知数据点的方法。
曲线拟合与插值

1、曲线拟合在许多应用领域中,人们经常需要从一系列已知离散点上的数据集[(x1,y1),(x2,y2)],…(x n,y n)]得到一个解析函数y=f (x)。
得到的解析函数f(x)应当在原离散点x i上尽可能接近给定的y i的值,这一过程称为曲线拟合。
最常用的曲线拟合是最小二乘法曲线拟合。
似合结果可使误差的平方和最小,MATLAB提供的函数polyfit,根据给定的自变量数组x和函数数组y,按照拟合的阶数要求自动求解满足最小二乘意义的一阶或高阶解析函数f(x),使用很方便。
为了说明这个问题,我们取以下函数为例:2-y⨯=25.0xx=0:0.1:1;for i=1:length(x);y(i)=0.5-2*x(i)^2;end将y值进行一定的修改,输入如下的程序y=[0.52 0.45 0.4 0.35 0.18 0.02 -0.25 -0.4 -0.81 -1.1 -1.5]m=1;fxy1=polyfit(x,y,m) %获得拟合的多项式系数,存储在fxy1m=2;fxy2=polyfit(x,y,m)y1=poly val(fxy1,x) %多项式求值,x为输入值,y1为作图使用。
此处为了画出拟合之后的曲线,是运用了离散点的形式绘图,也可以直接使用函数形式来画图,与未拟合的离散点对比。
指令为:fun1=poly2sym(fxy1);ezplot(fun1,[x(1),x(2)]);y2=polyval(fxy2,x)plot(x,y,'o',x,y1,'k:',x,y2,'k')2、插值运算与曲线拟合不同,插值运算不是试图找出适合于所有自变量数组x的全局最优拟合函数Y=f(x〕,而是要找到一个解析函数连接自变量相邻的两个点(xi,xi十1),由此还可以找到两点间的数值。
根据自变量的维数不同,插值方法可以分为一维插值y=f(x)和二维插值z=f(x,y)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验10 曲线拟合和插值运算一. 实验目的学会MATLAB 软件中软件拟合与插值运算的方法。
二. 实验内容与要求在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1) 测量值是准确的,没有误差,一般用插值。
(2) 测量值与真实值有误差,一般用曲线拟合。
MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。
最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i ii f x y =-∑ 最小的f(x).格式:p=polyfit(x,Y ,n).说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。
[例 1.9]>>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值>>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值>>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数>>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值>>y1=polyval(p,1x ); %求出f(x)在1x 的值>>plot(x,y,‟*r ‟, 11,x y ‟-b ‟) %比较拟合曲线效果计算结果为:p=0.5614 0.8287 1.1560即用f(x)=0.56142x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。
问题1.32:将上题改为6阶拟合,拟合效果又如何?(拟合曲线经过所有已知数据点)从以上例子可看出,选择不同的阶数,会得到不同的效果,如何选择阶数,需要进一步了解系统辨识方面的知识。
2. 一维插值已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],找出一解析函数连接自变量相邻的两个点(,1i i x x ),并求得两点间的数值,之一过程叫插值。
格式一:yi=inter 1p (X,Y,1x ,method)说明:该命令用指定的算法对数据点之间计算内插值,它找出一元函数f(x)在中间点的数值,其中函数f(x)由所给数据决定,各个参量之间的关系如图1.32所示。
“nearest ”:最近邻点插值,直接完成计算。
“linear ”线性插值(缺省方式),直接完成计算。
“spline ”三次样条函数插值。
“cubic ”三次函数插值。
对于超出x 的范围的1x 的分量,使用其他的方法,inter 1p 将对超出的分量执行外插值算法。
格式二: 1y = inter 1p (X,Y ,1x ,method,‟extrap ‟)%对于超出x 范围的1x 中的分量将执行特殊的外插值法extrap.yi=inter 1p (X,Y ,1x ,method,extrapval)%确定超出x 范围的1x 中的分量的外插值extrapval,其值通常取NaN 或0.[例 1.96]>> year = 1900:10:2010;>>product = [75.995,91.972,105.711,123.203,131.669,….249.633,256.344,267.893 ];>>p2005 = =interpl (year , product , 2005)x = 1900 : 1: 2010;>>y= interpl(year,product,x, …cubic‟);>>plot(year,product,‟o‟,x,y)插值结果为p1995 =262.11853.二维插值格式:Z I=interp2 (X,Y,Z,X I,Y I,method)说明:用指定的算法method计算二维插值,返回矩阵Z I,其元素对应于参量X I与Y元素,用户可以输入行向量和列向量XI和YI,此时,输出向量ZI与矩阵meshgrid(xi,yi)是同型的,参量X 与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样,method有: …linear‟:双线性插值算法(缺省算法)…nearest‟:最临近插值…spline‟:三次样条插值…cubic‟:双三次插值[例1.97]>> years=1950:10:1990;>> service=10:10:30;>>wage=[150.697,199.592,187.625;179.323,195.072,250.287;203.212,179.092,322.767;226.505, 153.706,426.730;249.636,120.281,598.243];>> w=interp2(service,years,wage,15,1975)插值结果为:w=190.6288[例1.98]>> x=1:6;y=1:4;>> t=[12,10,11,11,13,15;16,22,28,35,27,20;18,21,26,32,28,25;20,25,30,33,32,30];>> subplot(1,2,1)>> mesh(x,y,t)>> x1=1:0.1:6;>> y1=1:0.1:4;>> [x2,y2]=meshgrid(x1,y1);>> t1=interp2(x,y,t,x2,y2,'cubic');>> subplot(1,2,2)>> mesh(x1,y1,t1)图形结果为:三,练习与思考1)已知x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3],y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5],求对x和y进行6阶多项式拟合的系数.2)分别用2,3,4,5阶多项式来逼近[0,3]上的正弦函数sin x,并做出拟合曲线及sin x函数曲线图,了解多项式的逼近程度和有效拟合区间随多项式的阶数有何变化.3)已知x=[0.1,0.8,1.3,1.9,2.5,3.1],y=[1.2,1.6,2.7,2.0,1.3,0.5],用不同的方法求x=2点的插值,并分析所得结果有何不同.四,提高内容1.三维数据插值格式:V I=interp3(X,Y,Z,V,X I,Y I,Z I,method).说明:用指定的算法method找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(X I,Y I,Z I)的值,参量X I,Y I,Z I是同型阵列或向量.…cubic‟:三次插值…spline‟:三次样条插值.…nearest‟:最邻近插值.注意:在所有的算法中,都要求X,Y,Z是单调且有相同的格点形式,当X,Y,Z是等距且单调时,且算法‟*linear‟,ۢ*cubic‟,ۢ*nearest‟可得到快速插值.[例1.99]>> [x,y,z,v]=flow(20);>> [xx,yy,zz]=meshgrid(0.1:0.25:10,-3:0.25:3,-3:0.25:3);>> vv=interp3(x,y,z,v,xx,yy,zz);>> slice(xx,yy,zz,vv,[6,9.5],[1,2],[-2,0.2]);>> shading interp>> colormap cool插值图形如下:2一维插值的快速傅里叶算法格式:y=interpft(x,n).说明:返回包含周期函数x在重采用的n个等距的点的插值y.若length(x)=m,且x有采样间隔dx,则新的y的采样间隔dy=dx*m/n,注意,必须要n m,若x为一矩阵,则按x的列进行计算,返回的矩阵y有与x相同的列数,但有n行.数据格点格式:Z I=griddata(x,y,z,X I,Y I,method).说明:用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z.griddata将返回曲面z在点)XI,YI)处的插值,曲面总是经过这些数据点(x,y,z)的,输入参量(X I,Y I)通常是规则的格点(像用命令meshgrid生成的一样),X I可以是行向量,这时X I指定一有常数列向量的矩阵,类似地,Y I 可以是一列向量,它指定一个有常数行向量的矩阵.…linear‟:基于三角形的线性插值(缺省算法)…cubic‟:基于三角形的三次插值.…nearest‟:最邻近插值法.3.三次样条数据插值格式:yy=spline(x,y,xx).说明:对于给定的离散的测量数据x,y(称为断点),要寻找一个三项式y=p(x),以逼近每对数据(x,y)点间的曲线.该命令用三次样条插值计算出由向量x与y确定的一元函数y=f(x)在点xx处的值,若参量若参量是一个矩阵,则以y的每一列和x配对,再分别计算由它们确定的函数在点xx处的值.则yy是一阶数为length(xx)*size(y,2)的矩阵.[例1.100] 对离散地分布在y=e x sinx函数曲线上的数据点进行样条插值计算.>> x=[0 2 4 5 6 12 12.8 17.2 19.9 20];>> y=exp(x).*sin(x);>> xx=0:.25:20;>> yy=spline(x,y,xx);>> plot(x,y,'o',xx,yy)插值图形结果如图所示:(报告来源)。