插值法与曲线拟合

合集下载

免疫学检测中的曲线拟合-资料

免疫学检测中的曲线拟合-资料

ROC曲线的含义:
阳性人群的测定值与阴性人群的测定值重叠程度越小,即测定的识别能力越高, ROC曲线越偏向上,曲线下面积越大。
定量测定---测定待测物的含量
判定结果:浓度(U/L,μg/L)。 判断依据:测定未知标本的同时,以系列浓度标准品
测得的剂量反应曲线(即标准曲线)以此推算未知标 本的浓度。 剂量反应曲线:一般均为非线性的,不同的数学模式 可以用来改善上述剂量反应曲线绘制的精密度,从而 以较少的数据和计算获得较为准确的结果。 应用:非传染性血清学指标。
线性内插与2阶曲线拟合
插值法 interpolative methods
假设:反应变量的已知绝对精密; 曲线构建:以观察到的数据构建曲线; 方法:
点对点(线性插值) 样条插值 spline function
点对点(线性插值)
将临近的校准点以点对点的方式用一条直线连起来。
假设:中间值落在数据点之间的直线上; 当数据点个数增加和它们之间距离减小时,线性插值就更精确; 适用范围:线性范围大或数据点多且相互紧密相连; 处理:为使数据更具有线性关系,可对数据进行某些方式的转换
免疫学检测中的曲线拟 合-资料
免疫测定中的数据处理与曲线拟合
免疫测定中的数据处理 数据处理与科学作图
免疫测定的数据处理及结果报告
临床免疫检测技术:RIA和EIA等; 数据处理的意义和目标:
– 只有在测定结果以一种有意义的方式报告时,测定结果才有用; – 免疫测定结果的客观评价,对改善免疫测定的重复性以及免疫 测定的标准化都有重要意义。 数据处理报告的要求: – 通俗易懂; – 定性结果明确,定量范围明确; – 处理后得到的数据要具有可重复性; – 试验的评价不能建立在假定的正态分布上; – 结果具有用于进一步分析处理(如流行病学)的充分性。 免疫测定以其测定结果的表达方式:定性,定量两类。

常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合

常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。

函数逼近是指找到一个已知函数,尽可能地接近另一个函数。

而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。

本文将讨论常用的函数逼近和曲线拟合方法。

一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。

它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。

插值法的优点是精度高,缺点是易产生龙格现象。

常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。

拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。

牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。

2. 最小二乘法最小二乘法是一种常用的函数逼近方法。

它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。

通常采用线性模型,例如多项式模型、指数模型等。

最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。

最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。

最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。

matlab-曲线拟合

matlab-曲线拟合

散点图
单击Data按钮
在X data和Y data两个下拉式列表框中选 择变量名,将在Data对话框中显示散点图的 预览效果:
当选择Data sets列表框中的数据集时,单 击View按钮,打开View Data Set对话框
工作表方式
2.数据的预处理
在曲线拟合工具箱中,数据的预处理主要包 括平滑法、排除法和区间排除法等。
(2)排除法和区间排除法 排除法是对数据中的异常值进行排除。 区间排除法是采用一定的区间去排除那些用 于系统误差导致偏离正常值的异常值。 在曲线拟合工具中单击Exclude按钮,可以 打开Exclude对话框
Exclusion rule name指定分离规则的名称 Existing exclusion rules列表产生的文件 名,当你选择一个文件名时,可以进行如下操 作: Copy 复制分离规则的文件; Rename重命名;delete 删去一个文件; View以图形的形式展示分离规则的文件。 Select data set 挑选需要操作的数据集; Exclude graphically允许你以图形的形式去 除异常值,排除个别的点用“×”标记。
0.0073
0.0193x 5 0.0110x 4 0.043x 3 0.0073x 2 0.2449x 0.2961
s=
R: [6x6 double] df: 0 normr: 2.3684e-016 mu = 0.1669 0.1499
自由度为 0 标准偏差为 2.3684e-016
.Smoothed data sets 对于所有平滑数 据集进行列表。可以增加平滑数据集,通 过单击Create smoothed data set按 钮,可以创建经过平滑的数据集。 .View按钮 打开查看数据集的GUI,以散点 图方式和工作表方式查看数据,可以选择 排除异常值的方法。 .Rename用于重命名。 .Delete可删去数据组。 .Save to workspace保存数据集。

常用数值分析方法3插值法与曲线拟合

常用数值分析方法3插值法与曲线拟合
8/37
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合与插值

MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。

- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。

2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。

- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。

3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。

- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。

4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。

- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。

综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。

免疫学检测中的曲线拟合

免疫学检测中的曲线拟合
准物浓度作图; 2)最小平方线性回归。
y=a+b(1/x) 或(1/y)=p+q(x)
ppt课件完整
25
双曲线模式 hyperbolic curve应用
问题:
标准曲线的端值得不到好的拟合(特别是低浓度端); 测定误差为倒数,与实际误差规律相反; 不具有S形,限制了应用。
双曲线拟合模式:
竞争性免疫测定数据(在限定范围内的值)能拟合很好 的平滑曲线。
Logistic公式(两参数,四参数):
曲线形状:具有单点屈曲的连续性S形函数; 假定校准曲线拟合下述曲线形式:
a-d
logistic公式:Y= 1+(X/+C)d
x以对数表示时曲线呈b p线pt课性件。完整
24
双曲线拟合 hyperbolic curve:
1)将校准物浓度的倒数对测定反应作图或以B0/B对 校
曲线形状:双曲线; 假定数据拟合下式:y=a+b(1/x) 或(1/y)=p+q(x)。
多项式模式:
曲线形状:抛物线; 假定校准曲线拟合下述曲线形式;y=a+bx+cx2+dx3+……+pxn。
Log-Logit转换:
曲线形状:具有单点屈曲的连续性S形函数; 假定校准曲线拟合下述曲线形式: logit(y)=a+b*ln(x),其中logit(z)=ln[z/(1-z)]。
11
数据处理与科学作图
➢ 问题:给定一批离散的数据点,需确定满足特定要求的曲线或 曲面,从而获取整体的规律。
➢ 目标:用一个解析函数描述一组(二维)数据(通常是测量值)。 ➢ 方法:
插值法 -- 数据假定是正确的,要求以某种方法描述数据点之 间所发生的情况;

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。

它们在数据分析、模型构建和预测等领域发挥着重要作用。

本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。

插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。

它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。

原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。

常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。

应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。

主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。

•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。

•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。

曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。

它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。

原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。

然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。

应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。

主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。

•曲线拟合可以选择不同的函数形式和参数,灵活性较高。

•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档