电力电子仿真matlab模型(DOC)

合集下载

电力电子的matlab仿真

电力电子的matlab仿真

电力电子的 MATLAB 仿真计算机控制技术 课程设计资料2010 年 4 月前 言电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用形 很强的课程。

由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和 困难,一般常用波形分析的方法来研究。

仿真技术为电力电子电路的分析提供了崭新的方法。

我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的 作用。

掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并 且可以调动学生的积极性。

实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的, 也受到学时的限制。

而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。

仿 真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。

目录第一章 MATLAB 基础11.1 MATLAB 介绍11.2 MATLAB 的安装与启动21.3 MATLAB 环境3第二章 MATLAB/Simulink/Power System 工具箱简介 72.1 Simulink 工具箱简介 72.2 Power System 工具箱简介 102.3Simulink/Power System 的模型窗口 132.4Simulink/Power System 模块的基本操作 17第三章 电力电子电路仿真实训 21实训一单相半波可控整流电路仿真实训 21实训二单相桥式半控整流电路仿真实训 29实训三单相桥式全控整流电路仿真实训 35实训四单相桥式全控有源逆变电路仿真实训 42实训五 单相交流调压电路仿真实训 45实训六 降压斩波电路仿真实训 48实训七 升压斩波电路仿真实训 51实训八 升降压斩波电路实训 54实训九三相半波不可控整流电路仿真实训 57实训十三相半波可控整流电路仿真实训 59实训十一三相桥式全控整流电路仿真实训 67实训十二三相半波可控整流电路有源逆变电路仿真实训 72实训十三三相桥式有源逆变电路仿真实训 75第 1 章 MATLAB 基础MATLAB 介绍 MATLAB 是一种科学计算软件。

电力电子技术与MATLAB仿真课程设计

电力电子技术与MATLAB仿真课程设计

电力电子技术与MATLAB仿真课程设计课程设计概述本次课程设计的主要任务是对电力电子技术进行深入了解,并通过MATLAB仿真进行实践操作,从而全面掌握电力电子技术的应用。

本次课程设计以掌握电力电子技术基本原理、掌握MATLAB仿真软件的使用和掌握电力电子技术的应用为主要目标,结合实际应用案例和仿真实验,学生们能够更加深入地理解电力电子技术的应用,并且掌握MATLAB仿真的使用方法。

任务一:电力电子技术基础知识任务目标通过学习电力电子技术基础知识,掌握电力电子技术的相关概念和原理。

学习内容本次课程设计的学习内容主要包括以下几点:1.电力电子技术概述2.半导体器件3.电路模型4.控制方法学习方法学生们应该认真学习课程中涉及到的各种电力电子技术相关知识和概念,并在查阅相关文献进行加深理解。

同时,针对课程中的一些重点难点内容,可以与同学共同研究、讨论,并结合实际案例进行学习。

任务二:MATLAB仿真操作技能任务目标通过本次课程设计,学生们应该掌握MATLAB仿真工具的基本操作技能,能够独立完成电力电子技术的相关仿真实例,并且掌握MATLAB仿真结果的分析和处理方法。

学习内容本次课程设计的学习内容主要包括以下几点:1.MATLAB基础操作2.电力电子技术常用仿真分析方法3.仿真模型搭建学习方法学生们应该认真学习课程中涉及到的MATLAB仿真工具的相关知识和概念,并进行实践操作。

在实践操作过程中,可结合文献资料进行研究和调整,并与同学一起共同探讨仿真结果与理论分析的关系。

任务三:综合应用任务目标通过独立完成应用案例的设计和模拟仿真,学生们能够深入理解电力电子技术的实际应用,并且掌握MATLAB仿真工具在电力电子技术应用方面的操作方法。

学习内容本次课程设计的学习内容主要包括以下几点:1.开关电源的设计及仿真2.三相变频器的设计及仿真3.太阳能逆变器的设计及仿真学习方法学生们应该针对给出的应用案例进行仿真模拟,并负责完成实验数据表格整理及会议汇报材料的整理,以提高课程设计实际应用能力。

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。

(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。

(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。

(4)了解三种不同负载电路的工作原理及波形。

二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。

其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。

(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。

(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。

(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。

2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。

如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。

设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。

α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。

电力电子技术应用实例MATLAB仿真

电力电子技术应用实例MATLAB仿真

目录摘要 (1)关键词 (1)1.引言 (1)2.单相半波可控整流电路 (1)2.1实验目的 (1)2.2实验原理 (1)2.3实验仿真 (2)3.单相桥式全控整流电路 (8)3.1实验目的 (8)3.2实验原理 (8)3.3实验仿真 (9)4.三相半波可控整流电路 (10)4.1实验目的 (10)4.2实验原理 (11)4.3实验仿真 (12)5. 三相半波有源逆变电路 (14)5.1实验目的 (14)5.2实验原理 (14)5.3实验仿真 (15)6.三相桥式半控整流电路 (17)6.1 实验目的 (17)6.2实验原理 (17)`6.3 实验仿真 (17)7.小结 (19)致谢 (19)电力电子技术应用实例的MATLAB 仿真摘 要 本文是用MATLAB/SIMULINK 实现电力电子有关电路的计算机仿真的毕业设计。

论文给出了单相半波可控整流电路、单相桥式全控整流电路、三相半波可控整流电路、三相半波有源逆变电路、三相桥式全控整流电路的实验原理图、 MATLAB 系统模型图、及仿真结果图。

实验过程和结果都表明:MATLAB 在电力电子有关电路计算机仿真上的应用是十分广泛的。

尤其是电力系统工具箱-Power System Blockset (PSB )使得电力系统的仿真更加方便。

关键词 MATLAB SIMULINK PSB 电力电子相关电路1.引言MATLAB 是由Math Works 公司出版发行的数学计算软件,为了准确建立系统模型和进行仿真分析,Math Works 在MATLAB 中提供了系统模型图形输入与仿真工具一SIMULINK 。

其有两个明显功能:仿真与连接,即通过鼠标在模型窗口画出所系统的模型,然后可直接对系统仿真。

这种做法使一个复杂系统模型建立和仿真变得十分容易。

[4][2]在1998年,MathWoIks 推出了电力系统仿真的电力系统工具箱-Power System Blockset (PSB )。

电力电子技术MATLAB仿真实验报告

电力电子技术MATLAB仿真实验报告

电力电子技术MATLAB仿真实验报告Harbin Institute of Technology电力电子技术MATLAB仿真实验报告院系:班级:姓名:学号:哈尔滨工业大学一、实验目的1. 根据电路接线图利用MATLAB仿真分析单相桥式半控整流电路的各输出结果。

2. 改变参数后再进行仿真分析,进而分析总结各参数对输出的影响。

3. 在实验过程中掌握运用MATLAB对电力电子各电路进行仿真分析的方法。

4. 对实验进行总结整理并写出报告。

二、实验内容1根据实验电路图进行理论分析单相桥式半控整流电路图2 利用理论对电路进行分析这是单相桥式半控整流电路的另一种接法,相当于把原本的VT3和VT4换为二极管VD3和VD4,这样可以省去续流二极管VDR,续流由VD3和VD4来实现。

因此,理论分析各时间段电压电流及二极管导通状态如下:① wt1-π:Ua>Ub,VT1,VD4导通,Ud=U2,i:a→VT1→R→L→VD4→b;②π-wt2 :Ua<Ub,VD2,VD4导通,Ud=0,i:b→VD2→R→L→VD4→b;③ wt2-2π:Ua<Ub,VT3,VD2导通,Ud=-U2,i:b→VD2→R→L→VT3→a;④ 2π- wt3:Ua>Ub,VD2,VD4导通,Ud=0,i:b→VD2→R→L→VD4→b。

23理论分析满足的输出波形如下U20 wt1 wt2 wt3Ud4根据电路图在MATLAB中连接各元器件得出接线图35仿真结果[各波形代表的输出结果为二次侧电压,负载电压,负载电流,VT1电流,VT1电压]①阻性负载:R=20Ω,L=0,a=30°:②阻性负载:R=20Ω,L=0,a=60°:4③阻感负载:R=20Ω,L=0.008,a=30°:④阻感负载:R=20Ω,L=0.008,a=60°:5⑤阻感负载:R=20Ω,L=0.08,a=60°:三、实验结论1、通过理论分析与MATLAB仿真结果比拟,发现理论分析与仿真结果一致。

Matlab 电力电子仿真教程.

Matlab 电力电子仿真教程.
电感Lon、直流电压源Vf组成的串联电路和开关逻辑单元来 描述。电力电子元件开关特性的区别在于开关逻辑和串联电 路参数的不同,其中开关逻辑决定了各种器件的开关特征; 模块的串联电阻Ron和直流电压源Vf分别用来反映电力电子 器件的导通电阻和导通时的电压降;串联电感Lon限制了器 件开关过程中的电流升降速度,同时对器件导通或关断时的 变化过程进行模拟。
第5章 电力电子电路仿真分析
SimPowerSystems库提供的二极管模块图标如图5-3所示。
图5-3 二极管模块图标
第5章 电力电子电路仿真分析
2. 外部接口
二极管模块有2个电气接口和1个输出接口。2个电气接 口(a,k)分别对应于二极管的阳极和阴极。输出接口(m)输 出二极管的电流和电压测量值[Iak,Vak],其中电流单位为A, 电压单位为V。 3. 参数设置 双击二极管模块,弹出该模块的参数对话框,如图5-4 所示。在该对话框中含有如下参数: (1) “导通电阻”(Resistance Ron)文本框:单位为Ω,当 电感值为0时,电阻值不能为0。 (2) “电感”(Inductance Lon)文本框:单位为H,当电阻
第5章 电力电子Байду номын сангаас路仿真分析
(7) “缓冲电路阻值”(Snubber resistance Rs)文本框:并
联缓冲电路中的电阻值,单位为Ω。缓冲电阻值设为inf时将 取消缓冲电阻。 (8) “缓冲电路电容值”(Snubber capacitance Cs)文本框: 并联缓冲电路中的电容值,单位为F。缓冲电容值设为0时, 将取消缓冲电容;缓冲电容值设为inf时,缓冲电路为纯电 阻性电路。 (9) “测量输出端”(Show measurement port)复选框:选 中该复选框,出现测量输出端口m,可以观测晶闸管的电流 和电压值。 【例5.2】如图5-10所示,构建单相桥式可控整流电路,

03、电力电子技术matlab仿真_基本DC-DC变换电路

03、电力电子技术matlab仿真_基本DC-DC变换电路
西南交通大学
Buck-Boost电路的建模
32
buck_boost.mdl
西南交通大学
Buck-Boost电路的仿真结果
33
西南交通大学
Modeling and Simulation of Power Electronics System
DC Voltage Control
直流电压控制
34
西南交通大学
Modeling and Simulation of Power Electronics System —— Basic DC-DC Converters
Zeliang Shu Department of Electronic Engineering, Southwest Jiaotong University
iL + Ui L D
+
uL
S is
ic C
io + R Uo
(a)工作状态 1 (S 接通)
+
us
iL + Ui L
-
D iD ic C io + R Uo
+
uL
S
+
us
L
-
D
(b)工作状态 2 (S 断开)
+
+ Ui
uL
S is
ic C
io + R Uo
+
us
-
-
(c)工作状态 3 (电感电流为零)
-
ILmin
t
t
ILmin
t
西南交通大学
Buck电感电流临界工作模式
每个开关周期开始和结束的时刻,电感电流正好为零 临界工作条件

电力电子技术matlab仿真

电力电子技术matlab仿真
1-4
1. 3.1 MATLAB 的主菜单
1-5
1.3.2 MATLAB 的工具栏
新建 打开 剪切 复制 粘贴 撤消 恢复 仿真 帮助
1-6
1.3.3 MATLAB 的命令窗口
MATLAB 的命令窗口 (Command Window) 是MATLAB的主要工作区, 是人机对话的主要环境。 在命令窗口中键入各种命令 ,可以得到相应的结果。
1-12
1.4.3 MATLAB 的算术运算
1-13
1.4.4 MATLAB 的关系运算
1-14
1.4.5 MATLAB 的逻辑运算
1-15
1.4.7 MATLAB 常用的函数
1-16
1.4.7 MATLAB 常用的函数
1-17
1.5 MATALB 程序设计基础
解释性高级程序设计语言,对程序中的语言边解释边执行。
第2章 SIMULINK环境和模型库
2-43
2.1 系统仿真环境 2. 1. 4 系统模型的保存和调用 保存:save 后缀:.mdl 调用:open
第2章 SIMULINK环境和模型库
2-44
2.1 系统仿真环境 2. 1.5 SIMULINK 的仿真算法
一般采用缺省可变步长ode45算法,电力电子电 路包含非线性元件,可以选择包含Stiff模型的算法。
switch-case 语句是一种多分支语句,语句的格式为
switch 表达式(标量或字符串) case 值 1 语句组 A case 值 2 语句组 B otherwise 语句组 N end
在 switch-case 语句中,当表达式的值(或字符串)与某 个 case 值(或字符串)相同时,就执行该 case 值以下的语句 组。如果表达式的值(或字符串)与任何一个case 值都不相同 ,则执行 otherwise 后的语句组 N。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

默认值: R=2 ,触发角a=60度
双击Pulse设置和改变触发角,双击R可以改变电阻阻值
默认值: R=1,L=0.1H,触发角a=60度
双击Pulse设置和改变触发角,双击R,L可以改变电阻和电感的值
1.3单相半波可控整流电路--阻感性负载,带续流二极管
默认值: R=1,L=0.1H,触发角a=60度
双击Pulse设置和改变触发角,双击R,L可以改变电阻和电感的值
默认值: R=1,触发角a=60度
默认值: R=1,L=0.1H,触发角a=60度
2.3单相全控桥式整流电路--反电势负载默认值: R=1,L=0.1H,触发角a=60度
3.1单相半控桥式整流电路 -- 阻性负载
默认值: R=2,触发角a=60度
在单相可控整流电路中,触发角的意义比较直观而且容易理解所以在仿真实验Simu3_1到Simu3_4中省略了ug的波形
3.2单相半控桥式整流电路--感性负载(失控现象)
默认值: R=1,L=0.1H,触发角a=90度
仿真电路的触发脉冲部分如图中蓝色部分所示,开关ON/OFF可以控制触发脉冲的开和断.在仿真过程中,双击开关,并观察仿真波形可以看出触发脉冲已经不能影响id,整流电路出现了失控现象.
3.3单相半控桥式整流电路--带续流二极管
默认值: R=1,L=0.1H,触发角a=60度
双击开关ON/OFF控制触发脉冲的开和断,通过仿真波形可以看出续流二极管解决了整流电路因感性负载引起的失控现象
4.1三相半波可控整流电路(共阴)--阻性负载默认值: R=1,触发角a=30度
4.2三相半波可控整流电路(共阴)--感性负载默认值: R=1,L=0.1H,触发角a=30度
5.1三相桥式整流电路默认值: R=1,L=0.1H
为了简化电路,本仿真电路采用了Selector加Demux来分配出发脉冲默认值: R=1,触发角a=60度
默认值: R=1,触发角a=60度
默认值: R=1,L=0.1H,触发角a=60度start time为Gto开始导通的时刻
t1为Gto的导通时间
默认值: R=1,L=0.1H,触发角a=60度start time为Gto开始导通的时刻
t1为Gto的导通时间
7.1双半波电路的逆变
默认值: R=0.1,L=0.01H,触发角a=150度
7.2三相半波逆变电路
默认值: R=1,L=0.1H,逆变角=60度
7.3三相桥式全控逆变电路
默认值: R=0.1,L=0.01H,逆变角=150度
7.4电压型三相桥式逆变电路-阻性负载
Firesystem控制GTO的触发脉冲,进而控制输出的频率
默认值:R=1,L=0.0H,f=50Hz
uUN逆变后输出的相电压,uUV为线电压,iU为相电流。

要改变负载参数或类型,需将三个负载都改变。

8.1晶闸管单相交流调压电路--阻性负载默认值: R=1,触发角a=60度
8.2晶闸管三相交流调压电路默认值: R=1,触发角a=60度。

相关文档
最新文档