电力电子技术MATLAB仿真报告模板

合集下载

电力电子的Matlab仿真技术54569

电力电子的Matlab仿真技术54569
所谓模型化图形输入是指SIMULINK提供了一些按功能 分类的基本的系统模块,用户只需要知道这些模块的输入 输出及模块的功能,而不必考察模块内部是如何实现的, 通过对这些基本模块的调用,再将它们连接起来就可以构 成所需要的系统模型(以.mdl文件进行存取),进而进行 仿真与分析。
电力电子技术的Matlab仿真
b) Initial step size(初始步长参数):一般建议用“auto”默认值即可。
4) 仿真精度的定义(对于变步长模式)
a) Relative tolerance(相对误差):它是指误差相对于状态的值,是一 个百分比,缺省值为1e-3,表示状态的计算值要精确到0.1%。
b) Absolute tolerance(绝对误差):表示误差值的门限,或者是说在状 态值为零的情况下,可以接受的误差。如果它被设成了auto,那么 simulink为每一个状态设置初始绝对误差为1e-6。
MATLAB主工具箱 符号数学工具箱 SIMULINK仿真工具箱 控制系统工具箱 信号处理工具箱 图象处理工具箱 通讯工具箱 系统辨识工具箱 神经元网络工具箱 金融工具箱
许多学科,在 MATLAB中都有专 用工具箱,现已有 几十个工具箱,但 MATLAB语言的扩 展开发还远远没有 结束,各学科的相 互促进,将使得 MATLAB更加强大
具有高层绘图功能——二维、三维绘图; 具有底层绘图功能——句柄绘图; 使用plot函数可随时将计算结果可视化,图形可修饰和控制
4 图形化程序编制功能
动态系统进行建模、仿真和分析的软件包 用结构图编程,而不用程序编程 只需拖几个方块、连几条线,即可实现编程功能
电力电子技术的Matlab仿真
5 丰富的MATLAB工具箱

电力电子实验matlab仿真SVC

电力电子实验matlab仿真SVC

电力电子技术仿真实验报告学校:四川大学学院:电气信息学院专业:电气工程及其自动化年级:2011级班级:电力109班实验内容:+300Mvar~-100Mvar SVCMATLAB仿真实验小组成员:杜泽旭:1143031345罗恒:1143031346何强:1143031347蒋红亮:1143031153一、仿真平台本次实验的仿真平台是MATLAB软件。

MA TLAB软件是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

本次实验所用的MATLAB软件版本为MA TLAB 7.11.0(R2010b)。

二、仿真模型在本次试验中我们所用是MATLAB中的自带的示例中的Sim Power system中的主要由1台735kV/16kV 333MV A的耦合变压器、1台109Mvar晶闸管控制的电抗器(TCR)和3台94Mvar晶闸管投切的电容器(TSC)构成的+300Mvar~-100Mvar静止无功补偿器(SVC)系统,这是一个已经搭建好的模块我们只需用在以上基础做一定的参数设定就可以得到我们所想要的仿真模型。

操作步骤如下所示:三、实验要求1)实验原理图;2)模型并联补偿原理;3)阐述模型中补偿器的构成,如多电平、多脉冲或其他方式构成;4)模型中的补偿装置的主要功用;5)原有模型的实验效果;6)画出模型的控制框图。

四、实验内容1、系统总体结构图:2、系统模型图3、模型中补偿器的构成、并联补偿原理以及功用:本系统由1台735kV/16kV 333MV A 的耦合变压器,其二次侧分别接入1台109Mvar 晶闸管控制的电抗器(TCR )和3台94Mvar 晶闸管投切的电容器(TSC )构成的+300Mvar~-100Mvar 静止无功补偿器(SVC ),为多脉冲构成方式。

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验

《电力电子技术》单相半波可控整流电路MATLAB仿真实验一、实验目的:(1) 单相半波可控整流电路(电阻性负载)电路的工作原理电路设计与仿真。

(2) 单相半波可控整流电路(阻-感性负载)电路的工作原理电路设计与仿真。

(3) 单相半波可控整流电路(阻-感性负载加续流二极管)电路的工作原理电路设计与仿真。

(4)了解三种不同负载电路的工作原理及波形。

二、电阻性负载电路1、电路及其工作原理图1.1单向半波可控整流电路(电阻性负载)如图1.1所示,单向半波可控制整流电路原理图,晶闸管作为开关,变压器T起到变换电压与隔离的作用。

其工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。

(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。

(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。

(4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。

2、MATLAB下的模型建立2.1 适当连接后,可得仿真电路。

如图所示:2.2 仿真结果与波形分析下列所示波形图中,波形图分别代表了晶体管VT上的电流、晶体管VT 上的电压、电阻加电感上的电压。

设置触发脉冲α分别为30°、60°、90°、120°时的波形变化。

α=30°α=60°α=90°α=120°分析:与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。

基于matlab电力电子仿真设计报告

基于matlab电力电子仿真设计报告

基于matlab电力电子仿真设计报告课程设计(综合实验)报告 ( 2021-- 2021 年度第 1 学期) 名称:电力电子技术课程设计院系:电气与电子工程学院班级:电气班学号:学生姓名:指导教师:设计周数:20--21周成绩:日期:2021年 1月 13日摘要和关键词摘要:随着电力电子技术的不断发展,可控整流电路在直流电动机控制、可变直流电源、高压直流输电等方面得到广泛应用。

本文建立了基于MATLAB软件中simulink中powersystem模块编写的单相半波可控整流电路、单相全控桥式整流电路、三相全控桥式整流电路、升降压斩波、三相桥式SPWM逆变电路的仿真模型,以下给出了仿真实例与仿真结果。

验证了模型的正确性,并展现了simulink 仿真具有的快捷、灵活、方便、直观等优点。

从而为电力电子电路的教学及设计提供了有效工具。

关键词: 整流电路; 电力电子; MATLAB; simulink;仿真目录课程设计的任务____________________________________2 前言______________________________________________2 报告正文(几个电力电子电路仿真实例)______________2 课程设计总结或结论________________________________21 参考文献_________________________________________22 一、课程设计的任务(一)建立单相半波可控整流电路仿真模型:1、对教材P43图2-1、P44图2-2和P46图2-4进行验证(交流电压有效值为220伏)。

2、改变直流侧负载电阻与电感值,观察各波形的变化。

3、改变晶闸管触发角,观察各波形的变化。

(二)建立单相全控桥式整流电路仿真模型:1、对教材P47图2-5、P48图2-6进行验证(假设三相交流线电压有效值为380伏)。

电力电子课程设计报告matlab仿真实验

电力电子课程设计报告matlab仿真实验

一.课程设计目的(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。

通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;(2)掌握焊接的技能,对照原理图,了解工作原理;(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;二.课程设计容第一部分:simulink电力电子仿真/版本matlab7.0(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)仿真电路参数:直流电压20V、开关管为MOSFET(阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(阻为0.001欧)、占空比40%。

仿真时间0.3s,仿真算法为ode23tb。

图1-1占空比为40%的,降压后为12.12V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-2占空比为60%的,升压后为28.25V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3•图1-4升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。

它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源工作原理:①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。

②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L经D向C和RL反向放电,使输出电压的极性与输入电压在ton期间电感电流的增加量等于toff期间的减少量,得:由的关系,求出输出电压的平均值为:上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。

电力电子技术仿真实验报告

电力电子技术仿真实验报告

电力电子技术仿真实验实验一三相桥式全控整流电路一:实验目的(1)加深理解三相桥式全控整流电路的工作原理(2)了解KC系列集成触发器的调整方法和各点的波形(3)掌握三相桥式全控整流电路MATLAB的仿真方法,会设置各模块的参数二:实验原理完整的三相桥式全控整流电路由整流变压器,6个桥式连接的晶闸管,负载,触发器和同步环节组成,6个晶闸管依次相隔60度触发,将电源交流电整流为直流电。

三:三相桥式全控整流电路仿真模型a.纯电阻负载电路1.设置仿真参数交流电压源的参数设置三相电源的相位互差120度,交流峰值相电压为100*sqrt(2)V,频率为60Hz 负载的参数设置R=45Ω,L=0H移相控制角值"alpha_deg"分别设为设为30,60, 120度2.仿真波形a: alpha_deg=30纯电阻负载两端的电压Vd1,Vd2晶闸管VT1的电压Uvt1每一相的相电流(iA,iB,iC)完整的波形注:iD为整流后的电流波形,Vd为整流后的电压波形b: alpha_deg=60纯电阻负载两端的电压Vd1,Vd2晶闸管VT1的电压Uvt1每一相的相电流(iA,iB,iC)完整波形c: alpha_deg=120纯电阻负载两端的电压Vd1,Vd2 晶闸管VT1的电压Uvt1每一相的相电流(iA,iB,iC)完整波形b.阻感负载电路1.设置仿真参数交流电压源的参数设置三相电源的相位互差120度,交流峰值相电压为100*sqrt(2)V,频率为60Hz 负载的参数设置R=45Ω,L=1H移相控制角值"alpha_deg"分别设为设为30,60, 90度2.仿真波形a: alpha_deg=30阻感负载两端的电压Vd1,Vd2晶闸管VT1的电压Uvt1每一相的相电流(iA,iB,iC)完整波形b: alpha_deg=60阻感负载两端的电压Vd1,Vd2 晶闸管VT1的电压Uvt1每一相的相电流完整波形c: alpha_deg=90阻感负载两端的电压Vd1,Vd2 晶闸管Vt1的电压Uvt1每一相的相电流完整波形四.功率因数的测定a.测量原理b.仿真模型c.仿真数据(1)感性负载alpha=0 alpha=30alpha=60 alpha=90 (2) 纯电阻负载alpha=0 alpha=30 alpha=90 alpha=60实验二单相正弦波脉宽调制逆变电路实验一.实验目的(1)了解电压型单相全桥逆变电路的工作原理(2)了解正弦波脉宽调制调频,调压的原理(3)研究单相全桥逆变电路控制触发的要求二.实验原理1.正弦波脉宽调制(SPWM)控制的基本原理(1)SPWM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。

电力电子技术MATLAB仿真实验报告

电力电子技术MATLAB仿真实验报告

电力电子技术MATLAB仿真实验报告Harbin Institute of Technology电力电子技术MATLAB仿真实验报告院系:班级:姓名:学号:哈尔滨工业大学一、实验目的1. 根据电路接线图利用MATLAB仿真分析单相桥式半控整流电路的各输出结果。

2. 改变参数后再进行仿真分析,进而分析总结各参数对输出的影响。

3. 在实验过程中掌握运用MATLAB对电力电子各电路进行仿真分析的方法。

4. 对实验进行总结整理并写出报告。

二、实验内容1根据实验电路图进行理论分析单相桥式半控整流电路图2 利用理论对电路进行分析这是单相桥式半控整流电路的另一种接法,相当于把原本的VT3和VT4换为二极管VD3和VD4,这样可以省去续流二极管VDR,续流由VD3和VD4来实现。

因此,理论分析各时间段电压电流及二极管导通状态如下:① wt1-π:Ua>Ub,VT1,VD4导通,Ud=U2,i:a→VT1→R→L→VD4→b;②π-wt2 :Ua<Ub,VD2,VD4导通,Ud=0,i:b→VD2→R→L→VD4→b;③ wt2-2π:Ua<Ub,VT3,VD2导通,Ud=-U2,i:b→VD2→R→L→VT3→a;④ 2π- wt3:Ua>Ub,VD2,VD4导通,Ud=0,i:b→VD2→R→L→VD4→b。

23理论分析满足的输出波形如下U20 wt1 wt2 wt3Ud4根据电路图在MATLAB中连接各元器件得出接线图35仿真结果[各波形代表的输出结果为二次侧电压,负载电压,负载电流,VT1电流,VT1电压]①阻性负载:R=20Ω,L=0,a=30°:②阻性负载:R=20Ω,L=0,a=60°:4③阻感负载:R=20Ω,L=0.008,a=30°:④阻感负载:R=20Ω,L=0.008,a=60°:5⑤阻感负载:R=20Ω,L=0.08,a=60°:三、实验结论1、通过理论分析与MATLAB仿真结果比拟,发现理论分析与仿真结果一致。

2021年电力电子MATLAB仿真实验报告直流斩波单相交流调压实验

2021年电力电子MATLAB仿真实验报告直流斩波单相交流调压实验

电力电子MATLAB仿真试验汇报
专业: 电气工程及其自动化
班级: 电气110X班
姓名: XXXXXXXX
学号: 0XXXX
兰州交通大学自动化与电气工程学院
年 6月 2日
一直流斩波试验
(1)直流降压斩波
1 直流降压斩波试验电路原理图:
元件参数:
E=220V
Em=100V
2 直流降压斩波波形以下图所表示:
图2 占空比: 60%
(2)直流升压斩波
1 直流升压斩波试验电路原理图:
元件参数:
E=200V
2 直流升压斩波波形以下图所表示:
图2 占空比: 80%
二单相交流调压试验
1单相交流调压电阻负载电路原理图:
图1
2 单相交流调压电阻负载波形以下:
图2 触发角为120度3单相交流调压阻感负载电路原理图:
图3
4 单相交流调压阻感负载波形以下:
图4 触发角为120度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电气专业核心课综合课程设计》题目:基于MATLAB的电力电子技术仿真分析学校:院(系):专业班级:学生姓名:学号:指导教师:目录绪论………………………………………………………………………………………页码1.整流电路仿真………………………………………………………………………………页码 1.1单相半波可控整流系统………………………………………………………………页码 1.1.1晶闸管的仿真…………………………………………………………………页码 1.1.2单相半波可控整流电路的仿真………………………………………………页码 1.2晶闸管三相桥式整流系统的仿真…………………………………………………页码1.3相位控制的晶闸管单相交流调压器带系统的仿真………………………………页码2.斩波电路仿真………………………………………………………………………………页码 2.1降压斩波电路(Buck变换器)………………………………………………………页码 2.1.1可关断晶闸管(GTO)的仿真…………………………………………………页码 2.1.2 Buck变换器的仿真………………………………………………………页码 2.2升压斩波电路(Boost变换器)………………………………………………………页码2.2.1绝缘栅双极型晶体管(IGBT)的仿真…………………………………………页码2.2.2 Boost变换器的仿真……………………………………………………………页码4.逆变电路仿真………………………………………………………………………………页码4.1晶闸管三相半波有源逆变器的仿真………………………………………………页码5.课程设计总结………………………………………………………………………………页码参考文献……………………………………………………………………………………页码电气专业核心课综合课程设计任务书绪论本次课程设计包含了六个内容的建模与仿真:1.晶闸管的仿真模型及以单相半波整流器为例,说明晶闸管元件应用系统的建模与仿真方法;2.晶闸管三相桥式整流系统的建模与仿真;3. 可关断晶闸管的仿真模型及以可关断晶闸管元件组成的Buck变换器为例的仿真过程;4.绝缘栅双极型晶体管元件的仿真模型及一个由IGBT元件组成的Boost变换器的建模与仿真;5.相位控制的晶闸管单相交流调压器系统的建模与仿真;6.晶闸管三相半波有源逆变器的建模与仿真。

这六个内容基本包含了电力变换的四大类,从中能比较全面的掌握电力电子MATLAB仿真的方法。

此仿真实验主要涉及到以下四个方面,而基于MATLAB的电力电子技术仿真则是一下几个内容很好的结合。

电力电子器件:电力电子器件是一系列固态高电压、大电流的电子器件,被控对象的设备功率很大。

按可控性可分为三类:不控器件(二极管)、半控器件(晶闸管)、全控器件(GTR、GTO、IGBT、MOSFET等)。

电力电子技术应用:该技术广泛应用于多种形式的电源、电力拖动控制、电网电能质量技术提高以及大功率电能传输。

MATLAB仿真:MATLAB程序设计语言是美国Math Works公司在20世纪80年代中期推出的搞性能数值计算软件,2005年8月该公司就推出MATLAB7.1版,现已成为线性代数、自动控制理论、数理统计、数字信号分析与处理、动态系统仿真等各种课程的基本数学工具。

电力电子技术MATLAB实践:电力电子技术中有关电能的变换与控制过程,有各种电路原理的分析与研究、大量的计算、电能变换的波形测量、绘制与分析等,都离不开MATLAB。

首先,它的运算功能强大,应用于交流电的可控整流、直流电的有源逆变与无源逆变中存在的整流输出的平均值、有效值、与电路功率计算、控制角、导通角计算。

其次,MATLAB 的SimpowerSystems实体图形化仿真模型系统,把代表晶闸管、触发器、电阻、电容、电源、电压表等实物的特有符号连接成一个整流装置电路或是一个系统,更简单方便,节省设计制作时间和成本等。

再有,交流技术讨论的电能转换与控制,需要对各种电压与电流波形进行测量、绘制与分析,MATLAB提供了功能强大且方便使用的图形函数,特别适合完成这项任务。

最后。

MATLAB界面友好,使得从事自动控制的技术工作者乐于和它接触,愿意使用它。

1.整流电路仿真1.1单相半波可控整流系统1.1.1晶闸管的仿真⑴晶闸管模型晶闸管是一种门极信号触发导通的半导体器件。

晶闸管有两个输入端和两个输出端,第一个输入与输出是阳极媏(a)与阴极端(k),第二个输入(g)是门极控制信号端如图①,当勾选“Show measurement port”项时便显示第二个输出端(m)如图②,这是晶闸管检测输出向量[I ak U ak]端,可连接仪表检测流经晶闸管的电流(I ak)与晶闸管的正向压降(U ak),晶闸管组件的符号和仿真模型图如图所示。

图①图②晶闸管组件的符号和仿真模型⑵晶闸管参数及其设置在模型结构图中,当鼠标双击模型时,则弹出晶闸管参数对话框,如下图所示“Resistance Ron(Ohms)”:晶闸管导通电阻Ron (Ω)。

“Inductance Lon (H )”:晶闸管元件内电感Lon (H )。

电感参数与电阻参数不能同时设 为0“Forward voltage Vf (V )”:晶闸管元件的正向管压降Vf (V )。

“Initial current Ic (A )”:初始电流Ic (A )。

“Snubber resistance Rs (ohms )”:缓冲电阻Rs (Ω)。

“Snubber capacitance Cs (F )”:缓冲电容Cs (F )。

可对Rs 与Cs 设置不同的数值以改变或者取消吸收电路。

“Show measurement port ”为设置是否显示检测端(m )。

需要说明的是,含有晶闸管模型的电路仿真时,最好采用特定的算法Ode23tb 与Oder15s ,而当电路进行离散化处理时,晶闸管的内电感量应设为0。

1.1.2单相半波可控整流电路的仿真⑴电路图及工作原理du Tr单相半波可控整流电路(阻-感性负载)图如上图所示,当晶闸管VT 处于断态时,电路中电流Id=0,负载上的电压为0,U 2全部加在VT 两端,在触发角α处,触发VT 使其导通,U 2加于负载两端,由于电感L 的存在使电流id 不能突变,id 从0开始增加同时L 的感应电动势试图阻止id 增加,这时交流电源一方面供给电阻R 消耗的能量,一方面供给电感L 吸收的电磁能量,到U 2由正变负的过零点处处id 已经处于减小的过程中,但尚未降到零,因此VT 仍处于导通状态,当id 减小至零,VT 关断并承受反向压降,电感L 延迟了VT 的关断时刻使Ud 波形出现负的部分。

(2)建立仿真模型根据原理图用matalb 软件画出正确的仿真电路图,整体模型如图所示单相半波晶闸管可控整流电路(阻感负载)的仿真模型仿真参数:选择ode23tb算法,将相对误差设置为1e-3开始仿真时间设置为0,停止仿真时间设置为0.12,如下图所示⑶模型参数简介与设置①交流电压源提取路径:Simulink\SimPoweSysten\Electrical\AC V oltageSource“Peak amplitude”:正弦电压峰值Um,单位V,“Phase”:正弦电压初相角φ,单位度,“Frequency”:正弦电压频率f,单位Hz,“Sample time”:采样时间,单位 s,本实验参数设置为频率50Hz,电压幅值220V,其他为默认设置,如右图所示。

②晶闸管提取路径:Simulink\SimPoweSysten\Power Electronics \Thyristor 设置“Snubber resistance Rs(ohms)”缓冲电阻Rs=500Ω,“Snubber capacitance Cs(F)”:缓冲电容Cs为无穷大inf其他为默认设置,如右图所示③RLC元件提取路径:Simulink\SimPoweSysten\Elements \Series RLC Branch设置“Resistance (Ohms)”电阻R=1Ω,“Inductance Lon(H)”电感L=5e-3H,“capacitance(F)”电容为无穷大inf,“measurements”测量选None如右图所示④脉冲信号发生器提取路径:Simulink\Simlink\Source\Pulse Generator“Amplitude”:脉冲幅值,“Period(secs)”:周期(秒),“Pulse Width(% of Period”:脉冲宽度(周期的百分数),“Phase delay(secs)”:相位延迟(秒)。

振幅A=3V,周期T=0.02,占空比10%,时相延迟(1/50)x(α/360)s,如右图所示,α为移相控制角⑤示波器设置Number of axes 为5,显示5段波形,分别为脉冲电压Ug,晶闸管两端电压UVT,负载电流i d ,负载电压ud,电源电压U2。

⑥电压电流测量无需设置直接使用⑷仿真结果设置触发脉冲α分别为0°、30°、60°、90°、120°。

其产生的相应波形分别如图所示。

在波形图中第一列为脉冲电压Ug波形,第二列为晶闸管两端电压UVT波形,第三列为负载电流id 波形,第四列为负载电压ud波形,第五列为电源电压U2波形。

阻感负载触发角ɑ=0°阻感负载触发角ɑ=30°阻感负载触发角ɑ=60°阻感负载触发角ɑ=90°阻感负载触发角ɑ=120°1.2晶闸管三相桥式整流系统的仿真⑴电路图及工作原理以α=0°为例,6个晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6,触发脉冲为宽脉冲宽度大于60°,保证了每个时刻均有两个晶闸管导通,当VT1-VT2导通时桥臂输出电压为Uac,然后VT2-VT3导通输出电压为Ubc,VT3-VT4导通输出电压为Uba,VT4-VT5导通输出电压为Uca,VT5-VT6 导通输出电压为Ucb,VT6-VT1导通输出电压为Uab。

因此输出整流电压Ud波形为线电压在正半周的包络线⑵建立仿真模型根据原理图用matalb软件画出正确的仿真电路图,整体模型如下图所示三相桥式全控整流系统(电阻负载)的仿真模型仿真参数:选择ode23tb算法,将相对误差设置为1e-3开始仿真时间设置为0,停止仿真时间设置为0.05,⑶模型参数简介与设置①交流电压源三相交流电源通过三个频率为50Hz、幅值为220V、相位两两相差120°,A相的设置如右图所示,另外两相设置为B相相位滞后A相120°,Phase设置为-120°,C相相位超前A相120°,Phase设置为120°,测量“measurements”三相都要选Voltage,以便使用万用表测量电压②通用桥输入端A,B,C为三相交流的相电压输入端子,输入端g为触发脉冲输入端子,+,-为整流器输出正负极端子。

相关文档
最新文档