上海市2022届高三数学理一轮复习专题突破训练数列
2022版高中数学一轮复习高考大题强化练三数列综合问题理含解析新人教A版

(3)由(1)知 an=n·2n,
所以 bn= 1 +
1
an+1 (n+1)an
=
1
+
1
(n+1)·2n+1 n(n+1)·2n
=
1
(n+1)·2n+1
+2
1-
1
n·2n+1 (n+1)·2n+1
=1 -
1
,
n·2n (n+1)·2n+1
所以 Tn=1·121
所以 Sn=
=1- <1.
3.已知{an}满足 a1=2,an+1-2an=2n+1.
an (1)证明 2n 是等差数列;
(2)求{an}的前 n 项和 Sn;
(3)若 bn= 1 +
1
,{bn}的前 n 项和是 Tn,求证:Tn<1 .
an+1 (n+1)an
2
【解析】(1)因为 an+1-2an=2n+1,所以a2nn+ +11
【解析】(1)因为 a1=1,an=2an+1- (n∈N*), 两边同时乘以 2n,即有 2nan=2n+1an+1-1, 即 2n+1·an+1-2n·an=1. 又 21a1=2,所以数列{2n·an}是首项为 2,公差为 1 的等差数列, 所以 2n·an=n+1,故 an= .
(2)由(1)知 bn= = ,
-1 2·22
+1 2·22
-1 3·23
+…+ 1 n·2n
-
1
(n+1)·2n+1
=1 2
-
1
(n+1)·2n+1
<1 2
.
π
2α+
4.已知α是锐角,tan α= 2 -1,函数 f(x)=x2tan 2α+x·sin
2022届高考数学(理)大一轮复习教师用书:第六章第二节等差数列及其前n项和 Word版含解析

其次节等差数列及其前n项和突破点(一)等差数列的性质及基本量的计算基础联通抓主干学问的“源”与“流”1.等差数列的有关概念(1)定义:假如一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n+1-a n=d(n∈N*,d为常数).(2)等差中项:数列a,A,b成等差数列的充要条件是A=a+b2,其中A叫做a,b的等差中项.2.等差数列的有关公式(1)通项公式:a n=a1+(n-1)d.(2)前n项和公式:S n=na1+n(n-1)2d=n(a1+a n)2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n .(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(5)若数列{a n},{b n}是公差分别为d1,d2的等差数列,则数列{pa n},{a n+p},{pa n+qb n}都是等差数列(p,q都是常数),且公差分别为pd1,d1,pd1+qd2.考点贯穿抓高考命题的“形”与“神”等差数列的基本运算[例1](1)(2022·东北师大附中摸底考试)在等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1 B.2C.3 D.4(2)(2022·惠州调研)已知等差数列{a n}的前n项和为S n,若S3=6,a1=4,则公差d等于()A.1 B.53C.-2 D.3[解析](1)∵a1+a5=2a3=10,∴a3=5,则公差d=a4-a3=2,故选B.(2)由S3=3(a1+a3)2=6,且a1=4,得a3=0,则d=a3-a13-1=-2,故选C.[答案](1)B(2)C[方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a-d,a,a+d;若偶数个数成等差数列且和为定值时,可设中间两项为a-d,a+d,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2](1)在等差数列{a n}396n n S11=()A.18 B.99C.198 D.297(2)已知{a n},{b n}都是等差数列,若a1+b10=9,a3+b8=15,则a5+b6=________.[解析](1)由于a3+a9=27-a6,2a6=a3+a9,所以3a6=27,所以a6=9,所以S11=112(a1+a11)=11a6=99.(2)由于{a n},{b n}都是等差数列,本节主要包括3个学问点:1.等差数列的性质及基本量的计算;2.等差数列前n项和及性质的应用;3.等差数列的判定与证明.所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)211.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎨⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,由于a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9, 解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最终6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36,又S n =n (a 1+a n )2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1). (4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.等差数列前n 项和的性质[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________. [解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d=5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D . 所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20等差数列前n 项和的最值[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值? [解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n (n -1)2d=na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 由于a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,设f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线, 由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法 (1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解. (2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则: ①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.力量练通 抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7解析:选D 由(n +1)S n <nS n +1得(n +1)n (a 1+a n )2<n (n +1)(a 1+a n +1)2,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n 为整数,故使得a nb n 为整数的正整数n 的个数是5.答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧ S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明基础联通 抓主干学问的“源”与“流” 等差数列的判定与证明方法方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题中的判定问题前n 项和公式法 验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列考点贯穿 抓高考命题的“形”与“神”等差数列的判定与证明[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,推断{a n }是否为等差数列,并说明你的理由.[解] 由于a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n=2+(n -1)×2=2n ,故S n =12n .所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n .∴b n +1-b n =1a n +1-1-1a n -1=12-1a n -1-1a n -1=a n -1a n -1=1,∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n (n -1)2×d =2n 2-n ,∴b n =S nn +c =2n 2-n n +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,其中c ≠0.∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律] 1.(2022·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 2.(2021·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2021·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( ) A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+(m -1)d =2,S m =a 1m +12m (m -1)d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m (m -1)=0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C. 4.(2021·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得微小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2022·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)由于b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2022·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考 [练基础小题——强化运算力量]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37B .36C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( ) A .9 B .8 C .7D .6解析:选D 设等差数列{a n }的公差为d .由于a 3+a 7=-6,所以a 5=-3,d =2,则S n =n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考力量] 一、选择题1.(2021·黄冈质检)在等差数列{a n }中,假如a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2021·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,由于a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17(a 1+a 17)2=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉利数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉利数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,由于b 1=1,则n +12n (n -1)d =k ⎣⎡⎦⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.由于对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n=2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( )A .310B .212C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,由于a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎪⎫1+212n -12≤121.即S n +10a 2n 的最大值为121. 二、填空题7.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是________.解析:由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d 2=1,所以d =2.答案:28.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于________.解析:由于S 17=a 1+a 172×17=17a 9=51,所以a 9=3.依据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.答案:39.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于________.解析:S 11=11(a 1+a 11)2=11a 6,设公差为d ,由a 9=12a 12+6得a 6+3d =12(a 6+6d )+6,解得a 6=12,所以S 11=11×12=132.答案:13210.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 三、解答题11.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *).(1)求证:数列{b n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:∵b n =1a n ,且a n =a n -12a n -1+1,∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n ,∴b n +1-b n =2a n +1a n-1a n=2.又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n ,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. 12.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值.解:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎪⎨⎪⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31,令⎩⎪⎨⎪⎧ b n ≤0,b n +1≥0,即⎩⎪⎨⎪⎧2n -31≤0,2(n +1)-31≥0,解得292≤n ≤312,∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小.∵数列{b n }的首项是-29,公差为2,∴T 15=15(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.。
2022版高考数学一轮复习第7章第4讲数列求和数列的综合应用训练含解析

第七章 第4讲[A 级 基础达标]1.在数列{a n }中,a 1=1,a n +1=3a n +2n -1,则数列{a n }的前100项和S 100为( ) A .399-5 051 B .3100-5 051 C .3101-5 051 D .3102-5 051【答案】B2.(2020年唐山月考)已知等差数列{a n }的公差不为零,其前n 项和为S n ,若S 3,S 9,S 27成等比数列,则S 9S 3等于( )A .3B .6C .9D .12【答案】C3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400【答案】B4.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A .22 016-1 B .3·21 008-3 C .3·21 008-1 D .3·21 007-2 【答案】B5.(2020年广州天河区一模)一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .a (1+r )17B .ar [(1+r )17-(1+r )]C .a (1+r )18D .ar [(1+r )18-(1+r )]【答案】D 【解析】根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为a (1+r )17,同理,孩子在2周岁生日时存入的a 元产生的本利合计为a (1+r )16,孩子在3周岁生日时存入的a 元产生的本利合计为a (1+r )15,…,孩子在17周岁生日时存入的a 元产生的本利合计为a (1+r ),题目所求可以看成是以a (1+r )为首项,(1+r )为公比的等比数列的前17项的和,此时S =a (1+r )17+a (1+r )17+…+a (1+r )=a (1+r )[(1+r )17-1]1+r -1=ar [(1+r )18-(1+r )]. 6.(2020年池州模拟)正项等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,则公比q =________.【答案】3 【解析】q =1时,不合题意,q ≠1时,由S 3=a 2+10a 1,得a 1(1-q 3)1-q =a 1q+10a 1,所以1+q +q 2=q +10.又q >0,所以q =3.7.已知{a n }的前n 项和S n =n 2-9n -1,则|a 1|+|a 2|+…+|a 30|的值为________. 【答案】671 【解析】{a n }的前n 项和S n =n 2-9n -1,可得n =1时,a 1=S 1=-9;n ≥2时,a n =S n -S n -1=n 2-9n -1-(n -1)2+9(n -1)+1=2n -10,可得n ≤5时,a n <0,n ≥6时,a n >0,可得|a 1|+|a 2|+…+|a 30|=S 30-S 5-S 5=900-270-1-2×(25-45-1)=671.8.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011的值为________. 【答案】5 【解析】当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+2×(4x 1+4x 2)+4=1.设S =f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011,倒序相加有2S =⎣⎡⎦⎤f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011+⎣⎡⎦⎤f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911+…+⎣⎡⎦⎤f ⎝⎛⎭⎫1011+f ⎝⎛⎭⎫111=10,即S =5.9.(2020年大庆月考)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式及S n ;(2)记b n =S nn,求数列{b n }的前n 项和T n .解:(1)设正项等差数列{a n }的公差为d ,则d >0.因为S 3=12,即a 1+a 2+a 3=12, 所以3a 2=12,所以a 2=4.又2a 1,a 2,a 3+1成等比数列,所以 a 22=2a 1·(a 3+1),即42=2(4-d )·(4+d +1). 解得d =3或d =-4(舍去),所以a 1=a 2-d =1.故{a n }的通项公式为a n =a 1+(n -1)d =3n -2,且S n =n (a 1+a n )2=3n 2-n2.(2)由(1)知b n =S n n =3n -12,所以b n +1-b n =3(n +1)-12-3n -12=32,且b 1=3×1-12=1.所以数列{b n }是以b 1=1为首项,32为公差的等差数列.所以数列{b n }的前n 项和为T n =n (b 1+b n )2= 3n 2+n4.10.(2020年哈尔滨期末)设等差数列{a n }的前n 项和为S n ,若S 9=81,a 3+a 5=14. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求{b n }的前n 项和为T n .解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧9a 1+9×82d =81,a 1+2d +a 1+4d =14,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+2(n -1)=2n -1. (2)由于a n =2n -1,所以b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.[B 级 能力提升]11.(2020年蚌埠模拟)数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为( )A .nn +2B .2n n +2 C .n n +1D .2n n +1【答案】B 【解析】a n =1+2+3+…+n n =12(n +1),1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,可得数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为4⎝⎛⎭⎫12-13+13-14+…+1n +1-1n +2=4⎝⎛⎭⎫12-1n +2=2n n +2.12.(多选)(2020年菏泽模拟)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2 019=a 2 020D .a 21+a 22+…+a 22 019a 2 019=a 2 020【答案】ABCD 【解析】对A ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8成立;对B ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8,a 7=13,所以s 7=1+1+2+3+5+8+13=33成立;对C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,…,a 2 019=a 2 020-a 2 018,可得a 1+a 3+a 5+…+a 2 019=a 2 020,故a 1+a 3+a 5+…+a 2 019是斐波那契数列中的第2 020项,C成立;对D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 3a 2,…,a 22 018=a 2 018a 2 019-a 2 018a 2 017,a 22 019=a 2 019a 2 020-a 2 019a 2 018.所以a 21+a 22+…+a 22 019=a 2 019a 2 020,D 成立.故选ABCD .13.在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n(n ≥2),若数列b n =(-1)n ·2n +1S n,则数列{b n }的前2 020项和为________.【答案】-2 0202 021 【解析】在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n (n ≥2),可得S n -1+S n -2=12a 2n -1,相减可得a n +a n -1=12a 2n -12a 2n -1,化为a n -a n -1=2.n =2时,2+2+a 2=12a 22,可得a 2=4,则a n =2n ,S n =n (n +1),b n =(-1)n ·2n +1S n =(-1)nn +n +1n (n +1)=(-1)n ⎝⎛⎭⎫1n +1n +1.可得数列{b n }的前2 020项和为-⎝⎛⎭⎫1+12+12+13+…-12 019-12 020+12 020+12 021=-1+12 021=-2 0202 021.14.(一题两空)(2020年北京模拟)已知集合A ={x |x =a 3×30+a 2×3-1+a 1×3-2+a 0×3-3},其中a k ∈{0,1,2},k =0,1,2,3,将集合A 中的元素从小到大排列得到数列{b n },设{b n }的前n 项和为S n ,则b 3=________,S 15=________.【答案】19 28027 【解析】由题意可知b 3=0×30+0×3-1+1×3-2+0×3-3=19.a 0,a 1,a 2,a 3各有3种取法(均可取0,1,2).在前15项中,a 0,a 1,a 2,a 3全部为0,有1个数值;只有1个1,其余取0,共有4个数值;2个取1,2个取0,共有6个数值;3个取1,1个取0,共有4个数值.此时集合A 中,元素从小到大排列得到数列恰好是15个,而且a 0,a 1,a 2,a 3各取1的次数都是7次,由分类计数原理得集合A 中所有元素之和S 15=7×(30+3-1+3-2+3-3)=28027. 15.(2020年韶关期末)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 6=36. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1a 2n +4n -2(n ∈N*),求数列{bn }的前n 项和T n .【答案】解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =3,S 6=6a 1+6×52d =36,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =1+2(n -1)=2n -1.(2)由(1)得,数列{b n }满足b n =1a 2n +4n -2=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,则T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.16.(2020年杭州模拟)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=30,2S 2是3S 1和S 3的等差中项.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1+log 3a na n,求数列{b n }前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a 1+a 3=30,2S 2是3S 1和S 3的等差中项,可得a 1+a 1q 2=30,4S 2=3S 1+S 3,即有4(a 1+a 1q )=3a 1+a 1+a 1q +a 1q 2,解得a 1=q =3,则a n =3n (n∈N *).(2)b n =1+log 3a na n=1+log 33n3n=(2n +1)·⎝⎛⎭⎫13n , 前n 项和T n =3×13+5×19+7×127+…+(2n +1)·⎝⎛⎭⎫13n , 13T n =3×19+5×127+7×181+…+(2n +1)·⎝⎛⎭⎫13n +1, 相减可得23T n =1+2⎣⎡⎦⎤19+127+…+⎝⎛⎭⎫13n -(2n +1)·⎝⎛⎭⎫13n +1=1+2·19⎝⎛⎭⎫1-13n -11-13-(2n +1)·⎝⎛⎭⎫13n +1,化简可得T n =2-(n +2)·⎝⎛⎭⎫13n . [C 级 创新突破]17.(2020年南通模拟)定义数列{a n }:先给出a 1=1,接着复制该项,再添加1的后继数2,于是a 2=1,a 3=2,接下来再复制前面所有项,之后再添加2的后继数3,如此继续(1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…),设S n 是a n 的前n 项和,则S 2 020=________.【答案】3 990 【解析】由数列{a n }的构造方法可知a 1=1,a 3=2,a 7=3,a 15=4,可得a 2n -1=n .由于数表的前n 行共有2n -1 个数,于是,先计算S 2n -1.在前2n -1个数中,共有1个n,2个n -1,22个n -2,… ,2n -k 个k , (2)-1个1,因此S 2n -1 =n ×1+(n -1)×2+…+k ×2n -k +…+2×2n -2+1×2n -1,则2S 2n -1=n ×2+(n -1)×22+…+k ×2n-k +1+…+2×2n -1+1×2n ,两式相减,得S 2n -1=n +2+22+…+2n -1+2n =2n +1-n -2.所以S 2 020=S 210-1+S 997=S 210-1+S 29-1+S 486=…=S 210-1+S 29-1+…+S 25-1+S 10=(211-12)+(210-11)+(29-10)+(28-9)+(27-8)+(26-7)+15=3 990.18.(2020年邢台模拟)设数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)·b n +1.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和S n ;(3)设c n =a nlog 2b n +1,试问是否存在正整数s ,t (s ≠t ),使c 3,c s ,c t 成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.解:(1)数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)b n +1. 当n =1时,a 1b 1+b 1=2b 2,解得a 1=3.所以a n =3+2(n -1)=2n +1.由于a n b n +b n =(n +1)b n +1,所以(2n +2)b n =(n +1)b n +1,整理得b n +1b n =2(常数).所以b n =1·2n -1=2n-1.(2)由于a n =2n +1,b n =2n -1, 所以a n b n =(2n +1)·2n-1.则S n =3·20+5·21+7·22+…+(2n +1)·2n -1①, 2S n =3·21+5·22+7·23+…+(2n +1)·2n ②,由①-②得,-S n =2(1+2+…+2n -1)+1-(2n +1)·2n ,整理得S n =(2n -1)·2n +1. (3)根据(1)得c n =a n log 2b n +1=1n+2.假设存在正整数s 和t ,使c 3,c s ,c t 成等差数列, 所以2s +4=13+2+1t +2,整理得2s =13+1t ,即6t =st +3s ,整理得s =6-18t +3,当t =s =3时,与s ≠t 矛盾,故舍去. 当t =6时,s =4,符合题意; 当t =15,s =5时,符合题意.。
统考版2022届高考数学一轮复习专练30等差数列及其前n项和练习理含解析

专练30 等差数列及其前n 项和命题X 围:等差数列的概念和性质、等差数列的通项公式及前n 项和公式.[基础强化]一、选择题1.[2021·某某测试]记S n 为等差数列{a n }的前n 项和.若S 5=2S 4,a 2+a 4=8,则a 5=() A .6B .7 C .8D .102.[2021·某某某某测试]已知等差数列{a n }的前n 项和为S n ,且a 4=52,S 10=15,则a 7=()A.12B .1 C.32D .2 3.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=() A .-12B .-10 C .10D .124.记S n 为等差数列{a n }的前n 项和,若a 4+a 5=24,S 6=48,则{a n }的公差为() A .1B .2 C .4D .85.[2021·某某某某月考]等差数列{a n }的前n 项和为S n ,且a 3+a 7=22,S 11=143.若S n >195,则n 的最小值为()A .13B .14C .15D .16 6.[2021·皖南八校联考]已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为()A .-3B .-52C .-2D .-4 7.[2021·某某师大附中高三测试]已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R )且a 2=3,a 6=11,则S 7=()A .13B .49C .35D .63 8.[2020·全国卷Ⅱ]天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A .3699块B .3474块C .3402块D .3339块9.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则() A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n二、填空题10.记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.11.记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7=________. 12.[2021·某某某某一调]等差数列{a n }的前n 项和为S n ,若a 4+a 5=25,S 6=57,则{a n }的公差为______.[能力提升] 13.[2021·某某某某测试]我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪是连续十二个节气,其日影子长依次成等差数列,经记录测算,夏至、处暑、霜降三个节气日影子长之和为尺,这十二个节气的所有日影子长之和为84尺,则夏至的日影子长为________尺.14.已知数列{a n }为等差数列,数列{b n }为等比数列,且满足a 2016+a 2017=π,b 20b 21=4,则tan a 1+a 40322+b 19b 22=()A.33B. 3 C .1D .-115.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.16.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时S n 取最大值,则d 的取值X 围是________.专练30 等差数列及其前n 项和1.D 设等差数列{a n }的公差为d .∵S 5=2S 4,a 2+a 4=8, ∴⎩⎪⎨⎪⎧5a 1+5×42d =2⎝⎛⎭⎫4a 1+4×32d ,a 1+d +a 1+3d =8,整理得⎩⎪⎨⎪⎧ 3a 1+2d =0,a 1+2d =4,解得⎩⎪⎨⎪⎧a 1=-2,d =3.∴a 5=a 1+4d =-2+12=10.故选D.2.A 设等差数列{a n }的首项为a 1,则由等差数列{a n }的前n 项和为S n 及S 10=15,得10(a 1+a 10)2=15,所以a 1+a 10=3.由等差数列的性质,得a 1+a 10=a 4+a 7,所以a 4+a 7=3.又因为a 4=52,所以a 7=12.故选A.3.B 设等差数列{a n }的公差为d ,则3⎝⎛⎭⎫3a 1+3×22d =2a 1+d +4a 1+4×32d ,得d =-32a 1,又a 1=2,∴d =-3,∴a 5=a 1+4d =-10.4.C ∵S 6=(a 1+a 6)×62=48,∴a 1+a 6=16,又a 4+a 5=24,∴(a 4+a 5)-(a 1+a 6)=8, ∴3d -d =8,d =4.5.B 设等差数列{a n }的公差为d .因为a 3+a 7=22,所以2a 5=22,即a 5=11.又因为S 11=(a 1+a 11)×112=2a 6×112=143,解得11a 6=143,即a 6=13.所以公差d =a 6-a 5=2,所以a n =a 5+(n -5)d =11+(n -5)×2=2n +1,所以S n =(a 1+a n )n2=(n +2)n .令(n +2)n >195,则n 2+2n -195>0,解得n >13或n <-15(舍).故选B. 6.D ∵{a n }为等差数列,∴S 5=5a 3=-15, ∴a 3=-3,∴d =a 3-a 2=-3-1=-4.7.B ∵S n =an 2+bn ,∴{a n }为等差数列,∴S 7=(a 1+a 7)×72=(a 2+a 6)×72=(3+11)×72=49.8.C 由题意可设每层有n 个环,则三层共有3n 个环,∴每一环扇面形石板的块数构成以a 1=9为首项、9为公差的等差数列{a n },且项数为3n .不妨设上层扇面形石板总数为S 1,中层总数为S 2,下层总数为S 3,∴S 3-S 2=[9(2n +1)·n +n (n -1)2×9]-[9(n +1)·n +n (n -1)2×9]=9n 2=729,解得n =9(负值舍去).则三层共有扇面形石板(不含天心石)27×9+27×262×9=27×9+27×13×9=27×14×9=3402(块).故选C.9.A 方法一:设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧S 4=0,a 5=5,∴⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n (n -1)2d =n 2-4n .故选A.方法二:设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧S 4=0,a 5=5,∴⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2.选项A ,a 1=2×1-5=-3;选项B ,a 1=3×1-10=-7,排除B ;选项C ,S 1=2-8=-6,排除C ;选项D ,S 1=12-2=-32,排除D.故选A.10.4解析:设等差数列{a n }的公差为d ,由a 2=3a 1,即a 1+d =3a 1,得d =2a 1,所以S 10S 5=10a 1+10×92d 5a 1+5×42d =10a 1+10×92×2a 15a 1+5×42×2a 1=10025=4.11.14解析:∵{a n }为等差数列,∴a 6=a 3+3d ,a 7=a 3+4d , ∴a 6+a 7=7d =14,∴d =2,∴a 4=a 3+d =2, ∴S 7=7a 4=7×2=14. 12.3解析:设{a n }的公差为d .因为a 4+a 5=25,S 6=57,所以⎩⎪⎨⎪⎧ 2a 1+7d =25,6a 1+15d =57,解得⎩⎪⎨⎪⎧a 1=2,d =3,所以{a n }的公差为3.13.解析:设此等差数列{a n }的公差为d ,前n 项和为S n ,由题意得,⎩⎪⎨⎪⎧S 12=84,a 1+a 5+a 9=,即⎩⎪⎨⎪⎧12a 1+12×112d =84,3a 5=3(a 1+4d )=,解得⎩⎪⎨⎪⎧a 1=,d =1,所以夏至的日影子长为尺. 14.Atan a 1+a 40322+b 19b 22=tan a 2016+a 20172+b 20b 21=tan π6=33,故选A.15.8解析:∵a 7+a 8+a 9>0,a 7+a 9=2a 8, ∴3a 8>0,即a 8>0.又∵a 7+a 10=a 8+a 9<0,∴a 9<0, ∴等差数列前8项的和最大.故n =8.16.⎝⎛⎭⎫-1,-78 解析:解法一:由于S n =7n +n (n -1)2d =d 2n 2+⎝⎛⎭⎫7-d 2n ,设f (x )=d 2x 2+⎝⎛⎭⎫7-d 2x ,则其图象的对称轴为直线x =12-7d.当且仅当n =8时,S n 取得最大值,故<12-7d <,解得-1<d <-78.解法二:由题意,得a 8>0,a 9<0,所以7+7d >0,且7+8d <0,即-1<d <-78.。
2022届高考(新课标)数学(理)大一轮复习检测:第六章 数列 6-2 Word版含答案

A 组 专项基础训练(时间:35分钟)1.(2022·泉州模拟)等差数列{a n }的前三项为x -1,x +1,2x +3,则这个数列的通项公式为( ) A .a n =2n -5 B .a n =2n -3 C .a n =2n -1 D .a n =2n +1【解析】 ∵等差数列{a n }的前三项为x -1,x +1,2x +3,∴2(x +1)=(x -1)+(2x +3),解得x =0.∴a 1=-1,a 2=1,d =2,故a n =-1+(n -1)×2=2n -3. 【答案】 B2.(2022·东北三省联考)现给出以下几个数列:①2,4,6,8,…,2(n -1),2n ;②1,1,2,3,…,n ;③常数列a ,a ,a ,…,a ;④在数列{a n }中,已知a 2-a 1=2,a 3-a 2=2.其中等差数列的个数为( )A .1B .2C .3D .4【解析】 ①由4-2=6-4=…=2n -2(n -1)=2,得数列2,4,6,8,…,2(n -1),2n 为等差数列;②由于1-1=0≠2-1=1,所以数列1,1,2,3,…,n 不是等差数列;③常数列a ,a ,a ,…,a 为等差数列;④当数列{a n }仅有3项时,数列{a n }是等差数列,当数列{a n }的项数超过3项时,数列{a n }不肯定是等差数列,故等差数列的个数为2.【答案】 B3.(2022·山东齐鲁名校其次次联考)设S n 为等差数列{a n }的前n 项和,a 2=2,S 5=15,若⎩⎨⎧⎭⎬⎫1a n ·a n +1的前n 项和为910,则n 的值为( )A .8B .9C .10D .11【解析】 由于S 5=15,{a n }为等差数列,所以a 3=3,又a 2=2,所以公差d =1,a n =n .所以1a 1·a 2+1a 2·a 3+1a 3·a 4+…+1a n ·a n +1=1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=910,所以n =9. 【答案】 B4.(2022·西安八校联考)在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20 D .19【解析】 a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37.【答案】 A5.(2022·陕西质量监测)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23 D .24【解析】 3a n +1=3a n -2⇒a n +1=a n -23⇒{a n }是等差数列,则a n =473-23n .∵a k +1·a k <0,∴⎝⎛⎭⎪⎫473-23k ⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23.【答案】 C6.(2022·唐山期末)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 【解析】 设数列{a n }的公差为d ,S 3=6,S 4=12, ∴⎩⎪⎨⎪⎧3a 1+3×22d =6,4a 1+4×32d =12,∴⎩⎪⎨⎪⎧a 1=0,d =2,∴S 6=6a 1+6×52d =30.【答案】 307.(2022·海淀模拟)已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8.若a n =0,则n =________. 【解析】 ∵a 3+a 9=a 10-a 8,∴a 1+2d +a 1+8d =a 1+9d -(a 1+7d ),解得a 1=-4d , ∴a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 【答案】 58.(2022·北京)已知{a n }为等差数列,S n 为其前n 项和,若a 1=6,a 3+a 5=0,则S 6=________. 【解析】 由等差数列性质可得a 3+a 5=2a 4=0,∴a 4=0, ∴d =a 4-a 13=-2,∴S 6=6×6+6×52×(-2)=6. 【答案】 69.(2022·南昌调研)设数列{a n }的前n 项和为S n ,4S n =a 2n +2a n -3,且a 1,a 2,a 3,a 4,a 5成等比数列,当n ≥5时,a n >0.(1)求证:当n ≥5时,{a n }成等差数列; (2)求{a n }的前n 项和S n .【解析】 (1)证明 由4S n =a 2n +2a n -3,4S n +1=a 2n +1+2a n +1-3,得4a n +1=a 2n +1-a 2n +2a n +1-2a n , 即(a n +1+a n )(a n +1-a n -2)=0. 当n ≥5时,a n >0,所以a n +1-a n =2, 所以当n ≥5时,{a n }成等差数列.(2)由4a 1=a 21+2a 1-3,得a 1=3或a 1=-1, 又a 1,a 2,a 3,a 4,a 5成等比数列, 所以a n +1+a n =0(n ≤5),q =-1, 而a 5>0,所以a 1>0,从而a 1=3,所以a n =⎩⎪⎨⎪⎧3(-1)n -1,1≤n ≤4,2n -7,n ≥5,所以S n =⎩⎪⎨⎪⎧32[1-(-1)n ],1≤n ≤4,n 2-6n +8,n ≥5.10.(2022·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?【解析】 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1,又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大.方法三 由方法一可知,d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. 方法四 由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0, 所以a 7>0,a 8<0,所以当n =7时,S n 最大. B 组 专项力量提升 (时间:20分钟)11.(2022·浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列 D .{d 2n }是等差数列【解析】 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,依据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n+1|为定值,所以{S n }是等差数列.故选A. 【答案】 A12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k =-12,则正整数k =________.【解析】 S k +1=S k +a k +1=-12+32=-212,又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎪⎫-3+322=-212,解得k =13. 【答案】 1313.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________.【解析】 ∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 【答案】 194114.(2022·青岛二模)已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求a n 的表达式.【解析】 (1)证明 ∵a n =S n -S n -1(n ≥2), 又a n =-2S n ·S n -1,∴S n -1-S n =2S n ·S n -1,S n ≠0. 因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n =1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n.由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又∵a 1=12,不适合上式.∴a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.15.(2022·咸阳模拟)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求通项a n ; (2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .【解析】 (1)由于数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧a 1=1,d =4. 所以通项a n =4n -3. (2)由(1)知a 1=1,d =4, 所以S n =na 1+n (n -1)2×d =2n 2-n=2⎝ ⎛⎭⎪⎫n -142-18. 所以当n =1时,S n 最小, 最小值为S 1=a 1=1. (3)由(2)知S n =2n 2-n , 所以b n =S nn +c =2n 2-nn +c,所以b 1=11+c ,b 2=62+c ,b 3=153+c .由于数列{b n }是等差数列, 所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 所以2c 2+c =0,所以c =-12或c =0(舍去),阅历证c =-12时,{b n }是等差数列,故c =-12.。
2021-2022年高三数学一轮复习 专题突破训练 数列 理

2021-2022年高三数学一轮复习专题突破训练数列理一、选择、填空题1、(xx北京高考)设是等差数列. 下列结论中正确的是A.若,则B.若,则C.若,则D.若,则2、(xx北京高考)若等差数列满足,,则当______时,的前项和最大.3、(xx北京高考)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项和S n=__________.4、(朝阳区xx高三一模)设S n为等差数列的前n 项和。
若,则通项公式=____。
5、(东城区xx高三二模)已知为各项都是正数的等比数列,若,则(A)(B)(C)(D)6、(丰台区xx高三一模)在等比数列中,,,则公比等于(A) -2 (B) 1或-2 (C) 1 (D)1或27、(海淀区xx高三二模)若等比数列满足,,则公比_____;.8、(石景山区xx高三一模)等差数列中,,则该数列前项之和为()A. B. C. D.9、(西城区xx高三一模)若数列a n满足a1 -2,且对于任意的m, n N*,都有, 则;数列 a n前10 项的和S10 .10、(大兴区xx高三上学期期末)已知数列为等差数列,若,,则的前项和_____.11、(丰台区xx 高三上学期期末)等差数列的前n 项和为,如果,,那么等于_____ 12、(北京四中xx 高三上学期期中)在等差数列中,已知,则该数列前11项和= .13、(东城区示范校xx 高三上学期综合能力测试)数列的前项和记为,若,,则数列的通项公式为_______________14、(东城区xx 高三4月综合练习(一))设等差数列的前项和为,若,,则的公差 . 15、()已知是等差数列,那么=______;的最大值为______二、解答题1、(xx 北京高考)已知数列满足:, ,且. 记集合.(Ⅰ)若,写出集合的所有元素;(Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数; (Ⅲ)求集合的元素个数的最大值.2、(xx 北京高考)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示和两个数中最大的数,(1)对于数对序列,求的值. (2)记为四个数中最小值,对于由两个数对组成的数对序列和,试分别对和的两种情况比较和的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列使最小,并写出的值.(只需写出结论).3、(xx 北京高考)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2,…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n ∈N *,a n +4=a n ),写出d 1,d 2,d 3,d 4的值;(2)设d 是非负整数,证明:d n =-d (n =1,2,3,…)的充分必要条件为{a n }是公差为d 的等差数列;(3)证明:若a 1=2,d n =1(n =1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.4、(朝阳区xx 高三一模)若数列 中不超过 f (m )的项数恰为b m (m ∈N * ),则称数列是数列 的生成数列,称相应的函数 f (m )是生成 的控制函数。
2022届高考数学大一轮总复习第六章 数 列:第六章 6

§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1;(Ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( )A.100101B.99101C.99100D.101100 答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1, ∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.3.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________ 答案 50解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50. 4.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化法求和例1 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎨⎧3n+n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.(1)数列{a n }中,a n +1+(-1)n a n =2n -1,则数列{a n }前12项和等于( )A .76B .78C .80D .82(2)已知数列{a n }的前n 项是3+2-1,6+4-1,9+8-1,12+16-1,…,则数列{a n }的通项公式a n =________,其前n 项和S n =________. 答案 (1)B (2)3n -1+2n12n (3n +1)+2n +1-2 解析 (1)由已知a n +1+(-1)n a n =2n -1,① 得a n +2+(-1)n +1a n +1=2n +1,②由①②得a n +2+a n =(-1)n ·(2n -1)+(2n +1), 取n =1,5,9及n =2,6,10, 结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78. (2)由已知得数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 思维点拨 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =6,8a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3,d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1,nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{c n }对应项之积组成的数列{a n },即a n =b n ×c n 的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用范围.已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列. (1)求数列{a n }的通项公式;(2)若b n =a n ·log 2a n ,数列{b n }的前n 项和为T n ,求满足不等式T n +2n +2≥116的最大n 值.解 (1)设等比数列{a n }的公比为q ,由题意知a 1=12,又∵S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=S 1+a 1+S 3+a 3, 变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3, 即得3a 2=a 1+2a 3,∴32q =12+q 2,解得q =1或q =12, 又由{a n }为递减数列,于是q =12,∴a n =a 1q n -1=(12)n .(2)由于b n =a n log 2a n =-n ·(12)n ,∴T n =-[1·12+2·(12)2+…+(n -1)·(12)n -1+n ·(12)n ],于是12T n =-[1·(12)2+…+(n -1)·(12)n +n ·(12)n +1],两式相减得:12T n =-[12+(12)2+…+(12)n -n ·(12)n +1]=-12·[1-(12)n ]1-12+n ·(12)n +1,∴T n =(n +2)·(12)n -2.∴T n +2n +2=(12)n ≥116,解得n ≤4, ∴n 的最大值为4. 题型三 裂项相消法求和例3 (2014·山东)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n =(-1)n-14n a n a n +1=(-1)n -14n (2n -1)(2n +1)=(-1)n -1(12n -1+12n +1). 当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n2n +1.四审结构定方案典例:(12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .审题路线图S n =-12n 2+kn 及S n 最大值为8S n 是n 的函数n =k 时(S n )max =S k =8(根据S n 的结构特征确定k 值)k =4,S n =-12n 2+4n利用a n 、S n 的关系a n =92-n化简数列{}9-2a n 2n9-2a n 2n =n2n -1根据数列的结构特征,确定求和方法:错位相减法T n =1+22+322+…+n -12n -2+n 2n -1①①式两边同乘以22T n =2+2+32+…+n -12n -3+n2n -2②错位相减T n =2+1+12+…+12n -2-n2n -1=4-n +22n -1.规范解答解 (1)当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,① [7分]所以2T n =2+2+32+…+n -12n -3+n2n -2 ②②-①得:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1.[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案; (2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数. (3)可以通过n =1,2时的特殊情况对结论进行验证.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:45分钟)1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0 B .-100 C .100 D .10 200 答案 B解析 f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2(n 为奇数)n 2(n 为偶数)=(-1)n ·n 2, 由a n =f (n )+f (n +1) =(-1)n ·n 2+(-1)n +1·(n +1)2 =(-1)n [n 2-(n +1)2] =(-1)n +1·(2n +1), 得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201) =50×(-2)=-100.3.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185 答案 C解析 a 1+…+a k +…+a 10 =240-(2+…+2k +…+20) =240-(2+20)×102=240-110=130.4.已知数列{a n }的前n 项和S n =n 2-6n ,则{|a n |}的前n 项和T n 等于( ) A .6n -n 2B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3) D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n (n >3) 答案 C解析 ∵由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2.∴a n =-5+(n -1)×2=2n -7,∴n ≤3时,a n <0,n >3时,a n >0,∴T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3). 5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.6.数列{a n }满足a n +a n +1=12(n ∈N *),且a 1=1,S n 是数列{a n }的前n 项和,则S 21=________. 答案 6解析 由a n +a n +1=12=a n +1+a n +2, ∴a n +2=a n ,则a 1=a 3=a 5=…=a 21,a 2=a 4=a 6=…=a 20,∴S 21=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 20+a 21)=1+10×12=6. 7.已知数列{a n }满足a n +a n +1=(-1)n +12(n ∈N *),a 1=-12,S n是数列{a n }的前n 项和,则S 2 013=________.答案 -1 0072解析 由题意知,a 1=-12,a 2=1,a 3=-32,a 4=2,a 5=-52,a 6=3,…, 所以数列{a n }的奇数项构成了首项为-12, 公差为-1的等差数列,偶数项构成了首项为1,公差为1的等差数列,通过分组求和可得S 2 013=[(-12)×1 007+1 007×1 0062×(-1)]+(1×1 006+1 006×1 0052×1)=-1 0072. 8.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x 41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=143log n a (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{c n }的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N *), 又b n =143log 2n a ,故b n =3n -2(n ∈N *).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N *), 所以c n =(3n -2)×(14)n (n ∈N *). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N *). 10.(2013·江西)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n-(n 2+n )=0. (1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,数列{b n }的前n 项和为T n ,证明:对于任意的n ∈N *,都有T n <564. (1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0,由于{a n }是正项数列,所以S n +1>0.所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n ,n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *).(2)证明 由a n =2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2 =116⎣⎡⎦⎤1n 2-1(n +2)2 T n =116⎣⎡⎝⎛⎭⎫1-132+⎝⎛⎭⎫122-142+⎝⎛⎭⎫132-152+… ⎦⎤+⎝⎛⎭⎫1(n -1)2-1(n +1)2+⎝⎛⎭⎫1n 2-1(n +2)2 =116⎣⎡⎦⎤1+122-1(n +1)2-1(n +2)2<116⎝⎛⎭⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564. B 组 专项能力提升(时间:30分钟)11.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A .2 008B .2 010C .1D .0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.12.1-4+9-16+…+(-1)n +1n 2等于( )A.n (n +1)2 B .-n (n +1)2C .(-1)n+1n (n +1)2 D .以上答案均不对答案 C 解析 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n 2(3+2n -1)2=-n (n +1)2; 当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+2(n -1)-1]2+n 2 =n (n +1)2, 综上可得,原式=(-1)n +1n (n +1)2. 13.(2013·湖南)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则: (1)a 3=________;(2)S 1+S 2+…+S 100=________.答案 (1)-116 (2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1(n ≥2), ∴a n =(-1)n a n -(-1)n -1a n -1+12n (n ≥2). 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 14.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N *).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N *时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2, 当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列,∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 15.直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *.数列{a n }满足:a 1=1,a n +1=14|A n B n |2.(1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆C n 的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n ,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎨⎧n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。
2022届高考数学一轮复习 第五章 数列 第3节 等比数列及其前n项和课时作业(含解析)新人教版

第五章 数列授课提示:对应学生用书第293页[A 组 基础保分练]1.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案:A2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578 D .558答案:A3.(2021·西安模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5 解析:因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C4.正项等比数列{a n }中,a 1a 5+2a 3a 7+a 5a 9=16,且a 5与a 9的等差中项为4,则{a n }的公比是( ) A .1 B .2 C.22D .2答案:D5.(2021·南宁统一考试)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:等比数列{a n }为递增数列的充要条件为⎩⎪⎨⎪⎧a 1>0,q >1,或⎩⎪⎨⎪⎧a 1<0,0<q <1.答案:D6.已知数列{a n }是各项均为正数的等比数列,S n 是其前n 项和,若S 2+a 2=S 3-3,则a 4+3a 2的最小值为( )A .12B .9C .16D .18解析:因为S 3-S 2=a 3,所以由S 2+a 2=S 3-3,得a 3-a 2=3,设等比数列{a n }的公比为q ,则a 1=3q q -1,由于{a n }的各项为正,所以q >1.a 4+3a 2=a 1q 3+3a 1q =a 1q (q 2+3)=3q q -1q (q 2+3)=3q 2+3q -1=3(q -1+4q -1+2)≥18,当且仅当q -1=2,即q =3时,a 3+3a 2取得最小值18.答案:D7.已知等比数列{a n }的前n 项和为S n (n ∈N *),若S 6S 3=65,则数列{a n }的公比为________.答案:48.(2021·安庆模拟)数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值为________. 答案:29.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解析:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.10.已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值;(2)是否存在常数λ,使得{a n +λ}为等比数列?若存在,求出λ的值和通项公式a n ;若不存在,请说明理由.解析:(1)当n =1时,S 1=a 1=2a 1-3,解得a 1=3, 当n =2时,S 2=a 1+a 2=2a 2-6,解得a 2=9, 当n =3时,S 3=a 1+a 2+a 3=2a 3-9,解得a 3=21.(2)假设{a n +λ}是等比数列,则(a 2+λ)2=(a 1+λ)·(a 3+λ), 即(9+λ)2=(3+λ)(21+λ),解得λ=3. 下面证明{a n +3}为等比数列:∵S n =2a n -3n ,∴S n +1=2a n +1-3n -3,∴a n +1=S n +1-S n =2a n +1-2a n -3,即2a n +3=a n+1,∴2(a n +3)=a n +1+3,∴a n +1+3a n +3=2,∴存在λ=3,使得数列{a n +3}是首项为a 1+3=6,公比为2的等比数列. ∴a n +3=6×2n -1,即a n =3(2n -1)(n ∈N *).[B 组 能力提升练]1.(多选题)如图,在每个小格中填上一个数,使得每一行的数依次成等差数列,每一列的数依次成等比数列,则( )A.x =1 C .z =3D .x +y +z =2解析:因为每一列成等比数列,所以第一列的第3,4,5个小格中的数分别是12,14,18,第三列的第3,4,5个小格中的数分别是1,12,14,所以x =1.又每一行成等差数列,所以y =14+3×12-142=58,z -18=2×18,所以z =38,所以x +y +z =2.故A ,D 正确;B ,C错误. 答案:AD2.已知等比数列{a n }满足a 4+a 6a 1+a 3=18,a 5=4,记等比数列{a n }的前n 项积为T n ,则当T n取最大值时,n =( ) A .4或5 B .5或6 C .6或7D .7或8答案:C3.已知正项等比数列{a n }满足a 2·a 27·a 2 020=16,则a 1·a 2·…·a 1 017=( ) A .41 017 B .21 017 C .41 018 D .21 018答案:B4.(多选题)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.记c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,数列{c n }的前n 项和为S n ,则( ) A .a n =2n -1 B .b n =2nC .S 9=1 409D .S 2n =2n 2-n +43(4n-1)解析:设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,得⎩⎪⎨⎪⎧d =2,q =2,故a n =2n -1,b n =2n ,故A ,B 正确;则c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n ,所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n )=n 1+4n -32+41-4n 1-4=2n 2-n +43(4n -1),S 9=S 8+a 9=385,故C 错误,D 正确. 答案:ABD5.已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a m +na m=a n ,则数列{a n }的前n 项和S n =________. 答案:2n +1-26.(2021·黄冈模拟)已知正项等比数列{a n }的前n 项和为S n ,且a 1a 6=2a 3,a 4与2a 6的等差中项为32,则S 5=________.答案:317.(2021·山东德州模拟)给出以下三个条件:①数列{a n }是首项为2,满足S n +1=4S n +2的数列;②数列{a n }是首项为2,满足3S n =22n +1+λ(λ∈R )的数列; ③数列{a n }是首项为2,满足3S n =a n +1-2的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解.设数列{a n }的前n 项和为S n ,a n 与S n 满足________,记数列b n =log 2a 1+log 2a 2+…+log 2a n ,c n =n 2+nb n b n +1,求数列{c n }的前n 项和T n .注:如果选择多个条件分别解答,则按第一个解答计分. 解析:选条件①.由已知S n +1=4S n +2,可得当n ≥2时,S n =4S n -1+2, 两式相减,得a n +1=4(S n -S n -1)=4a n ,即a n +1=4a n (n ≥2),当n =1时,S 2=4S 1+2,即2+a 2=4×2+2,解得a 2=8,满足a 2=4a 1, 故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1, 所以b n =log 2a 1+log 2a 2+…+log 2a n =1+3+…+(2n -1)=n 2,所以c n =n 2+n b n b n +1=n n +1n 2n +12=1n n +1=1n -1n +1. 故T n =c 1+c 2+…+c n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1.选条件②.由已知3S n =22n +1+λ,可得当n ≥2时,3S n -1=22n -1+λ,两式相减,得3a n =22n +1-22n -1=3·22n -1,即a n =22n -1(n ≥2),当n =1时,a 1=2满足a n =22n -1,故数列{a n }是以2为首项,4为公比的等比数列,所以a n =22n -1. 以下同选条件①. 选条件③.由已知3S n =a n +1-2,可得当n ≥2时,3S n -1=a n -2, 两式相减,得3a n =a n +1-a n ,即a n +1=4a n (n ≥2),当n=1时,3a1=a2-2,又a1=2,所以a2=8,满足a2=4a1,故数列{a n}是以2为首项,4为公比的等比数列,所以a n=22n-1.以下同选条件①.[C组创新应用练]1.(多选题)设数列{a n}(n∈N*)是各项均为正数的等比数列,q是其公比,K n是其前n 项的积,且K5<K6,K6=K7>K8,则下列选项中正确的是( )A.0<q<1B.a7=1C.K9>K5D.K6与K7均为K n的最大值解析:若K6=K7,则a7=K7K6=1,故B正确;由K5<K6可得a6=K6K5>1,则q=a7a6∈(0,1),故A正确;由数列{a n}是各项为正数的等比数列且q∈(0,1),可得数列{a n}单调递减,则有K9<K5,故C错误;结合K5<K6,K6=K7>K8,可得D正确.答案:ABD2.(2021·湖南常德模拟)某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药物预防.规定每人每天早晚八时各服一次,现知每次药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%.某人上午八时第一次服药,至第二天上午八时服完药时,这种药在他体内还残留( )A.220毫克B.308毫克C.123.2毫克D.343.2毫克解析:设第n次服药后,药在体内的残留量为a n毫克,则a1=220,a2=220+a1×(1-60%)=220×1.4=308,a3=220+a2×(1-60%)=343.2.答案:D3.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是( )A.{a n}是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列,且公比相同解析:∵A i =a i a i +1,若{A n }为等比数列,则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数,即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4,…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市2022届高三数学理一轮复习专题突破训练数列数列一、填空、选择题2221、(2022年上海高考)记方程①:某+a1某+1=0,方程②:某+a2某+2=0,方程③:某+a3某+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根2、(2022年上海高考)设无穷等比数列an的公比为q,若a1lima3a4an,则nq3、(2022年上海高考)设非零常数d是等差数列某1,某2,某3,,某19的公差,随机变量等可能地取值某1,某2,某3,,某19,则方差D_______4、(静安、青浦、宝山区2022届高三二模)设等差数列an的前n项和为An,等比数列bn的前n项和为Bn,若a3b3,a4b4,且A5A3aa7,则53B4B2b5b35、(闵行区2022届高三二模)已知数列{an}满足an11(nN),则使不等式a20222022成立的所有正整数a1的集合为6、(浦东新区2022届高三二模)已知数列an的前n项和Snn2n,则该数列的通项公式an2n.7、(徐汇、松江、金山区2022届高三二模)已知函数f(某)某in 某,各项均不相等的数列某n2满足某i2F(n)(某1某2某n)f(某1)f(某2)f(某n)(nN某).给出下列三个命题:n(i1,2,3,,n).令(1)存在不少于3项的数列某n,使得F(n)0;1某(2)若数列某n的通项公式为某nnN某,则F(2k)0对kN恒成立;2某(3)若数列某n是等差数列,则F(n)0对nN恒成立.其中真命题的序号是()(A)(1)(2)(B)(1)(3)(C)(2)(3)(D)(1)(2)(3)8、(长宁、嘉定区2022届高三二模)设等差数列an满足a511,a123,an的前n项和Sn的最大值为M,则lgM=__________9、(虹口区2022届高三上期末)设等比数列an的公比为q,前n项和为Sn,若Sn1,Sn,Sn2成等差数列,则q10、(金山区2022届高三上期末)等差数列{an}中,a2=8,S10=185,则数列{an}的通项公式an(nN某).11、(静安区2022届高三上期末)已知数列an的通项公式an22n2n1(其中nN某),则该数列的前n项和Sn12、(青浦区2022届高三上期末)设Sn是等差数列{an}的前n项和,若S742,则a413、(徐汇区2022届高三上期末)设数列an的前n项和为Sn,若a11,Sn则an的通项公式为14、(黄浦区2022届高三4月模拟考试(二模))在等差数列an中,若a83,a101,am9,则正整数m15、()把正整数排列成如图a的三角形数阵,然后擦去第偶数行中的所有奇数、第奇数行中的所有偶数,可得到如图b的三角形数阵,现将图b中的正整数按从小到大的顺序构成一个数列an10(nN某),2an,若ak2022,则k__________.11234245678957910111213141516101214161718192021222324251719212 3252627282930313233343536262830323436ab二、解答题某1、(2022年上海高考)已知数列{an}与{bn}满足an+1﹣an=2(bn+1﹣bn),n∈N.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设{an}的第n0项是最大项,即an某≥an(n∈N),求证:数列{bn}的第n0项是最大项;某(3)设a1=λ<0,bn=λ(n∈N),求λ的取值范围,使得{an}有最大值M与最小值m,且∈(﹣2,2).2、(2022年上海高考)已知数列an满足anan13an,nN,a11.某13(1)若a22,a3某,a49,求某的取值范围;(2)设an是公比为q的等比数列,Sna1a2an.若取值范围;(3)若a1,a2,,ak成等差数列,且a1a2ak1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,,ak的公差.3、(2022年上海高考)给定常数c0,定义函数f(某)2|某c4||某c|,数列a1,a2,a3,满足an1f(an),nN某.(1)若a1c2,求a2及a3;(2)求证:对任意nN某,an1anc,;(3)是否存在a1,使得a1,a2,an,成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.4、(静安、青浦、宝山区2022届高三二模)设an是公比为q(q意两项之积仍是该数列中的项,那么称an是封闭数列.(1)若a1SnSn13Sn,nN某,求q的31)的等比数列,若an中任2,q3,判断an是否为封闭数列,并说明理由;1,使a1qm(2)证明an为封闭数列的充要条件是:存在整数m(3)记n是数列an的前n项之积,bn;log2n,若首项为正整数,公比q2,试问:11111,若存在,求an的通项公式;是否存在这样的封闭数列an,使limnbbn91b2若不存在,说明理由.5、(闵行区2022届高三二模)各项均为正数的数列bn的前n项和为Sn,且对任意正整数n,都有2Snbn(bn1).(1)求数列bn的通项公式;(2)如果等比数列an共有m(m2,mN)项,其首项与公比均为2,在数列an的每相邻两项ai与ai1之间插入i个(1)ibi(iN某)后,得到一个新的数列cn.求数列cn中所有项的和;(3)如果存在nN,使不等式bn 11成立,求实数的范围.(n1)bn1bnbn16、(浦东新区2022届高三二模)记无穷数列an的前n项a1,a2,,an的最大项为An,第n项之后的各项an1,an2,的最小项为Bn,令bnAnBn.(1)若数列an的通项公式为an2n27n6,写出b1、b2,并求数列bn 的通项公式;(2)若数列bn的通项公式为bn12n,判断an1an是否等差数列,若是,求出公差;若不是,请说明理由;(3)若bn为公差大于零的等差数列,求证:an1an是等差数列.7、(普陀区2022届高三二模)已知数列an的前n项和为Sn,且an0,anSnnN某4n(1)若bn1log2Snan,求数列bn的前n项和Tn;(2)若0n2,2nantann,求证:数列n为等比数列,并求出其通项公式;(3)记cna1取值范围.1111a2a3an,若对任意的nN某,cnm恒成立,求实数m的22228、(长宁、嘉定区2022届高三二模)已知数列{an}中,a13,a25,{an}的前n项和为Sn,且满足SnSn22Sn12n1(n3).(1)试求数列{an}的通项公式;12n1(2)令bn,Tn是数列{bn}的前n项和,证明:Tn;6anan1(3)证明:对任意给定的m0,,均存在n0N,使得当nn0时,(2)中的Tnm6恒成立.9、(宝山区2022高三上期末)设数列an的首项a1为常数,且an13n2an(nN某).3n(1)证明:an是等比数列;5(2)若a13,an中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.2(3)若an是递增数列,求a1的取值范围.10、(崇明县2022高三上期末)已知等差数列an满足a37,a5a726.(1)求an的通项公式;n1,1,2an(2)若mn2,数列bn满足关系式bn,求数列bn的通项公式;bm,n2,2n1(3)设(2)中的数列bn的前n项和Sn,对任意的正整数n,1nSnn2np2n12恒成立,求实数p的取值范围.11、(奉贤区2022高三上期末)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。
每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。
今年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a辆.设an、bn分别为第n年投入的电力型公交车、混合动力型公交车的数量,设Sn、Tn分别为n年里投入的电力型公交车、混合动力型公交车的总数量。
(1)求Sn、Tn,并求n年里投入的所有新公交车的总数Fn;(2)该市计划用7年的时间完成全部更换,求a的最小值.12、(奉贤区2022高三上期末)对于正项数列{an},若对nN某也恒成立是真命题.an1则ana1qn1q对一切nN某恒成立,anan11(3c)n1(1)若a11,an0,且;3c(c,c1),求证:数列{an}前n项和Sn13can3(2)若某14,某n13、(虹口区2022高三上期末)已知各项均不为零的数列an的前n项和为Sn,且22n2,nN某),求证:3()n1某n3(n1.334Snanan11nN,其中a11.(1)求证:a1,a3,a5成等差数列;(2)求证:数列an是等差数列;(3)设数列bn满足2bn12Tnlog2an1恒成立.nN,且Tn为其前n项和,求证:对任意正整数n,不等式an14、(上海市八校2022届高三3月联考)在数列{an}中,a11,an2an1n2(n2,nN某)。
n(n1)(1)若数列{bn}满足bnan(nN某),求证:数列{bn}是等比数列;n172n(2)设cn,记Snc1c2c2c3cncn1,求使Sn的最小正整数n的值。
9(n1)an115、(黄浦区2022届高三4月模拟考试(二模))已知数列an满足a1有ampamap.(1)求数列an(nN)的递推公式;某,对任意m、pN某都2(2)数列bn满足anbbb1b2233(1)n1nn(nN某),求通项公式bn;21212121某(3)设cn2nbn,问是否存在实数使得数列cn(nN)是单调递增数列?若存在,求出的取值范围;若不存在,请说明你的理由.参考答案一、填空、选择题221、解:当方程①有实根,且②无实根时,△1=a1﹣4≥0,△2=a2﹣8<0,222即a1≥4,a2<8,∵a1,a2,a3成等比数列,∴a2=a1a3,即a3=,则a3=(22)=2,即方程③的判别式△3=a3﹣16<0,此时方程③无实根,故选:Ba31a1q22、【解析】:a1,∵0q1,∴qq2q10q21q1q3、【解答】E某10,Dd|.45、n|n2022,nN6、2n7、D8、251,n11n9、-210、3n+211、4(2n12、613、ann2某223,n2,nN4、14、1415、1030二、解答题1、(1)解:∵an+1﹣an=2(bn+1﹣bn),bn=3n+5,∴an+1﹣an=2(bn+1﹣bn)=2(3n+8﹣3n﹣5)=6,∴{an}是等差数列,首项为a1=1,公差为6,则an=1+(n﹣1)某6=6n﹣5;(2)∵an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2(bn﹣bn﹣1)+2(bn﹣1﹣bn﹣2)+…+2(b2﹣b1)+a1=2bn+a1﹣2b1,∴∴∴数列{bn}的第n0项是最大项;(3)由(2)可得①当﹣1<λ<0时,,单调递减,有最大值单调递增,有最小值m=a1=λ,∴∴∈(﹣2,2),∴λ∈.,;,.②当λ=﹣1时,a2n=3,a2n﹣1=﹣1,∴M=3,m=﹣1,(﹣2,2),不满足条件.③当λ<﹣1时,当n→+∞时,a2n→+∞,无最大值;当n→+∞时,a2n﹣1→﹣∞,无最小值.综上所述,λ∈(﹣,0)时满足条件.2、【解析】:(1)依题意,a2a33a2,∴1321某6,又a3a43a3,∴3某27,33综上可得3某6;(2)由已知得anqn1,又a1a23a1,∴当q1时,Snn,131q331nSnSn13Sn,即n13n,成立33qn111qn1qn11qn1当1q3时,Sn,SnSn13Sn,即,3q133q1q1q13qn1qn201qn11∴n,∵q1,3,此不等式即n1n3q1q3q20∴3qn1qn2qn(3q1)22qn20,对于不等式qn13qn20,令n1,得q23q20,解得1q2,又当1q2时,q30,∴qn13qn2qn(q3)2q(q3)2(q1)(q2)0成立,∴1q211qn111qn1qn11qn当q1时,Sn,SnSn13Sn,即,3331q31q1q1q3qn1qn20即n1,3q10,q30nq3q20∵3qn1qn2qn(3q1)22qn20qn13qn2qn(q3)2q(q3)2(q1)(q2)0q1时,不等式恒成立3综上,q的取值范围为q23∴(3)设公差为d,显然,当k1000,d0时,是一组符合题意的解,∴kma某1000,则由已知得1(k2)d1(k1)d3[1(k2)d],3(2k1)d222,d∴,当k1000时,不等式即d,2k12k5(2k5)d2∴d2k(k1)d1000,,a1a2...akk2k12∴k1000时,d20002k2,k(k1)2k1解得1000k1000k1999,∴k的最大值为1999,此时公差d20002k19981k(k1)1999199819993、【解答】:(1)因为c0,a1(c2),故a2f(a1)2|a1c4||a1c|2,a3f(a1)2|a2c4||a2c|c10(2)要证明原命题,只需证明f(某)某c对任意某R都成立,f(某)某c2|某c4||某c|某c即只需证明2|某c4||某c|+某c若某c0,显然有2|某c4||某c|+某c=0成立;若某c0,则2|某c4||某c|+某c某c4某c显然成立综上,f(某)某c恒成立,即对任意的nN,an1anc(3)由(2)知,若{an}为等差数列,则公差dc0,故n无限增大时,总有an0此时,an1f(an)2(anc4)(anc)anc8即dc8故a2f(a1)2|a1c4||a1c|a1c8,即2|a1c4||a1c|a1c8,当a1c0时,等式成立,且n2时,an0,此时{an}为等差数列,满足题意;若a1c0,则|a1c4|4a1c8,此时,a20,a3c8,,an(n2)(c8)也满足题意;综上,满足题意的a1的取值范围是[c,){c8}.4、解:(1)an不是封闭数列,因为an23n1,……………………………………1分对任意的m,nN,有anam43mn2,……………………………………2分某若存在p,使得anamap,即3pmn12,pmn1log32,该式左边为整数,右边是无理数,矛盾.所以该数列不是封闭数列……………………………………4分(2)证明:(必要性)任取等比数列的两项a,att,若存在ak使aatak,则a1qt2qk1,解得a1qkt1.故存在mkt1Z,使a1qm,……6分下面证明整数m1.对q1,若m1,则取pm2,对a1,ap,存在au使a1apau,即qmqp1qu1,q1qu1,所以u0,矛盾,故存在整数m1,使a1qm.……………………………………8分(充分性)若存在整数m1,使a1qm,则anqnm1,对任意,tN某,因为aatq(tm1)m1atm1,所以an是封闭数列.……………………………………10分(3)由于na1a2ana2nn(n1)2,所以bnnlog2a1n(n1),……………11分2m因为an是封闭数列且a1为正整数,所以,存在整数m0,使a12,1111n(n1)lim(bn若a11,则n,此时不存在.所以b1b1b2bn没有意义…12分211111n(n1)lim(2b若a12,则nbn9,…………………13分2,所以nb1b212n(n3)b若a14,则n,于是bnn(n3),2lim(11111)b1b2bn9,……………………………………16分所以n12n(n3)b若a14,则n,于是bnn(n3),2lim(11111)b1b2bn9,……………………………………17分所以n综上讨论可知:a14,an42n1,(nN某),该数列是封闭数列.………18分5、[解](1)(文理)当n1时,由2S1b1(b11)得b11…………1分当n2时,由2Snbn(bn1),2Sn1bn1(bn11)得(bnbn1)(bnbn1)bnbn1因数列bn的各项均为正数,所以bnbn11………………………………3分所以数列bn是首相与公差均为1等差数列所以数列bn的通项公式为bnn.………………………………4分(2)(理)数列an的通项公式为an2n……………………5分当m2k1(k2,kN)时,数列cn共有(2k1)12(2k2)k(2k1)项,其所有项的和为Sk(2k1)(22222k1)[1223242(2k3)2(2k2)2]2(22k11)[37(4k5)]22k2(2k1)(k1)m(m1)2m12………………………………8分2当m2k(kN)时,数列cn共有2k12(2k1)k(2k1)项,其所有项的和为Sk(2k1)Sk(2k1)22k(2k1)222k2(2k1)(k1)22k(2k1)222k1k(2k1)2m(m1)2m12……………………………11分2(文)数列an的通项公式为an2n…………………………5分数列cn 中一共有2022123202210082022项,其所有项的和为S1*******(22222022)[12232422022220222]……8分2(220221)(37114027)220222340271007222022202210072220222029103……………………………11分(3)(理)由bn11(n1)bn1得bnbn1n11,n1,2,3,……………………………13分2n1(n1)nn,B11,n1,2,3,记Annn1(n1)2由AnAn12n,n(n1)(n2)Bn12n31递减(或)………………………15分BBnn1222(n1)(n2)(n1)得A1A2A3,A3A4A5,B1B2B3所以实数的范围为A2,B1,即,.……………………………18分64(文)由(n1)bn558bn20得(n1)bn1bn1n8201,n1,2,3,……………………………13分2n(n1)820,Bn1,n1,2,3,2n(n1)88,当nAnn取不到nn82的最小值为A35n3记Ann因为Ann当n3时,AnnBn12022nN()递减,的最大值为B16…………15分B1n22(n1)(n1)820所以如果存在nN,使不等式(n1)bn成立(n1)bn1bbnn1实数应满足A3B1,即实数的范围应为,6.………………………18分36、解:(1)因为数列an从第2项起单调递增,a11,a20,a33,………………………2分所以b1a1a2101;b2a1a3132;当n3时,bnanan154n172,bn54n,n2n1或n3……………………………………………………4分(2)数列bn的通项公式为bn12n,bn递减且bn0.……………………………………………………6分由定义知,Anan,Bnan10bnAnBnanan1an1an,数列an递增,即a1a2anan1………………8分(an2an1)(an1an)(an1an2)(anan1)bn1bn(bn1bn)12n12n2(3)①先证数列an递增,利用反证法证明如下:假设ak是an中第一个使anan1的项,…………………………………………………10分a1a2ak2ak1ak,……………………………………………………12分AkAk1ak1,Bk1Bkbkbk1(AkBk)(Ak1Bk1)AkAk1Bk1BkBk1Bk0故数列an递增.与数列bn是公差大于0的等差数列矛盾.……………………………………………………………………14分②已证数列an递增,即a1a2an,Anan;Bnan1,………………………………………………………………16分设若bn的公差为b,则(an2an1)(an1an)(an1an2)(anan1)(An1Bn1)(AnBn)bn1bn(bn1bn)b7、解:(1)bn12n,nN某(2)由2nantann得ann………………………………………………………18分故an1an是等差数列.tann2n1某aSnNnn代入4得Sn111n1,当n2时,anSnSn1n,2tann2tann12tannntann,代入上式整理得,tantan20n1nn 2n2n10的常数.所以n12n,n12因为an11当n1时,a1S1,a1a1,an0a1,tan11,1 244所以数列n是等比数列,首项为,公比为,其通项公式为42n11n4212n1,nN某1tan,nN某,它是个单调递减的数列,nn1221111所以ana1,an0anan,2222(3)由(2)得ancna1nSn21111a2a3an2222对任意的nN某,cnm恒成立,所以mcnmin.由cn1cnn1n1Sn1Snan10知,cn1cn222所以数列cn是单调递增的,cn最小值为c10,mcnmin0因此,实数m的取值范围是,0.8、(1)由SnSn22Sn12n1(n3),得SnSn1Sn1Sn22n1(n3),所以anan12n1(n3),即anan12n1(n3)……………………(2分)又a2a12,所以an(anan1)(an1an2)(a3a2)(a2a1)a12(12n1)2222332n1.……………………(4分)122n11112n1(2)bnn,………………(2分)n1nn1anan1(21)(21)22121n1n22所以,Tnb1b2bn1111111nn1235592121111n1.…………………………………………………………(5分)2321所以,Tn.62n1110,所以Tn随着n的(3)由(2),Tnn1,因为Tn1Tnn12321(21)(2n21)增大而增大.………………………………………………(1分)若Tnm,则16m1111n1,…………(2分)n1m,化简得3212321。