二元一次方程组(提高题)
二元一次方程组与一次函数提高题(含详细解答)

二元一次方程组与一次函数一.选择题(共16小题)1.(2014•太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A.B.C.D.2.(2013•历下区二模)已知直线y=﹣x+4与y=x+2的图象如图,则方程组的解为()A.B.C .D.3.(2012•贵阳)如图,一次函数y=k1x+b 1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C .D.4.(2011•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A.B.C.D.5.(2005•济南)如图,是在同一坐标系内作出的一次函数l1、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A.B.C.D.6.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A.B.C.D.7.(2006•太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A.B.C.D.8.(2013•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x ,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()进球数0 1 2 3 4 5人数 1 5 x y 3 2A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+9.(2010•聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P ,能表示这个一次函数图象的方程是()A.3x﹣2y+3.5=0 B.3x﹣2y﹣3.5=0 C.3x﹣2y+7=0 D.3x+2y﹣7=010.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A.B .C .D.11.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个B.5个C.6个D .7个12.若方程组的解为,则一次函数y=与y=交点坐标()A.(b,a)B.(a,a)C.(a,b)D.(b,b)13.已知,如图,方程组的解是()A.B.C.D.14.(2013•台湾)图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A.5B.10 C.15 D.2015.(2013•建邺区一模)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A.31分B.33分C.36分D.38分16.(2009•烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二.填空题(共10小题)17.(2014•丹徒区二模)已知直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是_________.18.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是_________.19.(2012•威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组_________的解.20.(2012•仪征市一模)已知函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),则方程组的解为_________.21.(2011•苍南县一模)如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是_________.22.(2010•高淳县二模)一次函数y=kx+b的图象上一部分点的坐标见下表:x …﹣1 0 1 2 3 …y …﹣7 ﹣4 ﹣1 2 5 …正比例函数的关系式为y=x,则方程组的解为x=_________,y=_________.23.已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是_________.24.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由._________.25.已知是方程组的解,那么由这两个方程得到的一次函数y=_________和y=_________的图象的交点坐标是_________.26.若m、n为全体实数,那么任意给定m、n,两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的交点组成的图象方程是_________.三.解答题(共4小题)27.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.28.(2008•台州)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①_________;②_________;③_________;④_________;(2)如果点C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是_________.29.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?30.如图所示的是函数y1=kx+b与y2=mx+n的图象,(1)方程的解是_________;(2)y1中变量y1随x的增大而_________;(3)在平面直角坐标系中,将点P(3,4)向下平移1个单位,恰好在正比例函数的图象上,求这个正比例函数的关系式.二元一次方程组与一次函数参考答案与试题解析一.选择题(共16小题)1.(2014•太原二模)下面四条直线,其中直线上每个点的坐标都是二元一次方程2x﹣y=2的解的是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.解答:解:∵2x﹣y=2,∴y=2x﹣2,∴当x=0,y=﹣2;当y=0,x=1,∴一次函数y=2x﹣2,与y轴交于点(0,﹣2),与x轴交于点(1,0),即可得出选项B 符合要求,故选:B.点评:此题主要考查了一次函数与二元一次方程的关系,将方程转化为函数关系进而得出与坐标轴交点坐标是解题关键.2.(2013•历下区二模)已知直线y=﹣x+4与y=x+2的图象如图,则方程组的解为()A.B.C.D.考点:一次函数与二元一次方程(组).分析:二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.解答:解:根据题意知,二元一次方程组的解就是直线y=﹣x+4与y=x+2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:.故选B.点评:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.3.(2012•贵阳)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:推理填空题.分析:根据图象求出交点P的坐标,根据点P的坐标即可得出答案.解答:解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),∴方程组的解是,故选A.点评:本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.4.(2011•百色)两条直线y=k1x+b1和y=k2x+b2相交于点A(﹣2,3),则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:计算题.分析:由题意,两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),所以x=﹣2、y=3就是方程组的解.解答:解:∵两条直线y=k i x+b1和y=k2x+b2相交于点A(﹣2,3),∴x=﹣2、y=3就是方程组的解.∴方程组的解为:.点评:本题主要考查了二元一次方程(组)和一次函数的综合问题,两直线的交点就是两直线解析式所组成方程组的解,认真体会一次函数与一元一次方程之间的内在联系.5.(2005•济南)如图,是在同一坐标系内作出的一次函数l1、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,则方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:数形结合.分析:本题需用待定系数法求出两个直线的函数解析式,然后联立两个函数的解析式组成方程组,所求得的解即为方程组的解.解答:解:由图可知:两个一次函数的图形分别经过:(1,2),(4,1),(﹣1,0),(0,﹣3);因此两条直线的解析式为y=﹣x+,y=﹣3x﹣3;联立两个函数的解析式:,解得:.故选B.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.6.若两条直线的交点为(2,3),则这两条直线对应的函数解析式可能是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:将交点坐标代入四个选项中,若同时满足两个函数关系式,即可得到答案.解答:解:将交点(2,3)代入,使得两个函数关系式成立,故选D.点评:本题考查了一元一次方程与一次函数的知识,解题的关键是了解两个函数的交点坐标就是两个函数关系式组成的二元一次方程组的解.7.(2006•太原)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l1、l2,如图所示,他解的这个方程组是()A.B.C.D.考点:一次函数与二元一次方程(组).专题:压轴题;数形结合.分析:两个一次函数的交点为两个一次函数解析式所组方程组的解.因此本题需根据图中直线所经过的点的坐标,用待定系数法求出两个一次函数的解析式.然后联立两个函数的解析式,即可得出所求的方程组.解答:解:由图可知:直线l1过(2,﹣2),(0,2),因此直线l1的函数解析式为:y=﹣2x+2;直线l2过(﹣2,0),(2,﹣2),因此直线l2的函数解析式为:y=﹣x﹣1;因此所求的二元一次方程组为;故选D点评:本题主要考查二元一次方程组与一次函数的关系.函数图象交点坐标为两函数解析式组成的方程组的解.8.(2013•荆州)体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()进球数0 1 2 3 4 5人数 1 5 x y 3 2A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+考点:一次函数与二元一次方程(组).分析:根据一共20个人,进球49个列出关于x、y 的方程即可得到答案.解答:解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.点评:本题考查了一次函数与二元一次方程组的知识,解题的关键是根据题目列出方程并整理成函数的形式.9.(2010•聊城)如图,过点Q(0,3.5)的一次函数的图象与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3.5=0 B.3x﹣2y﹣3.5=0 C.3x﹣2y+7=0 D.3x+2y﹣7=0考点:一次函数与二元一次方程(组).专题:数形结合.分析:如果设这个一次函数的解析式为y=kx+b,那么根据这条直线经过点P(1,2)和点Q(0,3.5),用待定系数法即可得出此一次函数的解析式.解答:解:设这个一次函数的解析式为y=kx+b.∵这条直线经过点P(1,2)和点Q(0,3.5),∴,解得.故这个一次函数的解析式为y=﹣1.5x+3.5,即:3x+2y﹣7=0.故选D.点评:本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.10.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A.B.C.D.考点:一次函数与二元一次方程(组).分析:由于函数图象交点坐标为两函数解析式组成的方程组的解.因此是联立两直线函数解析式所组方程组的解.由此可判断出正确的选项.解答:解:一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组,即的解.故选C.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.11.在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点.设k为整数,当直线y=x﹣2与y=kx+k的交点为整点时,k的值可以取()A.4个B.5个C.6个D.7个考点:一次函数与二元一次方程(组).专题:计算题.分析:让这两条直线的解析式组成方程组,求得整数解即可.解答:解:①当k=0时,y=kx+k=0,即为x轴,则直线y=x﹣2和x轴的交点为(2.0)满足题意,∴k=0②当k≠0时,,∴x﹣2=kx+k,∴(k﹣1)x=﹣(k+2),∵k,x都是整数,k≠1,k≠0,∴x==﹣1﹣是整数,∴k﹣1=±1或±3,∴k=2或k=4或k=﹣2;综上,k=0或k=2或k=4或k=﹣2.故k共有四种取值.故选A.点评:本题考查了一次函数与二元一次方程组,属于基础题,解决本题的难点是根据分数的形式得到相应的整数解.12.若方程组的解为,则一次函数y=与y=交点坐标()A.(b,a)B.(a,a)C.(a,b)D.(b,b)考点:一次函数与二元一次方程(组).专题:计算题.分析:由于函数图象交点坐标为两函数解析式组成的方程组的解,因此联立两函数解析式所得方程组的解,就是两个函数图象的交点坐标.解答:解:将方程组的两个方程变形后可得:y=,y=;因此两个函数图象的交点坐标就是方程组的解.故选C.点评:方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13.已知,如图,方程组的解是()A.B.C.D.考点:一次函数与二元一次方程(组).分析:根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.解答:解:根据函数y=kx+b和y=mx+n的图象知,一次函数y=kx+b与y=mx+n的交点(﹣1,1)就是该方程组的解.故选C.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.(2013•台湾)图①的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A.5B.10 C.15 D.20考点:三元一次方程组的应用.分析:设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z千克,根据题意及图象可以得出方程x=y+20及x﹣z=y+z+10,由两个方程构成方程组求出其解即可.解答:解:设左天平的一袋石头重x克,右天平的一袋石头重y克,被移动的石头重z克,由题意,得:,解得:z=5.故选:A.点评:本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反映的意义找到等量关系是关键.15.(2013•建邺区一模)为迎接2013年“亚青会”,学校组织了一次游戏:每位选手朝特制的靶子上各投三以飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是()A.31分B.33分C.36分D.38分考点:三元一次方程组的应用.分析:先设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,再根据小明、小君、小红的成绩分别是29分、43分和33分,列出方程组,求出x,y,z的值,再根据小华所投的飞镖,列出式子,求出结果即可.解答:解:设飞镖投到最小的圆中得x分,投到中间的圆中得y分,投到最外面的圆中得z分,根据题意得:,解得:.则小华的成绩是18+11+7=36(分).故选C.点评:此题考查了三元一次方程组的应用,解题的关键是根据图形设出相应的未知数,再根据各自的得分列出相应的方程.16.(2009•烟台)利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm考点:三元一次方程组的应用.专题:应用题.分析:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,建立关于h,x,y的方程组求解.解答:解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h﹣y+x=80,由第二个图形可知桌子的高度为:h﹣x+y=70,两个方程相加得:(h﹣y+x)+(h﹣x+y)=150,解得:h=75cm.故选C.点评:本题是一道能力题,考查方程思想、整体思想的应用及观察图形的能力.二.填空题(共10小题)17.(2014•丹徒区二模)已知直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),则方程组的解是.考点:一次函数与二元一次方程(组).分析:根据一次函数与二元一次方程组的关系,方程组的解为两直线的交点坐标.解答:解:∵直线y=x﹣1与y=﹣x+5的交点坐标是(4,1),∴方程组的解为.故答案为:.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.18.(2012•南宁)如图,已知函数y=x﹣2和y=﹣2x+1的图象交于点P,根据图象可得方程组的解是.考点:一次函数与二元一次方程(组).专题:压轴题;推理填空题.分析:先由图象得出两函数的交点坐标,根据交点坐标即可得出方程组的解.解答:解:∵由图象可知:函数y=x﹣2和y=﹣2x+1的图象的交点P的坐标是(1,﹣1),又∵由y=x﹣2,移项后得出x﹣y=2,由y=﹣2x+1,移项后得出2x+y=1,∴方程组的解是,故答案为:.点评:本题考查了一次函数与二元一次方程组的应用,主要考查学生的观察图形的能力和理解能力,题目具有一定的代表性,是一道比较好但又比较容易出错的题目.19.(2012•威海)如图,直线l1,l2交于点A,观察图象,点A的坐标可以看作方程组的解.考点:一次函数与二元一次方程(组).专题:计算题.分析:设直线l1的解析式是y=kx﹣1,设直线l2的解析式是y=kx+2,把A(1,1)代入求出k的值,即可得出方程组.解答:解:设直线l1的解析式是y=k1x﹣1,设直线l2的解析式是y=k2x+2,∵把A(1,1)代入l1得:k1=2,∴直线l1的解析式是y=2x﹣1∵把A(1,1)代入l2得:k2=﹣1,∴直线l2的解析式是y=﹣x+2,∵A是两直线的交点,∴点A的坐标可以看作方程组的解,点评:本题考查了一元一次函数与二元一次方程组的应用,主要考查学生的理解能力和计算能力.20.(2012•仪征市一模)已知函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),则方程组的解为.考点:一次函数与二元一次方程(组).分析:根据函数图象交点坐标为两函数解析式组成的方程组的解可直接写出答案.解答:解:方程组可变为:,∵函数y=x+a与y=﹣2x+b的交点坐标为(﹣2,1),∴方程组的解为:,故答案为:.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.21.(2011•苍南县一模)如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则根据图象可得二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:根据一次函数y=ax+b和正比例y=kx的图象可知,点P就是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组的解.解答:解:根据题意可知,二元一次方程组的解就是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是.点评:此题很简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的理解能力.22.(2010•高淳县二模)一次函数y=kx+b的图象上一部分点的坐标见下表:x …﹣1 0 1 2 3 …y …﹣7 ﹣4 ﹣1 2 5 …正比例函数的关系式为y=x,则方程组的解为x=2,y=2.考点:一次函数与二元一次方程(组).专题:计算题;图表型.分析:根据函数图象上的坐标,可以求出k和b的值,然后把k、b的值代入方程组即可求得x、y的值.解答:解:点(﹣1,﹣7),(0,﹣4)是函数图象上的点,∴,把b=﹣4代入方程,可得:k=3,∴,把(2)代入(1)得:x=2,∴y=2.点评:本题考查了根据函数图象与坐标求k、b的值,以及解二元一次方程组.23.已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:函数图象的交点坐标即是方程组的解,有几个交点,就有几组解.解答:解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴点P(﹣4,﹣2),满足二元一次方程组;∴方程组的解是.故答案为.点评:本题不用解答,关键是理解两个函数图象的交点即是两个函数组成方程组的解.24.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.经过.考点:一次函数与二元一次方程(组).专题:压轴题.分析:(1)将P(1,b)代入y=x+1即可求出b的值;(2)交点P的坐标即为方程组的解;(3)将P点坐标代入y=nx+m,若等式成立,则点P在函数图象上,否则不在函数图象上.解答:解:(1)将P(1,b)代入y=x+1,得b=1+1=2;(2)由于P点坐标为(1,2),所以.(3)将P(1,2)代入解析式y=mx+n得,m+n=2;将x=1代入y=nx+m得y=m+n,由于m+n=2,所以y=2,故P(1,2)也在y=nx+m上.点评:此题综合性较强,考查了经过某点的函数应适合这个点的横纵坐标、函数图象交点坐标为相应函数解析式组成的方程组的解等知识,难度适中,是一道好题.25.已知是方程组的解,那么由这两个方程得到的一次函数y=x﹣和y=﹣2x+8的图象的交点坐标是(2,4).考点:一次函数与二元一次方程(组).分析:根据方程组的解为组成方程组的两个方程的函数图象的交点解答.解答:解:由7x﹣3y=2得,y=x﹣,由2x+y=8得,y=﹣2x+8,所以,由这两个方程得到的一次函数y=x﹣和y=﹣2x+8的图象的交点坐标是(2,4).故答案为:x﹣;﹣2x+8;(2,4).点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.26.若m、n为全体实数,那么任意给定m、n,两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的交点组成的图象方程是x=1.考点:一次函数与二元一次方程(组).分析:根据两个一次函数的图象的交点求法,得到y1=y2,求出交点,即可得出两函数图象的交点组成的图象方程.解答:解:∵当两个一次函数y1=mx+n和y2=nx+m(m≠n)的图象的有交点时,∴y1=y2,∴mx+n=nx+m,mx﹣nx=m﹣n,(m﹣n)x=m﹣n,∵m≠n,∴x=1,故答案为:x=1.点评:此题主要考查了一次函数与二元一次方程组,利用方程组的解就是两个一次函数相应的交点坐标得到y1=y2,进而求出x是解决问题的关键.三.解答题(共4小题)27.(2009•台州)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组,请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.考点:一次函数与二元一次方程(组).专题:压轴题;数形结合.分析:(1)将交点P的坐标代入直线l1的解析式中便可求出b的值;(2)由于函数图象交点坐标为两函数解析式组成的方程组的解.因此把函数交点的横坐标当作x的值,纵坐标当作y的值,就是所求方程组的解;(3)将P点的坐标代入直线l3的解析式中,即可判断出P点是否在直线l3的图象上.解答:解:(1)∵(1,b)在直线y=x+1上,∴当x=1时,b=1+1=2;(2)方程组的解是;(3)直线y=nx+m也经过点P.理由如下:∵当x=1时,y=nx+m=m+n=2,∴(1,2)满足函数y=nx+m的解析式,则直线经过点P.点评:本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上点,就一定满足函数解析式.28.(2008•台州)在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论:①kx+b=0;②;③kx+b>0;④kx+b<0.;(2)如果点C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是x≤1.考点:一次函数与二元一次方程(组);一次函数与一元一次方程;一次函数与一元一次不等式.专题:综合题.分析:(1)①由于点B是函数y=kx+b与x轴的交点,因此B点的横坐标即为方程kx+b=0的解;②因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b中,当y>0时,kx+b>0,因此x的取值范围是不等式kx+b>0的解集;同理可求得④的结论.(2)由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值.解答:解:(1)根据观察:①kx+b=0;②;③kx+b>0;④kx+b<0.(2)如果C点的坐标为(1,3),那么当x≤1时,不等式kx+b≥k1x+b1才成立.点评:此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程,二元一次方程组之间的内在联系是解答本题的关键.29.在直角坐标系中,直线l1经过(2,3)和(﹣1,﹣3),直线l2经过原点O,且与直线l1交于点P(﹣2,a).(1)求a的值;(2)(﹣2,a)可看成怎样的二元一次方程组的解?(3)设直线l1与y轴交于点A,你能求出△APO的面积吗?考点:一次函数与二元一次方程(组).专题:计算题;待定系数法.分析:(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;(2)利用待定系数法确定L2得解析式,由于P(﹣2,a)是L1与L2的交点,所以点(﹣2,﹣5)可以看作是解二元一次方程组所得;(3)先确定A点坐标,然后根据三角形面积公式计算.。
二元一次方程组 类型总结(提高题)

二元一次方程组 培优题类型一:二元一次方程的概念及求解例(1).已知(a -2)x -by|a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.(2).二元一次方程3x +2y =15的正整数解为_______________.类型二:二元一次方程组的求解例(3).若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. (4).2x -3y =4x -y =5的解为_______________.类型三:已知方程组的解,而求待定系数。
例(5).已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.(6).若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 练习:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a = ,b= 。
类型四:涉及三个未知数的方程,求出相关量。
设“比例系数”是解有关数量比的问题的常用方法.例(7).已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. (8).解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.练习:若2a +5b +4c =0,3a +b -7c =0,则a +b -c = 。
由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是( )A 、1∶2∶1B 、1∶(-2)∶(-1)C 、1∶(-2)∶1D 、1∶2∶(-1)说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。
代数第一册(上)第五章《二元一次方程组》提高测试题

提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____.【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1.【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x -,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x 4.2x -3y =4x -y =5的解为_______________. 【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值. 【答案】-438. 6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a c b a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值.【答案】a =61,b =41,c =31. 【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( ) (A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………………………………………………………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程.【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( ) (A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式. 【答案】C . 14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值.【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解. 15.若方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B .【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法.(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 【提示】将方程组化为一般形式,再求解. 【答案】⎪⎩⎪⎨⎧-==.232y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元.【答案】⎩⎨⎧==.30500y x 19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A B A ,进而求得x ,y .【答案】⎩⎨⎧-==.11y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值. 【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x (四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xy z ≠0,求222223y x z xy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值. 【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错.【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y 再代入3 x +4 y =m +5.【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式.【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x x y y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x 【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得 ⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
二元一次方程组提高训练题李维一用的2

二元一次方程组培优训练1下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩ 2一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、 ⎩⎨⎧=+=+yx xy y x 188B 、⎩⎨⎧+=++=+y x y x y x 1018108C 、 ⎩⎨⎧=++=+yx y x y x 18108 D 、⎩⎨⎧=+=+yxy x y x )(1083若解方程⎩⎨⎧=+=-121my x y x 的解x 和y 也是二元一次方程x +y =3的解,则m 的值为( )A .2B .1C .3D .-34.若2x │m│+(m+1)y=3m-1是关于x 、y 的二元一次方程,则m 的取值范围是( ) A 、m≠-1 B 、m=±1 C 、m=1 D 、m=05.下列方程组中,有唯一一组解的是( )A .⎩⎨⎧=-=-12334y x y xB .⎩⎨⎧=--=--0531008310y x y xC .⎩⎨⎧-=-=-6223x y y xD .⎩⎨⎧=+=+842743y x y x6.方程7x+4y=100的正整数解有( )组A.1 B.2 C.3 D.4 7.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”那么驴子原来所驮货物有( )袋A. 4B. 5C. 6D. 78.已知⎩⎨⎧=-+=+-0340254z y x z y x (xyz≠0),则x ∶y ∶z 的值为( ) A 、1∶2∶3B 、3∶2∶1C 、2∶1∶3D 、不能确定9.如果方程组⎩⎨⎧=-=+1293y x y ax 无解,则a 为A.6B.-6C.9D.-910.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为A .43-B .43 C . 34D .34-11.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( )A .⊗ = 1,⊕ = 1B .⊗ = 2,⊕ = 1C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 212.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )A. 400 cm 2B. 500 cm 2C. 600 cm 2D. 4000 cm 213.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A .4种B .3种C .2种D .1种14.请写出一个x 的系数为2,且以⎩⎨⎧=-=12y x 为一个解的二元一次方程15.当k =________时,下列方程①2350x y --=,②3420x y --=,③3y kx =+ 有公共解16.若二元一次方程组⎩⎨⎧=+=-11532by ax y x 和⎩⎨⎧=+=-15y x ay cx 同解,则a=______;b= 17.已知a+2b-3c=4,5a-6b+7c=82,则代数式9a+2b-5c 的值为 。
二元一次方程提高题与常考题和培优题(含答案)

二元一次方程提高题与常考题和培优题(含答案)一.选择题(共13小题)1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为下列哪一个二元一次方程式的解?()A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是()A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A .B .C .D .8.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或510.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A .B.C.D.11.若方程组的解是,则方程组的解是()A.B.C.D.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.C.D.13.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是()A.175cm2B.300cm2C.375cm2D.336cm2二.填空题(共13小题)14.方程组的解是.15.已知a、b满足方程组,则=.16.若方程组与的解相同,则a=,b=.17.已知是方程组的解,则代数式(a+b)(a﹣b)的值为.18.若(a﹣2b+1)2与互为相反数,则a=,b=.19.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=.20.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形(阴影部分)的面积为1cm2,则小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,则图②的大正方形中未被小正方形覆盖部分的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题27.解方程组:.28.解方程组:.29.已知关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购买甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购买一种门票共花费750元,求该班购买甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班不足50人,2班超过50人.(1)若以班为单位分别购票,一共应付1240元,求两班各有多少人?(2)若两班联合购票可少付多少元?34.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?答案解析一.选择题(共13小题)1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A2.x=﹣3,y=1为下列哪一个二元一次方程式的解?()A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【解答】解:将x=﹣3,y=1代入各式,A、(﹣3)+2×1=﹣1,正确;B、(﹣3)﹣2×1=﹣5≠1,故此选项错误;C、2×(﹣3)+3‧1=﹣3≠6,故此选项错误;D、2×(﹣3)﹣3‧1=﹣9≠﹣6,故此选项错误;故选:A.3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C4.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.B.C.7 D.13【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,则a+b=1+12=13,故选D.5.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是()A.8 B.5 C.2 D.0【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣(a﹣3b)=5+3=8,故选A7.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.若设爸爸的身高为x米,儿子的身高为y米,则可列方程组为()A.B.C.D.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,故选:D.8.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选C9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.10.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.【解答】解:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选:B.11.若方程组的解是,则方程组的解是()A.B.C.D.【解答】解:∵方程组的解是,∴方程组中∴故选:C.12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A.B.C.D.【解答】解:根据题意得:,故选A13.如图,用12块相同的小长方形瓷砖拼成一个大的长方形,则每个小长方形瓷砖的面积是()A.175cm2B.300cm2C.375cm2D.336cm2【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.故选:B.二.填空题(共13小题)14.方程组的解是.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.15.已知a、b满足方程组,则=3.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,则原式=3.故答案为:316.)若方程组与的解相同,则a=33,b=.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.17.已知是方程组的解,则代数式(a+b)(a﹣b)的值为﹣8.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,则原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣818.若(a﹣2b+1)2与互为相反数,则a=3,b=2.【解答】解:∵(a﹣2b+1)2与互为相反数,∴(a﹣2b+1)2+=0,(a﹣2b+1)2=0且=0,即,解得:a=3,b=2故答案为:3,2.19.定义运算“﹡”:规定x﹡y=ax+by(其中a、b为常数),若1﹡1=3,1﹡(﹣1)=1,则1﹡2=4.【解答】解:根据题中的新定义得:,解得:,则1﹡2=1×2+2×1=2+2=4,故答案为:420.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形(阴影部分)的面积为1cm2,则小长方形的周长等于16cm.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×(3+5)=16,故答案为16cm.22.(2016春•单县期末)如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=﹣2.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣223.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,则可得方程组:,故答案为:.24.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,则图②的大正方形中未被小正方形覆盖部分的面积大小为24.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖部分的面积为52﹣4×=24.故答案为:24.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.三.解答题(共14小题)27.解方程组:.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.28.解方程组:.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,则方程组的解为.29.已知关于x,y的二元一次方程组的解互为相反数,求k的值..【解答】解:,①+②得:3(x+y)=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.30.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.【解答】解:(1)在以上3个方程组的解中,发现x+y=0;(2)第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,则x+y=4﹣4=0.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【解答】解:设杯子的单价为x元,则热水瓶单价为y元,则解得,答:杯子的单价为8元,则热水瓶单价为35元.32.(2016•长春模拟)某班学生集体去看演出,观看演出需购买甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购买一种门票共花费750元,求该班购买甲、乙两种门票的张数.【解答】解:设该班购买甲种门票x张,乙种门票y张,根据题意,得:,解得:,答:该班购买甲种门票20张,乙种门票15张.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班不足50人,2班超过50人.(1)若以班为单位分别购票,一共应付1240元,求两班各有多少人?(2)若两班联合购票可少付多少元?【解答】解:(1)设1班和2班分别有x人、y人,依题意得,解得x=48,y=56,答:1班和2班分别有48人和56人;(2)两班联合购票,应付104×9═936元,可少付1240﹣936=304元.34.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?【解答】解:设捐款10元的为x人,捐款15元的为y人,得,解此方程组,得,答:捐款10元的有19人,捐款15元的有6人.。
初中数学二元一次方程组提高题及常考题和培优题含解析

初中数学二元一次方程提高题与常考题和培优题(含解析)一.选择题〔共13小题〕1.关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.2.x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣63.x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.34.假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.135.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.6.如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b的值是〔〕A.8 B.5 C.2 D.07.父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C .D .8.小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元9.足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或510.电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A .B .C.D.11.假设方程组的解是,那么方程组的解是〔〕A. B.C. D.12."九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.13.如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2二.填空题〔共13小题〕14.方程组的解是.15.a、b满足方程组,那么=.16.假设方程组与的解一样,那么a=,b=.17.是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为.18.假设〔a﹣2b+1〕2与互为相反数,那么a=,b=.19.定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2=.20.我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.21.如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于.22.如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b=.23.一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.24.如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.25.一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为.26.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三.解答题〔共14小题〕27.解方程组:.28.解方程组:.29.关于x,y的二元一次方程组的解互为相反数,求k的值.30.观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.31.根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.32.某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.33.某公园的门票价格规定如下表:购票人数50人以下51~100人100人以上票价13元/人11元/人9元/人某学校七年级1班和2班两个班共104人去游园,其中1班缺乏50人,2班超过50人.〔1〕假设以班为单位分别购票,一共应付1240元,求两班各有多少人?〔2〕假设两班联合购票可少付多少元?34.“最美女教师〞张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款400元,捐款情况如下表:表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款10元和15元的人数各是多少名?35.某天蔬菜经营户用120元批发了西兰花和胡萝卜共60kg到菜市场零售,西兰花和胡萝卜当天的批发价和零售价如表所示:品名西兰花胡萝卜批发价〔元/kg〕 2.8 1.6零售价〔元/kg〕 3.8 2.5如果他当天全部卖完这些西兰花和胡萝卜可获得利润多少元.36.4月23日“世界读书日〞期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,试一试:求出每本"英汉词典"和"读者"杂志的单价.37.学生在素质教育基地进展社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植本钱共42元,还了解到如下信息:〔1〕请问采摘的黄瓜和茄子各多少千克?〔2〕这些采摘的黄瓜和茄子可赚多少元?38.某校住校生宿舍有大小两种寝室假设干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?39.某运发动在一场篮球比赛中的技术统计如表所示:技术上场时出手投篮投中〔次〕罚球得篮板〔个〕助攻〔次〕个人总间〔次〕分得分〔分钟〕数据46662210118 60注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运发动投中2分球和3分球各几个.40.在平面直角坐标系中,假设横坐标、纵坐标均为整数点称为格点,假设一个多边形的顶点都是格点,那么称为格点多边形.记格点多边形的面积为S,其内部的格点数记为n,边界上的格点数记为l,例如图中△ABC是格点三角形,对应的S=1,n=0,l=4.奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b,其中a,b为常数.〔1〕利用图中条件求a,b的值;〔2〕假设某格点多边形对应的n=20,l=15,求S的值;〔3〕在图中画出面积等于5的格点直角三角形PQR.初中数学二元一次方程提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题〔共13小题〕1.〔2016•毕节市〕关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,那么m,n的值为〔〕A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,应选A【点评】此题考察了二元一次方程的定义,熟练掌握二元一次方程的定义是解此题的关键.2.〔2016•〕x=﹣3,y=1为以下哪一个二元一次方程式的解?〔〕A.x+2y=﹣1 B.x﹣2y=1 C.2x+3y=6 D.2x﹣3y=﹣6【分析】直接利用二元一次方程的解的定义分别代入求出答案.【解答】解:将x=﹣3,y=1代入各式,A、〔﹣3〕+2×1=﹣1,正确;B、〔﹣3〕﹣2×1=﹣5≠1,故此选项错误;C、2×〔﹣3〕+3‧1=﹣3≠6,故此选项错误;D、2×〔﹣3〕﹣3‧1=﹣9≠﹣6,故此选项错误;应选:A.【点评】此题主要考察了二元一次方程的解,正确代入方程是解题关键.3.〔2016•〕x,y满足方程组,那么x+y的值为〔〕A.9 B.7 C.5 D.3【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,那么x+y=5,应选C【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.〔2016•〕假设二元一次联立方程式的解为x=a,y=b,那么a+b之值为何?〔〕A.B.C.7 D.13【分析】将其中一个方程两边乘以一个数,使其与另一方程中x的系数互为相反数,再将两方程相加,消去一个未知数,到达降元的目的,求出另一个未知数,再用代入法求另一个未知数.【解答】解:①×2﹣②得,7x=7,x=1,代入①中得,2+y=14,解得y=12,那么a+b=1+12=13,应选D.【点评】此题主要考察解二元一次方程组,熟练运用加减消元是解答此题的关键.5.〔2016•〕为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的选项是〔〕A.B.C.D.【分析】根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵树+女生种树的总棵树=78棵,根据等量关系列出方程组即可.【解答】解:该班男生有x人,女生有y人.根据题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.6.〔2016•吴中区一模〕如果是方程x﹣3y=﹣3的一组解,那么代数式5﹣a+3b 的值是〔〕A.8 B.5 C.2 D.0【分析】把x=a,y=b代入方程,再根据5﹣a+3b=5﹣〔a﹣3b〕,然后代入求值即可.【解答】解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,所以5﹣a+3b=5﹣〔a﹣3b〕=5+3=8,应选A【点评】此题考察了代数式的求值,正确对代数式变形,利用添括号法那么是关键.7.〔2017•河北一模〕父子二人并排垂站立于游泳池中时,爸爸露出水面的高度是他自身身高的,儿子露出水面的高度是他自身身高的,父子二人的身高之和为3.2米.假设设爸爸的身高为x米,儿子的身高为y米,那么可列方程组为〔〕A.B.C.D.【分析】根据题意可得两个等量关系:①爸爸的身高+儿子的身高=3.2米;②父亲在水中的身高〔1﹣〕x=儿子在水中的身高〔1﹣〕y,根据等量关系可列出方程组.【解答】解:设爸爸的身高为x米,儿子的身高为y米,由题意得:,应选:D.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子没在水中的身高是相等的.8.〔2016•黔东南州〕小明在某商店购置商品A、B共两次,这两次购置商品A、B的数量和费用如表:购置商品A的数量〔个〕购置商品B的数量〔个〕购置总费用〔元〕第一次购物4393第二次购物66162假设小明需要购置3个商品A和2个商品B,那么她要花费〔〕A.64元B.65元C.66元D.67元【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,应选C【点评】此题主要考察了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.9.〔2016•〕足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进展了6场比赛,得了12分,该队获胜的场数可能是〔〕A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,那么负〔6﹣x﹣y〕场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,应选:C.【点评】此题主要考察二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.10.〔2016•泰安模拟〕电影"刘三姐"中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?〞刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.〞假设用数学方法解决罗秀才提出的问题,设“一少〞的狗有x条,“三多〞的狗有y条,那么解此问题所列关系式正确的选项是〔〕A.B.C.D.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少〞的狗有x条,“三多〞的狗有y条,可得:,应选:B.【点评】此题考察二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.11.〔2016•高阳县一模〕假设方程组的解是,那么方程组的解是〔〕A. B.C. D.【分析】根据加减法,可得〔x+2〕、〔y﹣1〕的解,再根据解方程,可得答案.【解答】解:∵方程组的解是,∴方程组中∴应选:C.【点评】此题考察了二元一次方程组的解,解决此题的关键是先求〔x+2〕、〔y ﹣1〕的解,再求x、y的值.12.〔2016•乐山模拟〕"九章算术"是中国传统数学最重要的著作,奠定了中国传统数学的根本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是"九章算术"最高的数学成就."九章算术"中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?〞译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?〞设每头牛值金x两,每只羊值金y两,可列方程组为〔〕A.B.C.D.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两〞,得到等量关系,即可列出方程组.【解答】解:根据题意得:,应选A【点评】此题考察了由实际问题抽象出二元一次方程组,解决此题的关键是找到题目中所存在的等量关系.13.〔2016•富顺县校级模拟〕如图,用12块一样的小长方形瓷砖拼成一个大的长方形,那么每个小长方形瓷砖的面积是〔〕A.175cm2B.300cm2C.375cm2D.336cm2【分析】设小长方形的长为xcm,宽为ycm,根据题意可知x+y=40,大矩形的长可表示3x或3y+2x,从而得到3x=3y+2x,然后列方程组求解即可.【解答】解:设小长方形的长为xcm,宽为ycm.根据题意得:解得:.故xy=30×10=300cm2.应选:B.【点评】此题主要考察的是二元一次方程组的应用,根据矩形的对边相等列出方程组是解题的关键.二.填空题〔共13小题〕14.〔2016•永州〕方程组的解是.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2〔2﹣2y〕+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.【点评】此题考察的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.15.〔2016•〕a、b满足方程组,那么= 3 .【分析】方程组利用加减消元法求出解得到a与b的值,代入原式计算即可得到结果.【解答】解:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,那么原式=3.故答案为:3【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.〔2016•富顺县校级模拟〕假设方程组与的解一样,那么a= 33 ,b=.【分析】先求出x,y的值,再组成一个含a,b的新方程组.解这个方程组即可.【解答】解:解方程组得,代入方程组得,解得,故答案为:33,.【点评】此题主要考察了二元一次方程组的解,解题的关键是正确求出x,y的值,组成一个新的方程组.17.〔2016•〕是方程组的解,那么代数式〔a+b〕〔a﹣b〕的值为﹣8 .【分析】把x与y的值代入方程组求出a与b的值,代入原式计算即可得到结果.【解答】解:把代入方程组得:,①×3+②×2得:5a=﹣5,即a=﹣1,把a=﹣1代入①得:b=﹣3,那么原式=a2﹣b2=1﹣9=﹣8,故答案为:﹣8【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.〔2016•富顺县校级模拟〕假设〔a﹣2b+1〕2与互为相反数,那么a= 3 ,b= 2 .【分析】根据得出〔a﹣2b+1〕2+=0,得出方程组,求出方程组的解即可.【解答】解:∵〔a﹣2b+1〕2与互为相反数,∴〔a﹣2b+1〕2+=0,〔a﹣2b+1〕2=0且=0,即,解得:a=3,b=2故答案为:3,2.【点评】此题考察了相反数,二元一次方程组,偶次方,算术平方根的应用,解此题的关键是得出关于x、y的方程组.19.〔2016•浦东新区二模〕定义运算“﹡〞:规定x﹡y=ax+by〔其中a、b为常数〕,假设1﹡1=3,1﹡〔﹣1〕=1,那么1﹡2= 4 .【分析】等式利用题中的新定义化简为二元一次方程组,求出方程组的解得到a 与b的值,即可确定出所求式子的值.【解答】解:根据题中的新定义得:,解得:,那么1﹡2=1×2+2×1=2+2=4,故答案为:4【点评】此题考察了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法那么是解此题的关键.20.〔2016•丰台区二模〕我国明代数学家程大位的名著"直指算法统宗"里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?如果译成白话文,其意思是:有100个和尚分100个馒头,正好分完.如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各有几人?设大和尚x人,小和尚y人,可列方程组为.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【解答】解:设大和尚x人,小和尚y人,由题意可得.故答案为.【点评】此题考察了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组.21.〔2016•龙岩模拟〕如图,图1和图2都是由8个一样大小的小长方形拼成的,且图2中的小正方形〔阴影局部〕的面积为1cm2,那么小长方形的周长等于16cm .【分析】仔细观察图形,发现此题中2个等量关系为:小长方形的长×3=小长方形的宽×5,〔小长方形的长+小长方形的宽×2〕2=小长方形的长×小长方形的宽×8+1.根据这两个等量关系可列出方程组,即可求出小长方形的周长.【解答】解:设这8个大小一样的小长方形的长为xcm,宽为ycm.由题意,得,解得.小长方形的周长为2×〔3+5〕=16,故答案为16cm.【点评】此题主要考察了二元二次方程组的应用,解题关键是弄清题意,找到适宜的等量关系,列出方程组.解决此题需仔细观察图形,发现大长方形的对边相等及正方形的面积=8个小长方形的面积+小正方形的面积是关键.22.〔2016春•单县期末〕如果4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,那么a﹣b= ﹣2 .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:因为4x a+2b﹣11﹣2y5a﹣2b﹣3=8是关于x,y的二元一次方程,可得:,解得:,所以a﹣b=﹣2,故答案为:﹣2【点评】主要考察二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.23.〔2016春•镇赉县期末〕一副三角扳按如图方式摆放,且∠1的度数比∠2的度数大50°,假设设∠1=x°,∠2=y°,那么可得到方程组为.【分析】根据∠1的度数比∠2的度数大50°,还有平角为180°列出方程,联立两个方程即可.【解答】解:根据∠1的度数比∠2的度数大50°可得方程x﹣y=50,再根据平角定义可得x+y+90=180,故x+y=90,那么可得方程组:,故答案为:.【点评】此题主要考察了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.24.〔2016•广陵区二模〕如图,三个全等的小矩形沿“横﹣竖﹣横〞排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8 .【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考察了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.25.〔2016•河南模拟〕一个大正方形和四个全等的小正方形按图①、图②两种方式摆放,根据图中数据,那么图②的大正方形中未被小正方形覆盖局部的面积大小为24 .【分析】设大正方形的边长为x,小正方形的边长为y,根据图①、图②给出的数据即可得出关于x、y的二元一次方程,解之即可求出x、y的值,再用大正方形的面积减去4个小正方形的面积即可得出结论.【解答】解:设大正方形的边长为x,小正方形的边长为y,根据题意得:,解得:,∴图②的大正方形中未被小正方形覆盖局部的面积为52﹣4×=24.故答案为:24.【点评】此题考察了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.26.〔2016•楚雄州模拟〕如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292 .【分析】设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1〞联立正三角形的个数比正六边形的个数多6个得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.【点评】此题考察了二元一次方程组的应用,解题的关键是列出关于x、y的二元一次方程.此题属于根底题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程〔或方程组〕是关键.三.解答题〔共14小题〕27.〔2016•〕解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.28.〔2016•威海一模〕解方程组:.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,那么方程组的解为.【点评】此题考察了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.29.〔2016•莆田模拟〕关于x,y的二元一次方程组的解互为相反数,求k的值.【分析】方程组两方程相加表示出x+y,根据x与y互为相反数得到x+y=0,求出k的值即可.【解答】解:,①+②得:3〔x+y〕=k﹣1,即x+y=,由题意得:x+y=0,即=0,解得:k=1.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.30.〔2016•漳州模拟〕观察以下方程组,解答问题:①;②;③;…〔1〕在以上3个方程组的解中,你发现x与y有什么数量关系?〔不必说理〕〔2〕请你构造第④个方程组,使其满足上述方程组的构造特征,并验证〔1〕中的结论.【分析】〔1〕观察方程组,得到x与y的数量关系即可;〔2〕归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:〔1〕在以上3个方程组的解中,发现x+y=0;〔2〕第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,那么x+y=4﹣4=0.【点评】此题考察了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.31.〔2016•龙岩模拟〕根据图中提供的信息,列方程或方程组求杯子和热水瓶的单价.【分析】根据图知道,一个保温瓶和一个杯子的价钱是43元,2个保温瓶和3个杯子的价钱是94元;先用43×2求出2个保温瓶和2个杯子的价钱,再用2个保温瓶和3个杯子的价钱减去2个保温瓶和2个杯子的价钱就是一个杯子的价钱,进而求出一个保温瓶的价钱.【解答】解:设杯子的单价为x元,那么热水瓶单价为y元,那么解得,答:杯子的单价为8元,那么热水瓶单价为35元.【点评】此题考察方程组的应用,关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择适宜的方法进展计算.32.〔2016•长春模拟〕某班学生集体去看演出,观看演出需购置甲种门票或乙种门票,甲种门票每张24元,乙种门票每张18元.该班35名学生每人购置一种门票共花费750元,求该班购置甲、乙两种门票的张数.【分析】设该班购置甲种门票x张,乙种门票y张,根据“该班一共35人,甲种门票每张24元,乙种门票每张18元,每人购置一种门票共花费750元〞列方。
专题2.2 二元一次方程组(提高篇)专项练习-2020-2021学年七年级数学下(浙教版)

专题2.2 二元一次方程组(提高篇)专项练习一、单选题1.方程(m-2 016)x|m|-2 015+(n+4)y|n|-3=2 018是关于x、y的二元一次方程,则() A.m=±2 016;n=±4B.m=2 016,n=4C.m=-2 016,n=-4D.m=-2 016,n=42.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为().A.3B.-3C.-4D.43.一片牧场上的草长得一样快,已知60头牛24天可将草吃完,而30头牛60天可将草吃完.那么,若在120天里将草吃完,则需要几头牛()A.16B.18C.20D.224.若关于x,y的方程组10,20x aybx y a++=⎧⎨-+=⎩没有实数解,则()A.ab=-2B.ab=-2且a≠1C.ab≠-2D.ab=-2且a≠25.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩6.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.124xyz=⎧⎪=⎨⎪=⎩C.14xyz=⎧⎪=⎨⎪=⎩D.41xyz=⎧⎪=⎨⎪=⎩7.关于x、y的方程组51x ayy x+=⎧⎨-=⎩有正整数解,则正整数为( ).A.2、5B.1、2C.1、5D.1、2、58.根据图中提供的信息,可知每个杯子的价格是()A.51元B.35元C.8元D.7.5元9.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知实数a、m满足a>m,若方程组325x y ax y a-=+⎧⎨+=⎩的解x、y满足x>y时,有a>-3,则m的取值范围是()A.m>-3B.m≥-3C.m≤-3D.m<-3二、填空题11.一个大正方形和四个全等的小正方形按图①、①两种方式摆放,则图①的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).12.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为___.13.对于实数a,b,定义运算“①”:a①b=a bab a b≥⎪⎩,<,例如4①3,因为4>3.所以.若x,y满足方程组48229x yx y-=⎧⎨+=⎩,则x①y=_____________.14.若关于x、y的二元一次方程组316215x myx ny+=⎧⎨+=⎩的解是73xy=⎧⎨=⎩,则关于x、y的二元一次方程组3()()162()()15x y m x yx y n x y++-=⎧⎨++-=⎩的解是__.15.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=_____,y=_____.16.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.17.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n >1)盆花,每个图案花盆的总数为s.按此规律推断,以s,n为未知数的二元一次方程为______.18.当x=1,-1,2时,y=ax2+bx+c的值分别为1,3,3,则当x=-2时,y的值为____.19.如果二元一次方程组3{9x y ax y a+=-=的解是二元一次方程2x-3y+12=0的一个解,那么a的值是_________.20.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.三、解答题21.解方程(1)2931x yy x+=⎧⎨-=⎩(代入法)(2)4143314312x yx y+=⎧⎪--⎨-=⎪⎩22.解三元一次方程组2314 2?7 3211 x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩23.若二元一次方程组37231x yx y-=⎧⎨+=⎩的解也适合于二元一次方程y=kx+9,求(k+1)2的值.24.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程①中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.25.阅读探索知识累计解方程组()()()()12262126a b a b ⎧-++=⎪⎨-++=⎪⎩解:设a ﹣1=x ,b+2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得:22x y =⎧⎨=⎩即1222a b -=⎧⎨+=⎩所以30a b =⎧⎨=⎩此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:122435212535a b a b ⎧⎛⎫⎛⎫-++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-++= ⎪ ⎪⎪⎝⎭⎝⎭⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组()()()()11112253325332a m b n c a m b n c ⎧++-=⎪⎨++-=⎪⎩的解为_____________.26.阅读下列材料:《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只? 结合你学过的知识,解决下列问题: (1)若设母鸡有x 只,公鸡有y 只,① 小鸡有__________只,买小鸡一共花费__________文钱;(用含x ,y 的式子表示) ①根据题意,列出一个含有x ,y 的方程:__________________;(2)若对“百鸡问题”增加一个条件:母鸡数量是公鸡数量的4倍多2只,求此时公鸡、母鸡、小鸡各有多少只?(3)除了问题(2)中的解之外,请你再直接写出两组..符合“百鸡问题”的解.27.在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足3+28{24a b ca b c-=--=-.(1)若x=2是3x-a<0的一个解,试判断点A在第几象限,并说明理由;(2)若①AOB的面积是4,求点B的坐标;(3)若两个动点E( e ,2e + 1) 、F( f ,-2f +3) ,请你探索是否存在以两个动点E、F为端点的线段EF①AB,且EF=AB.若存在,求出E、F两点的坐标;若不存在,请说明理由.参考答案1.D 【解析】【分析】根据二元一次方程的定义可得m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】①()()20153201642018m n m xn y---++=是关于x 、y 的二元一次方程,①m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1, 解得:m=-2016,n=4, 故选D .【点拨】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.2.D 【分析】先利用方程3x -y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx -9求出k 值. 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx -9中,得:-1=2k -9,解得:k=4. 故选D.【点拨】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单. 3.C 【解析】【分析】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据60头牛24天可将草吃完,而30头牛60天可将草吃完,列方程组,用其中一个未知数表示另一个未知数即可求解. 【详解】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据题意,得602424306060b c a b c a ⨯⎧⎨⨯⎩=+,=+,解得10,1200.a b c b =⎧⎨=⎩则若在120天里将草吃完,则需要牛的头数是120120c ab+=20.故选C.【点拨】考查了二元一次方程组的应用,解题关键是能够把题目中的未知量用一个字母表示.注:牛在吃草的同时,草也在长. 4.A 【解析】 【分析】把①变形,用y 表示出x 的值,再代入①得到关于y 的方程,令y 的系数等于0即可求出ab 的值. 【详解】1020x ay bx y a =①=②++⎧⎨-+⎩, 由①得,x=-1-ay ,代入①得,b (-1-ay )-2y+a=0, 即(-ab -2)y=b -a ,因为此方程组没有实数根,所以-ab -2=0,ab=-2. 故选:A . 【点拨】考查的是解二元一次方程组,解答此类问题时要熟知解二元一次方程组的代入消元法和加减消元法. 5.B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x +2y ,宽又是75厘米,故x +2y =75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】解:根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点拨】本题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.6.A【详解】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后将该方程与方程组中的各方程分别相减,可求得15xyz=⎧⎪=⎨⎪=⎩.故选A.7.B【分析】先解含a的二元一次方程组,再根据x,y为正整数求出a的取值.【详解】解x、y的方程组51x ayy x+=⎧⎨-=⎩得61161xaya⎧=-⎪⎪+⎨⎪=⎪+⎩①x,y,a为正整数①a+1=3或2,解得a=2或1,故选B【点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法进行求解.8.C【解析】试题分析:要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C.9.C【解析】解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间.根据题意得:2x+3y+4(5﹣x﹣y)=15,整理得:2x+y=5.当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2;当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1;当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0.因为同时租用这三种客房共5间,则x>0,y>0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;①租二人间1间,三人间3间,四人间1间.故选C.点拨:本题是二元一次方程的应用,此题难度较大,解题的关键是理解题意,根据题意列方程,然后根据x,y是整数求解,注意分类讨论思想的应用,另外本题也可以列三元一次方程组.10.C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+①得,3x=6a+3,得到:x=2a+1①,把①代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,①x>y,①2a+1>a﹣2,解得a>﹣3.①a>-3,a>m,①m≤-3,故选C.点拨:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.11.ab【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和①列出方程组得,12122{2x x a x x b+=-= 解得,122{4a bx a b x +=-= ①的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.12.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ①x -y=1;方法二:两个方程相减,得.x -y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.13.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩.①x <y ,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.14.52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论..详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.①二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,①73a b =⎧⎨=⎩,①73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点拨:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.15.15 95【解析】分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值.详解:①(2x −3y +5)2+|x +y −2|=0,①235020x y x y -+=⎧⎨+-=⎩, 解得19,.55x y ==故答案为19,.55点拨:考查非负数的性质,掌握两个非负数相加,和为0,这两个非负数的值都为0是解题的关键.16.20【解析】【分析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x+y 的值即为总路程.【详解】设平路有x 千米,上坡路有y 千米,根据题意,得: 4x +3y +6y +4x =5,即2x +2y =5,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案是:20.【点拨】考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.注意可以通过间接方式得解.17.s=3(n -1)【分析】根据图片可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2-3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3-3;第三图:有花盆9个,每条边有花盆4个,那么s=3×4-3;…由此可知以s ,n 为未知数的二元一次方程为s=3n -3.【详解】根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以s=3n -3=3(n ﹣1).故答案为3(n ﹣1)【点拨】本题要注意给出的图片中所包含的规律,然后根据规律列出方程.18.7【解析】【分析】根据函数图象上的点的坐标,利用待定系数法即可求出二次函数的解析式,将x=-2代入函数解析式中即可求出y值.【详解】由已知,得1,3,342,a b ca b ca b c=++⎧⎪=-+⎨⎪=++⎩解得1,1,1,abc=⎧⎪=-⎨⎪=⎩①y=x2-x+1.当x=-2时,y=(-2)2-(-2)+1=7.故答案是:7.【点拨】考查了待定系数法求函数解析式以及二次函数图象上点的坐标特征,解题的关键是利用待定系数法求出二次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,利用待定系数法求出函数解析式是关键.19.4 7 -【解析】解:39x y ax y a+=⎧⎨-=⎩①②,①+①得:x=6a,把x=6a代入①得:y=-3a.把x=6a,y=-3a代入2x-3y+12=0得:12a+9a+12=0,解得:47x=-.故答案为:47-.20.7 14 5 4【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)①s,t都是“相异数”,s=100x+32,t=150+y,①F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.①F(t)+F(s)=18,①x+5+y+6=x+y+11=18,①x+y=7.①1≤x≤9,1≤y≤9,且x,y都是正整数,①16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.①s是“相异数”,①x≠2,x≠3.①y≠1,y≠5.①16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,①()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,①k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,①k的最大值为54.点拨: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.21.(1)14xy=⎧⎨=⎩(2)3114xy=⎧⎪⎨=⎪⎩【解析】试题分析:(1)、将①-①×2求出x的值,然后代入①求出y的值,从而得出方程组的解;(2)、首先将①进行化简,然后利用加减消元法求出x的值,代入x的值求出y的值,从而得出方程组的解.试题解析:(1)、29? 31?x y y x ①②+=⎧⎨-=⎩, ①×2可得:2y -6x=2 ①, ①-①可得:7x=7, 解得:x=1, 将x=1代入①可得:1+2y=9,解得:y=4①原方程组的解为:14x y =⎧⎨=⎩. (2)、414? 331 4312x y x y +=⎧⎪⎨---=⎪⎩①②,将①化简可得:3x -4y=-2 ①, ①+①可得:4x=12,解得:x=3,将x=3代入①可得:3+4y=14,解得:y=114,①原方程组的解为:3114x y =⎧⎪⎨=⎪⎩. 22.123x y z =⎧⎪=⎨⎪=⎩【解析】分析:根据解三元一次方程组的方法解方程即可,详解:231427?3211x y z x y z x y z ①②③++=⎧⎪++=⎨⎪++=⎩①-①×2得:30,x z -+=①-①×2得:58,x z --=-联立方程3058,x z x z -+=⎧⎨--=-⎩解得:13,x z =⎧⎨=⎩把13x z =⎧⎨=⎩代入①得,12914,y ++= 解得:2,y =原方程组的解为:123 xyz=⎧⎪=⎨⎪=⎩点拨:考查三元一次方程组的加法,牢记加减消元法是解题的关键.23.16.【解析】【分析】先利用加减消元法解得x,y的值,然后代入方程即可求得k的值,再代入所求式子求解即可.【详解】解:37? 231x yx y①②-=⎧⎨+=⎩,①×3+①,得11x=22,解得x=2.将x=2代入①,得6-y=7,解得y=-1,①方程组37231x yx y-=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,将21xy=⎧⎨=-⎩代入y=kx+9,得k=-5,则当k=-5时,(k+1)2=16.【点拨】本题主要考查解二元一次方程组,解此题的关键在于正确求得二元一次方程组的解. 24.0【解析】分析: 把甲的结果代入①求出b的值,把乙的结果代入①求出a的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入①,将54x y =⎧⎨=⎩代入①得: 12252015b a -+=-⎧⎨+=⎩ 解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点拨: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.25.(1)95a b =⎧⎨=-⎩ (2)23m n =-⎧⎨=⎩ 【分析】(1)利用换元法把13a - ,+25b 分别看成一个整体把原方程组进行变形求出,继而在求出a 和b(2)利用换元法把5(m+3),3(n -2)分别看成一个整体把原方程组变形,可得一个新的含有m 、n 的二元一次方程组,然后求解即可得所求【详解】解: (1)拓展提高 设3a −1=x ,5b +2=y , 方程组变形得:24{25x y x y +=+= ,解得:21x y =⎧⎨=⎩ ,即123{215a b -=+= , 解得:9{5a b ==- ;(2)能力运用设53){3(2)m x n y+=-=( , 可得53)5{3(2)3m n +=-=( , 解得:2{3m n =-= , 故答案为2{3m n =-= 【点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 26.解:(1)①100x y --, 1(100)3x y --;①74100x y +=;(2)母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.【解析】试题分析:(1)设母鸡有x 只,公鸡有y 只,根据一百文钱买一百只鸡,表示出小鸡的数量和价钱,然后列出方程;(2)设母鸡有x 只,公鸡有y 只,根据根据一百文钱买一百只鸡,母鸡数量是公鸡数量的4倍多2只,列方程求解即可;(3)解不定方程即可.试题解析:解:(1)①100x y --, 11003x y --();①74100x y +=;(2)设母鸡有x 只,公鸡有y 只,根据题意,得: 7410042x y x y +=⎧⎨=+⎩,,解得184x y =⎧⎨=⎩,,10078x y --=(只), 答:母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.27.(1)点A 在第二象限 (2)()()2,26,2B -或(3)35,2,,222E F ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭【解析】试题解析:(1)根据题意,求出a 的取值范围,从而确定点A 的位置;(2)先解方程组,得{4b ac a ==-,再利用三角形的面积求出a 的值即可解决问题;(3)根据线段EF 平行于线段AB 且等于线段AB ,得出4f e -=,2123e f +=-+求解即可.(1)点A 在第二象限理由:把x =2代入3x -a<0得a>6①-a<0,a>0①点A 在第二象限(2)由方程组解得{4b ac a ==-()4,B a a ∴-①A(-a ,a ),S △OAB =4①AB =41442a ∴⋅= 2a ∴=±()()2,26,2B ∴-或(3)①EF ①AB ,且EF =AB4{2123f e e f -=∴+=-+ 解得: 32{52e f =-= 35,2,,222E F ⎛⎫⎛⎫∴--- ⎪ ⎪⎝⎭⎝⎭【点拨】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.21。
《二元一次方程组》基础测试+提高测试

《二元一次方程》基础测试(一)填空题(每空2分,共26分):1.已知二元一次方程1213-+y x =0,用含y 的代数式表示x ,则x =_________; 当y =-2时,x =___ ____.【提示】把y 作为已知数,求解x .【答案】x =62y -;x =32.2.在(1)⎩⎨⎧-==23y x ,(2)⎪⎩⎪⎨⎧-==354y x ,(3)⎪⎪⎩⎪⎪⎨⎧-==2741y x 这三组数值中,_____是方程组x -3y =9的解,______是方程2 x +y =4的解,______是方程组⎩⎨⎧=+=-4293y x y x 的解.【提示】将三组数值分别代入方程、方程组进行检验.【答案】(1),(2);(1),(3);(1).【点评】方程组的解一定是方程组中各个方程共同的解.3.已知⎩⎨⎧=-=54y x ,是方程41x +2 my +7=0的解,则m =_______.【提示】把⎩⎨⎧=-=54y x 代入方程,求m .【答案】-53.4.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =__,b =_.【提示】将⎩⎨⎧-=-=12y x 代入⎩⎨⎧=-=+137by ax by ax 中,原方程组转化为关于a 、b 的二元一次方程组,再解之.【答案】a =-5,b =3.5.已知等式y =kx +b ,当x =2时,y =-2;当x =-21时,y =3,则k =____,b =____. 【提示】把x 、y 的对应值代入,得关于k 、b 的二元一次方程组. 【答案】k =-2,b =2.【点评】通过建立方程组求解待定系数,是常用的方法. 6.若|3a +4b -c |+41(c -2 b )2=0,则a ∶b ∶c =_________. 【提示】由非负数的性质,得3 a +4 b -c =0,且c -2b =0.再用含b 的代数式表示a 、c ,从而求出a 、b 、c 的值.【答案】a =-32b ,c =2b ;a ∶b ∶c =-2∶3∶6. 【点评】用一个未知数的代数式表示其余的未知数,是一种常用的有效方法. 7.当m =_______时,方程x +2y =2,2x +y =7,mx -y =0有公共解.【提示】先解方程组⎩⎨⎧=+=+7222y x y x ,将求得的x 、y 的值代入方程mx -y =0,或解方程组⎪⎩⎪⎨⎧=-=+=+.07222y mx y x y x【答案】⎩⎨⎧-==14y x ,m =-41.【点评】“公共解”是建立方程组的依据.8.一个三位数,若百位上的数为x ,十位上的数为y ,个位上的数是百位与十位上的数的差的2倍,则这个三位数是_______________.【提示】将各数位上的数乘相应的位数,再求和. 【答案】100 x +10 y +2(x -y ). (二)选择题(每小题2分,共16分):9.已知下列方程组:(1)⎩⎨⎧-==23y y x ,(2)⎩⎨⎧=-=+423z y y x ,(3)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x ,(4)⎪⎪⎩⎪⎪⎨⎧=-=+0131y x y x , 其中属于二元一次方程组的个数为………………………………………………( ) (A )1 (B )2 (C )3 (D )4【提示】方程组(2)中含有三个未知数,方程组(3)中y 的次数都不是1,故(2)、(3)都不是二元一次方程组.【答案】B .10.已知2 x b+5y 3a 与-4 x 2a y 2-4b 是同类项,则b a 的值为………………………( )(A )2 (B )-2 (C )1 (D )-1【提示】由同类项定义,得⎩⎨⎧-==+b a a b 42325,解得⎩⎨⎧=-=21b a ,所以b a =(-1)2=1.【答案】C .11.已知方程组⎩⎨⎧-=-=+1242m ny x n y mx 的解是⎩⎨⎧-==11y x ,那么m 、n 的值为……( ) (A )⎩⎨⎧-==11n m (B )⎩⎨⎧==12n m (C )⎩⎨⎧==23n m (D )⎩⎨⎧==13n m【提示】将⎩⎨⎧-==11n m 代入方程组,得关于m 、n 的二元一次方程组解之.【答案】D .12.三元一次方程组⎪⎩⎪⎨⎧=+=+=+651x z z y y x 的解是…………………………………………( )(A )⎪⎩⎪⎨⎧===501z y x (B )⎪⎩⎪⎨⎧===421z y x (C )⎪⎩⎪⎨⎧===401z y x (D )⎪⎩⎪⎨⎧===014z y x【提示】把三个方程的两边分别相加,得x +y +z =6或将选项逐一代入方程组验证,由x +y =1知(B )、(D )均错误;再由y +z =5,排除(C ),故(A )正确,前一种解法称之直接法...;后一种解法称之逆推验证法......【答案】A . 【点评】由于数学选择题多为单选题——有且只有一个正确答案,因而它比一般题多一个已知条件:选择题中有且只有一个是正确的.故解选择题除了直接法以外,还有很多特殊的解法,随着学习的深入,我们将逐一向同学们介绍. 13.若方程组⎩⎨⎧=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为……………( )(A )-4 (B )4 (C )2 (D )1【提示】把x =y 代入4x +3y =14,解得x =y =2,再代入含a 的方程.【答案】C . 14.若关于x 、y 的方程组⎩⎨⎧=-=+ky x ky x 73的解满足方程2x +3y =6,那么k 的值为( )(A )-23 (B )23 (C )-32 (D )-23【提示】把k 看作已知常数,求出x 、y 的值,再把x 、y 的值代入2 x +3 y =6,求出k .【答案】B . 15.若方程y =kx +b 当x 与y 互为相反数时,b 比k 少1,且x =21,则k 、b 的值分别是…………( ) (A )2,1 (B )32,35 (C )-2,1 (D )31,-32【提示】由已知x =21,y =-21,可得⎪⎩⎪⎨⎧=-+=-.12121b k b k 【答案】D .16.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组……………………………( )(A )⎩⎨⎧=-=+y x y x 3847 (B )⎩⎨⎧=++=x y x y 3847(C )⎩⎨⎧+=-=3847x y x y (D )⎩⎨⎧+=+=3847x y x y【提示】由题意可得相等关系:(1)7组的学生数=总人数-4;(2)8组的人数=总人数+3.【答案】C .(三)解下列方程组(每小题4分,共20分):17.⎩⎨⎧-=-=-.557832y x y x 【提示】用加减消元法先消去x .【答案】⎩⎨⎧-=-=.65y x18.⎪⎪⎩⎪⎪⎨⎧=+=+.15765545.04332y x y x 【提示】先整理各方程,化为整数系数的方程组,用加减法消去x .【答案】⎪⎩⎪⎨⎧=-=.223y x 19.⎪⎩⎪⎨⎧=+=4.1%40%2552y x y x 【提示】由第一个方程得x =52y ,代入整理后的第二个方程;或由第一个方程,设x =2 k ,y =5 k ,代入另一个方程求k 值.【答案】⎪⎪⎩⎪⎪⎨⎧==.15142528y x20.⎩⎨⎧-=++=+.b a y x b a y x 2127521257(a 、b 为非零常数)【提示】将两个方程左、右两边分别相加,得x +y =2a ①,把①分别与两个方程联立求解. 【答案】⎩⎨⎧-=+=.b a y b a x【点评】迭加消元,是未知数系轮换方程组的常用解法.21.⎪⎩⎪⎨⎧=++=-+=+-.10076702302z y x z y x z y x【提示】将第一个方程分别与另外两个方程联立,用加法消去y .【答案】⎪⎩⎪⎨⎧===.753z y x【点评】分析组成方程组的每个方程中各未知项系数的构成特点,是选择恰当解题方法的关键所在,因而解题前要仔细观察,才能找出解题的捷径. (四)解答题(每小题6分,共18分):22.已知方程组⎩⎨⎧+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.【提示】解已知方程组,用n 的代数式表示x 、y ,再代入 x +y =12. 【答案】n =14.23.已知方程组⎩⎨⎧-=+=-1332by ax y x 与⎩⎨⎧=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.【提示】先解方程组⎩⎨⎧=+=-1123332y x y x 求得x 、y ,再代入方程组⎩⎨⎧=+-=+3321by ax by ax 求a 、b .【答案】⎩⎨⎧=-=52b a .【点评】当n 个方程组的解相同,可将方程组中的任意两个方程联立成新的方程组.24.已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值. 【提示】由题意得关于a 、b 的方程组.求出a 、b 写出这个代数式,再求当x =3时它的值. 【答案】5.【点评】本例在用待定系数法求出a 、b 的值后,应写出这个代数式,因为它是求值的关键步骤. (五)列方程组解应用问题(每1小题10分,共20分):25.某校去年一年级男生比女生多80人,今年女生增加20%,男生减少25%,结果女生又比男生多30人,求去年一年级男生、女生各多少人.【提示】设去年一年级男生、女生分别有x 人、y 人,可得方程组⎪⎩⎪⎨⎧=--+=-.30)100251()100201(80x y y x【答案】x =280,y =200.26.A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A 地,乙继续前进,当甲回到A 地时,乙离A 地还有2千米,求甲、乙两人的速度. 【提示】由题意,相遇前甲走了2小时,及“当甲回到A 地时,乙离A 地还有2千米”,可得列方程组的另一个相等关系:甲、乙同向行2小时,相差2千米.设甲、乙两人的速度分别为x 千米/时,y 千米/时,则⎩⎨⎧=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千米/时,乙的速度为4.5千米/时.《二元一次方程组》提高测试(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______.【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________.【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数. 【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______.【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………()(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( )(A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法. 12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1) (C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B .【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c 时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b .【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键.16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1 【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x y x y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z 的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x z xy x +++的值.【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k , y =2 k ,z =3 k ,代入代数式. 【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的. 22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值. 【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x=-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少? 【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.【提示】设原计划用x 小时,AB 两地距离的一半为y 千米,根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲:二元一次方程组及应用
知识点一:二元一次方程的概念及方程的解
例1、 指出下列方程那些是二元一次方程是____________.
⑴2x +5y =16 (2)2x +y +z =3 (3)
x
1
+y =21 (4)x 2+2x +1=0 (5)2x +10xy =5 例2、 指出下列方程那些是二元一次方程组?并说明理由。
① ⎩⎨
⎧=+=-7
232z y y x ② ⎪⎩⎪⎨
⎧-=-=+1241
x
y y x ③ ⎩⎨
⎧=-=--5
12)4(3y x x x ④ ⎪⎩
⎪⎨
⎧=
+=-21
32132y x y x
例3、(1)已知(a -2)x -by |a |-1
=5是关于x 、y 的二元一次方程,则a ______,b _____.
(2)如果25mx y x -=+是关于x 、y 的二元一次方程,则m _____. 例4、二元一次方程3x +2y =15的正整数解为________________________. 举一反三:
1、若方程2x a +1+3=y 2b -
5是二元一次方程,则a = ,b = .
2、在下列四个方程组①⎩⎨⎧=-=+94210342y x y x ,②⎩⎨⎧==+297124xy y x ,③⎪⎩⎪⎨⎧=+=-4
320
21
y x y x ,④⎩⎨⎧=-=+045587y x y x 中,是二元
一次方程组的有 _____________.
3、若x =1,y =2是方程ax -y =3的解,则a 的值是 ( ) A .5 B .-5 C .2 D .1
4、若二元一次方程的一个解为⎩
⎨
⎧-==12
y x ,则此方程可以是 (只要求写一个)
5、已知:∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x °,y °,下列方程组中符合题意的是
A . ⎩⎨
⎧-==+30
180
y x y x B .
⎩⎨
⎧+==+30
180
y x y x C . ⎩⎨
⎧+==+30
90
y x y x D . ⎩⎨
⎧-==+30
90
y x y x 6、二元一次方程x+y=3的自然数解有_____________________.
知识点二:解二元一次方程组
例5、解二元一次方程组:⎩⎨
⎧=+=-1
3
y x y x (2)⎩⎨
⎧=+=-83120
34y x y x (3) 23
321
y x x y =-⎧⎨
+=⎩
例6、(1)若|2a +3b -7|与(2a +5b -1)2
互为相反数,则a =______,b =______.
(2)2x -3y =4x -y =5的解为_______________.
举一反三: 1、以⎩⎨
⎧-==1
1
y x 为解的二元一次方程组是 ( )
A .⎩⎨⎧=-=+10y x y x
B .⎩⎨⎧-=-=+10y x y x
C .⎩⎨⎧=-=+2
y x y x D .⎩⎨⎧-=-=+20y x y x
2、解方程组:⎩⎨
⎧-=-+=-8
5)1(21
)2(3y x x y (2) ⎪⎩⎪⎨
⎧=-=+2
3432
13
32y x y x (3)⎪⎩
⎪⎨
⎧=+-+=-+-04235132
423512y x y x
3、已知2
|2|(3)0a b b -++-=,那么______ab =.
知识点三:已知方程组的解,而求待定系数
例7、已知⎩⎨⎧==1
2y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2
的值为_________.
例8、若满足方程组⎩⎨
⎧=-+=-6
)12(423y k kx y x 的x 、y 的值相等,则k =_______. 举一反三:
1.已知关于x 、y 的方程组⎩⎨⎧=+-=-3175275by ax y x 和⎩
⎨⎧=+-=-651
y x by ax 的解相同,则a=______,b=______。
2.方程组⎩
⎨
⎧=-+=525
y x y x 的解满足方程x +y -a =0, 那么a 的值为 ________.
3.若方程组⎩⎨
⎧=++=-10
)1(23
2y k kx y x 的解互为相反数,则k 的值为 。
4、已知方程组⎩⎨⎧+=+=+3
3223k y x k
y x 的解x 与y 均为正数,求k 取值范围.
知识点四:涉及三个未知数的方程,求出相关量。
设“比例系数”是解有关数量比的问题的常用方法.
例9、已知
2a =3b =4c ,且a +b -c =12
1,则a =_______,b =_______,c =_______. 例10、解方程组⎪⎩
⎪⎨⎧=+=+=+63432
3x z z y y x ,得x =______,y =______,z =______.
举一反三:
1、若450x y -=,那么
125125x y
x y
-+=_________.
2、由方程组⎩
⎨
⎧=+-=+-04320
32z y x z y x 可得,x ∶y ∶z 是____________.
说明:解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解.
当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组。
知识点五:列方程组求待定字母系数是常用的解题方法.
例11、若⎩⎨⎧-==20y x ,⎪⎩
⎪
⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为
例12、关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨
⎧-==11y x ,⎩⎨⎧==1
2
y x ,则这个二元一次方程是
举一反三:如果⎩⎨⎧=-=21y x 是方程组⎩
⎨⎧=-=+10
cy bx by ax 的解,那么,下列各式中成立的是 ( )
A 、a +4c =2
B 、4a +c =2
C 、a +4c +2=0
D 、4a +c +2=0
知识点六:方程组有解的情况。
(方程组有唯一解、无解或无数解的情况)
方程组⎩⎨⎧=+=+222
1
11c y b x a c y b x a 满足 条件时,有唯一解;
满足 条件时,有无数解;
满足 条件时,有无解。
例13、关于x 、y 的二元一次方程组⎩
⎨
⎧=+=-231
2y mx y x 没有解时,m
例14、二元一次方程组23
x y m
x ny -=⎧⎨
+=-⎩ 有无数解,则m= ,n= 。
举一反三:当k 、b 为何值时,方程组⎩⎨⎧+-=+=2)13(x k y b kx y
⑴有唯一一组解 ⑵无解 ⑶有无穷多组解
知识点七:解答题
例15、已知⎩⎨⎧=+-=-+0
254034z y x z y x ,xyz ≠0,求2
22
223y x z xy x +++的值.
例16、甲、乙两人解方程组⎩⎨
⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==3
2y x ,乙将其中一个方程的b 写成了它的相
反数,解得⎩⎨
⎧-=-=2
1
y x ,求a 、b 的值.
举一反三:
1、甲、乙两人共同解方程组⎩⎨
⎧-=-=+ ②
by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为
⎩⎨⎧-=-=13y x ;乙看错了方程②中的b ,得到方程组的解为⎩
⎨⎧==45
y x ,求原方程组的正确解。
2、若4x -3y -6z =0,x +2y -7z =0, (xyz ≠0),则式子2
222
22103225z
y x z y x ---+的值等于 ①
②
知识点八:二元一次方程组的应用
例17、一批货物要运往某地,货主准备租用汽车运输公司的甲、
乙两种货车.已知过去两次租用这两种货车的情况如下表:
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,
如果按每吨付运费30元计算,则货主应付运费多少元
例18、
例19、2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?。