蛋白质芯片的综述

蛋白质芯片的综述
蛋白质芯片的综述

蛋白质芯片的综述

摘要蛋白质芯片技术是一种高通量、微型化和自动化的蛋白质分析技术,已在多个领域得到应用,如蛋白质组学研究、新药的开发、酶与底物的相互作用和疾病检测等。论文详细介绍了蛋白质芯片技术的原理、芯片介质及蛋白质的固定技术,论述了蛋白质芯片在肿瘤研究,食品检验的应用以及传染病检测中的研究概况。分析了蛋白质芯片的问题以及应用前景。

关键词蛋白质芯片,肿瘤,食品检验,传染病检测,应用

蛋白质芯片的研究工作起始于20世纪80年代,到90年代技术日趋成熟。蛋白质芯片(protein chip)技术因具有高通量平行分析、信噪比较高、所需样品量少,以及可直接关联DNA序列和蛋白质信息等优点,自问世以来,已广泛应用于蛋白质组学、医学诊断学等领域研究,具有广阔的发展。

1.蛋白质芯片介绍

1.1 技术原理

蛋白质芯片是由固定于不同介质上的蛋白微阵列组成,这些蛋白包括抗原、抗体及标志蛋白,然后用标记的或未经标记的另外一个蛋白,如抗原、抗体或配体进行反应,有的需要经洗涤后再加入标记的二抗进行反应,从而达到放大抗原抗体反应的目的。所用的标记物有荧光物质,如Cy3(青色素,一种荧光染料)和Cy5等;酶,如辣根过氧化物酶,化学发光物质等;其他分子,如免疫金标记,然后再进行银染对反应结果显色。反应结果用扫描装置进行检测或用肉眼直接进行观察。

1.2 蛋白质芯片的介质

目前作为蛋白芯片的介质有滤膜类、凝胶类和玻璃片类,前2种介质的优点是能够保持所固定的蛋白的三维结构,但缺点是由于其质地较软,所以不能满足机械点样的强度,同时凝胶类的蛋白质芯片所点样品容易发生扩散。玻璃片的优点是成本低和性能稳定,可满足高强度的机械点样。此外,20世纪90年代中期发展的液相芯片技术使蛋白芯片技术得到进一步提高。其被喻为后基因组时代的芯片技术,也可称为灵活的多种被分析物质的检测

( flexible multi-analyte profiling,xMAP)技术,xMAP技术是集流式技术、荧光微球、激光、数字信号处理和传统化学技术为一体的一种新型生物分子高通量检测技术,这种技术将流式检测与芯片技术有机地结合在一起,使生物芯片反应体系由固相反应改变为接近生物系统内部环境的完全液相反应体系,因此也被称为液相芯片技术[1]。

光学蛋白芯片也是新发展起来的一项技术,是将高分辨的椭偏生物传感器技术和集成化多元蛋白质芯片技术相结合发展形成的生物分子识别和检测技术。该技术的优点是无需标记待检样品,无需预处理直接检测非纯化分析物,样品用量少,检测时间短并且可以进行多元检测。

1.3 蛋白质的固定

将蛋白质固定于芯片上的方法很多,各方法的最终目的是在单位面积/体积上固定最大量的蛋白质并保持其天然构象,该环节成为蛋白质芯片技术的关键步骤之一。

蛋白质的固定可以分为两类:非专一性固定和专一性固定,非专一性固定即通过被动吸附的方式使蛋白质结合到相应的介质上,如硝酸纤维素膜和多聚赖氨酸包被的玻片通过被动吸附蛋白质的氨基或羧基来固定蛋白质,此方法产生的芯片背景值往往较高。

1. 4 蛋白质芯片的检测

蛋白质芯片的检测包括两类方式,一类是直接检测法,即直接对捕捉到的蛋白进行检测,包括加强纳米簇共振技术、等离子体共振技术(SPR)、固相激光激发时间分辨荧光光谱法和表面加强激光解吸离子-飞行时间质谱法(SELDI-TOF-MS)。另一类检测方法是间接检测法,

即通过使用发光物质包括荧光物质、化学发光物质、酶、同位素等对被检测物或其抗体进行标记,然后用激光扫描或CCD对信号进行检测。

2.蛋白质芯片技术用

2.1 蛋白质芯片在肿瘤研究中的应用

2·11 蛋白质表达谱的检测

蛋白质芯片可以检测两种不同样品(患病组与健康组,药物治疗前与治疗后)之间蛋白质表达水平的相对差异。根据蛋白表达差异推测参与疾病发生发展相关蛋白,还可以根据治疗前后蛋白表达不同判断患者对药物治疗的敏感性。在研究血管生成因子与肿瘤的关系

时,Huang等[2]利用蛋白质芯片检测143例各类型肿瘤患者5种血管生成因子的表达水平。发现多数肿瘤病人均有某种血管生成因子升高,而且不同肿瘤类型血管生成因子升高也不同。血管生成在肿瘤生长和扩散中起重要作用,因此血管生成因子所反应的肿瘤血管生成的活跃程度对组织病理分级,治疗方案的选择具有重要的指导意义。Laura Smith等[3]利用抗体芯片分析MDA-MB-231乳腺癌细胞系及其衍生系对阿霉素的抵抗性。抵抗组与敏感组相比丝裂原活化蛋白磷酸化激酶,周期蛋白D2,细胞角蛋白18,细胞周期素B1等明显下降。根据药物治疗前、后表达的不同蛋白,可以预测患者对药物治疗的敏感性并给予个体化治疗,使患者能在最大程度上受益。

2.12蛋磷酸化检测

蛋白质芯片还可以用来研究蛋白质的磷酸化水平改变。原理与普通抗体芯片相同,区别在于加入的抗体是荧光染料(如Cy3、Cy5等)标记的磷酸化酪氨酸(或是丝氨酸、苏氨酸)抗体。KNMendes等[4]用特异性抗体芯片检测了52种不同信号蛋白的磷酸化水平并进行分析。发现几种不同类型肿瘤均有PI3-K表达上调,还发现各肿瘤类型有其特异的信号通路变化,比如,胰腺癌中表皮生长因子介导的信号通路中, p16ink和Rb成逆相关。Boyd等利用反相蛋白质芯片检测30个乳腺癌细胞系100种蛋白质的磷酸化水平。发现表皮生长因子受体和丝裂原活化蛋白激酶/细胞外信号调节激酶相关激酶的抑制剂使Akt信号通路中的磷脂酰肌醇(-3)激酶补偿性上调。由于蛋白质的磷酸化在生物体内信号转导过程中起相当重要和广泛的作用,因此对于蛋白质磷酸化检测具有重要的生物学意义。

2·13肿瘤标志物联合诊断

蛋白质芯片具有同时并行测多个假定标志物的特点,因此可以更完整的描述癌症患者

血清的变化。RandalOrchekowski等利用抗体芯片来检测与胰腺癌有关的血清蛋白,并利用联合诊断的方法对样品进行分级。与良性病变和健康者相比,胰腺癌患者

Anti-PIVKA-II,Anti-CA15-3,Anti-IgA, Anti?cathepsin D升高而Anti?serum amyloid A 降低。一般认为Anti-PIVKA-II升高与肝癌和维生素K利用障碍有关,而胰腺癌引起的胆道梗阻可以导致维生素K利用障碍;Anti-IgA升高可能与胰液分泌增多和漏出有关;组织蛋白D 则与癌细胞的侵袭行为有关。将这些与肿瘤相关的标志物联合起来可以显著提高诊断的准确率。很多用于诊断的特异肿瘤标志物还没有发现,因此单个指标将被多指标联合诊断所取代。有研究表明,卵巢癌单个肿瘤标志物CA125已经被IL-18, FGF-2和CA125联合诊断所取代。胞浆丝氨酸羟甲基转移酶, T型盒转录因子3和抗肌萎缩蛋白utrophin被用作检测乳腺癌和卵巢癌的标志物。联合这些互补又不重合的标志物,可以显著提高诊断的准确率,与单个肿瘤标志物相比具有明显优势。

2.2蛋白质芯片技术在食品检验的应用

2.21食品中残留农药、兽药和抗生素的分析

目前农药、兽药和抗生素在食品生产和加工过程中广泛使用。各类禽肉中普遍检出各类兽药和抗生素的残留,主要包括有盐酸克伦特罗(瘦肉精)、青霉素、氯霉素和磺胺二甲嘧啶等。蔬菜和水果的生产加工中也普遍存在着农药残留的状况。目前用于农药、兽药和抗生素残留检测的方法主要有生物化学技术、气相色谱法和高效液相色谱法和ELISA等。生物化学方法作为传统方法一直起到巨大的作用,但由于现在食品生产加工技术和生物技术的飞跃发展,该技术暴露出了明显的过程复杂、速度慢和精确度低的缺点;气相色谱法和高效液相色谱法灵敏度较高,但存在前处理过程复杂、速度慢、仪器化程度高等不足;微生物法简便,但灵敏度和特异性低;ELISA特异性高,检测限低,但检测组分单一,不适合多组分同时检测。

而基于竞争免疫反应原理的蛋白质芯片测定方法相对于以上各种方法具有高通量、并行性、多组分同时测定、灵敏度高、特异性强等诸多优点。北京博奥生物芯片公司已开发基于免疫原理的蛋白质芯片和配套的样品制备扫描和检测装置,可用于重点兽药残留的检测[5]。军事医学科学院已成功地制作了检测农药阿特拉津半抗原的蛋白质芯片和检测罂粟碱的蛋

白质芯片,最低检测限分别为0.001 g/mL和0.01μg/mL[6]。左鹏采用蛋白芯片的方法检测食品中的氯霉素和磺胺二甲嘧啶残留,充分体现出了该方法快速、高通量、并行性等特点[7]。

2.22 食品中污染病原菌和生物毒素的检测

食品卫生检验中微生物和生物毒素的检测一直都是重点。由于不同食品中致病微生物的种类繁多且复杂,带来了检测的困难,用单一的生物化学方法或ELISA检测都有着检测种类单一、处理复杂的缺点,特别是在遇到突发的罕见微生物污染时,传统的检测方法这些缺点体现的很明显。而蛋白芯片以其高精度、高通量、快速的特点几乎可以在很短的时间内将常见的的微生物都检测出来.

生物毒素和致病微生物蛋白芯片是利用抗原/抗体的特异性反应原理进行检测的。该类蛋白质芯片所固定的配基是单克隆抗体,因此,制备芯片的原料就是可以是所有可能的致病

菌(甚至包括其不同种、菌株)所分泌的特定毒素或其保守基因表的蛋白。用事先实验设计、验证好的单克隆抗体按一定规律点印在芯片上制作蛋白质芯片,就可以制成需要的蛋白质芯片。需要说明的一点是,利用蛋白芯片进行检测时,样品也可以是未经提纯的样品液,但由于样品中存在的其它物质的影响,可能出现假阳性结果,因此在对样品进行适当必要的提取、纯化等预处理是必要的。

2.23转基因食品的检测

蛋白质芯片通过设计不同的探针阵列、使用特定的分析方法可使该技术具有高通量、微型化、自动化和信息化的特点,是转基因食品检测的方向。转基因食品蛋白质芯片可以将待检的蛋白质固定于玻片上制成检测芯片,可以对一个基因的信号通路上下游蛋白同时进行分析,为研究新的蛋白对人体免疫系统影响机理提供完整的技术资料。通过分析确定该类转基因食品对人体的危害。非常适合于转基因作物及加工品检测,使之具有广阔发展前景。

2.3蛋白质芯片技术在传染病检测中的应用

相比细菌引起的传染病而言,病毒性传染病具有更大的威胁。由于病毒病没有特效药进行治疗,因此,病毒性传染病的早期确诊对于人或动物的及时治疗及相应措施的实施至关重要。

2.31 对SARS的检测

SARS ,即严重急性呼吸系统综合征,是由冠状病毒引起的一种人类传染病,曾在2003年给世界造成很大的经济损失。Zhu H等[8]用酵母表达系统表达SARS病毒的全基因组,用表达产物制作蛋白芯片进行SARS的诊断,发现所表达的SARS病毒的N蛋白的C末端及N蛋白的全长作为诊断抗原时,有很高的反应性,该片段富含一段短的赖氨酸序列,是SARSV所独有的,显示出很高的抗原反应性。通过比较发现,其敏感性与ELISA相当,但特异性要比ELISA高。

通过将血清样本重复3次,其重复性能达到98%。特异性与间接荧光相比稍差,可能与血清样品的稀释度有关,间接荧光方法的血清稀释度是1∶10,而蛋白芯片的为1∶200,显示出蛋白芯片中的血清用量更少。

2.32对禽流感的检测

禽流感不仅是禽类养殖中的重大威胁,而且已成为人类健康的一个重大隐患,目前东南

亚国家死于禽流感的人数在不断增加,我国也有禽流感病毒感染死亡的病例。石霖等[9]制备了可以同时鉴别诊断禽流感(AI)、新城疫(ND)2种禽病血清抗体的可视化蛋白芯片。抗原来自于超速离心法和蔗糖密度梯度法纯化的2种病毒蛋白抗原,芯片与待检血清杂交后,再与胶体金标记的二抗杂交,银染显色后根据灰度值来判断结果。结果显示其芯片无交叉反应,而且呈现较强的杂交信号。与琼扩(AGP)抗体检测方法相比,检测灵敏度是AGP方法的400

倍以上。同时他的另外一个研究可以同时检测4种禽类疾病,大大提高了工作效率[10]。

2.33对乙肝病毒的检测

乙肝病毒的检测应用ELISA检测时间长,操作复杂,需要分别对几种抗体和抗原进行检测。将几种方法合并将会使该病毒的检测时间缩短,大大提高工作效率。董亚芳等[11]通过研究实现了此功能,其采用PVDF膜制备不同的蛋白质芯片,以辣根过氧化物酶标记抗体,结合酶联免疫反应,检测乙肝病毒素面抗原(HBsAg)、表面抗体(HBsAb),乙肝病毒e抗原(HBeAg)、e抗体(HBeAb)。结果显示,所制备的蛋白质芯片可检测到微量乙肝病毒抗原、抗体的存在,其中HBsAg、HBsAb、HBeAg、HBeAb的最低可检测浓度分别为11、4.8、2.1、18μg/mL,而且两种抗原或两种体间并无交叉反应。此法制备芯片需3.5 h,而检测过程仅需20 min,且结果直接可用肉眼观察。

3.蛋白质芯片的问题与展望

蛋白质芯片技术最近几年的发展极为迅速,已被证明是整个基因组研究和大规模发现研究的有力工具,越来越多的应用实例证明了蛋白质芯片的广阔应用前景及其市场价值。但目前的蛋白质芯片技术也存在一些问题:(1)目前大多数来于cDNA文库的克隆体系不能通过正确地阅读框架编码蛋白质;或者不能正确表达产生具有氨基酸全序列的蛋白质;或者缺少活性必需的翻译后修饰;或者通过细菌表达的蛋白质不能形成正常的空间构象,这些都将直接影响有关蛋白质功能的研究。(2)蛋白质芯片技术本身面临着亟待解决的问题,包括:什么样的片基表面化学分子可以高亲和性、高特异性、高选择性地固定阵列分子;蛋白质在点样过程中如何保持活性;如何选择适当的荧光标记程度以避免降低蛋白质活性或者造成信号的遗失;如何优化固定阵列分子的条件;如何选择最适的芯片保存条件等。(3)目前蛋白质芯片在灵敏度、特异性,可重复性方面还无法完全达到一些实验的要求。(4)由于生物细胞中蛋白质的多样性和功能的复杂性,目前的蛋白质芯片在多样品并行处理能力,摄取蛋白质的数目和种类,数据处理和资料分析的软硬件设备方面还有待进一步提高。(5)蛋白质芯片还不能完全做到试验样品微量化,使得一些研究由于样品来源不足(如从少量组织样本中寻找肿瘤标记)而受限。(6)目前的检测方法或者标记困难,检测灵敏度低,或者需要昂贵的检测仪器和苛刻的实验条件。这些问题不仅在某些程度上限制了蛋白芯片技术的发展,还会直接影响该技术临床应用的进程。

目前,各芯片技术开发商针对上述问题加强相关技术研发,创立了早期检测研究网络(early detec-tion research network,EDRN),美国国家癌症研究所在生物标记物研究中发挥了领导作用。这一网络将学术界和生产部门的专家联合起来,以加速生物标记物的研究和论证。它为蛋白质组学加快已发现的蛋白标记物转化为临床早期诊断工具和风险评估提供了公共平台。我们有理由相信,不断改进的蛋白质芯片技术将逐步实现它对蛋白质组学、医学研究、药物开发和临床诊断等的巨大推动作用,而各种不同途径的数据整合也必将会不断加深我们对生命的理解。

参考文献:

[1] 杨洋,汤华.液相芯片技术在检验医学和生物医学中的应用[J].中国生物化学与分子生物学报, 2007,23 (4) :256-261.

[2] Ruochun Huang,Ying Lin, Lis Flowers,et al. Molecular profiling of giogenic factors from gynecologic al cancer patients’plasma usinginnovative protein rray technology[ J]. AACR Meeting Abstracts,2004.

[3] Laura Smith,Mark B.Watson, Sara L.O’Kane,etal. The analysis of oxorubicin resistance in human breastcancer cellsusingantibodymicroarrays[J].MolCancerTher, 2006, 5(8): 2115-2210.

[4]KN Mendes, D Nicoric,i D Cogdel,let al. Analysis of signaling athways in 90 cancer cell lines by protein lysate array[ J]. J Pro-eome Res, 2007, 6(7): 2753-2767.

[5]邢婉丽,程京.生物芯片技术[M].1北京:清华大学出版社,2004

[6]陈福生,高志贤,王建华.食品安全检测与现代生物技术[M].北京:化学工业出版社,2004

[7]左鹏,叶邦策.蛋白芯片法快速测定食品中氯霉素和磺胺二甲嘧啶残留[J].食品科学,2007,Vol.28,No.02.254~257

[8] Zhu Heng, Shaohui Hu, Ghil Jona, et al.Severe acute respir- tory syndrome diagnostics using a coronavirus protein mi- roarray[J]. PNAS, 2006,

103(11):4011-4016.

[9] 石霖,王秀荣,杨忠苹,等.禽流感、新城疫可目视化诊断蛋白芯片的制备及初步应用[J].中国预防兽医学报,2009,31(1):60-64.

[10] 石霖,王秀荣,杨忠苹,等.4种禽病毒抗体可视化蛋白芯片的制备及应用[J].中国

农业科学,2009,42(4):1413-1420.

[11] 董亚芳,应贝丽,崔振玲,等.蛋白质芯片的制备及其在检测乙肝病毒中的应用[J].生物技术,2002,12(6):23-24

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

蛋白质组学与分析技术课复习思1考

蛋白质组学与分析技术课复习思考 一、名词解释 1、蛋白质组学: 蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理: 根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩(减少体积) 和稳定样品(去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略 在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。5、离子交换色谱: 离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱 吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增 PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR 的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA拆开;2)在较低的温度下使

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.360docs.net/doc/023883216.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

基于质谱的蛋白质组学分析.

基于质谱分析的蛋白质组学 在21世纪,生命科学的研究进入了后基因组时代,蛋白质组学作为其中的一个重要分支于20世纪90年代中期应运而生。由于蛋白质的复杂性,传统的蛋白质鉴定方法如末端测序等已无法满足蛋白质组学研究中的一系列需要。因此,质谱技术作为蛋白质组学研究的一项强有力的工具日趋成熟,并作为样品制备和数据分析的信息学工具被广泛地应用。质谱技术具有灵敏度、准确度、自动化程度高的优点,能准确测量肽和蛋白质的相对分子质量,氨基酸序列及翻译后修饰、蛋白质间相互作用的检测[1],因此质谱分析无可争议地成为蛋白质组学研究的必然选择。 1. 蛋白质组学 蛋白质组学(proteomics )是从整体水平上研究细胞内蛋白质的组成、活动规律及蛋白质与蛋白质的相互作用,是功能基因组学时代一门新的科学。包括鉴定蛋白质的表达、修饰形式、结构、功能和相互作用等。根据研究目的,蛋白质组学可以分为表达蛋白质组学、结构蛋白质组学和功能蛋白质组学。表达蛋白质组学用于细胞内蛋白样品表达的定量研究。以绘制出蛋白复合物的结构或存在于一个特殊的细胞器中的蛋白为研究目的的蛋白质组学称为结构蛋白质组学,用于建立细胞内信号转导的网络图谱并解释某些特定蛋白的表达对细胞的作用[2]。功能蛋白质组学以细胞内蛋白质的功能及蛋白质之间的相互作用为研究目的,通过对选定的蛋白质组进行研究和分析,能够提供有关蛋白质的磷酸化、糖基化等重要信息。 蛋白质组学研究的核心就是能够系地的鉴定一个细胞或组织中表达的每一个蛋白质及蛋白质的性能。蛋白质组学的主要相关技术有双向凝胶电泳、双向荧光差异凝胶电泳、质谱分析等[2]。由于蛋白质的高度复杂性和大量低丰度蛋白质的存在,对分析技术提出了巨大挑战,生物质谱技术则是适应这一挑战的必然选择。 2. 生物质谱技术

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

蛋白质组学复习资料

蛋白质组学复习资料 一、名词解释 1、蛋白质组学:蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理:根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩 (减少体积) 和稳定样品 (去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略:在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。 5、离子交换色谱:离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱:吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增:PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA 拆开; 2)在较低的温度下使引物与靶DNA互补; 3)在中间温度下,在DNA多聚酶作用下,引物按模板DNA延长。典型的PCR包括30~50循环,如此重复循环,使被扩增的靶核苷酸以几何级数扩增。 8、基因组文库 基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆这总和。 广义的基因文库指来于单个基因组的全部DNA克隆,理想情况下应含有这一基因组的全部DNA序列(遗传信息),这种基因文库常通过鸟枪法获得。 狭义的基因文库有基因组文库和cDNA文库之分。基因文库可用于研究基因的结构、功能和筛选基因工程的目的基因。 9、cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA 文库。真核生物基因组DNA庞大,复杂度是mRNA和蛋白质的100倍左右,而且含有大量的重复序列,和不被表达的间隔子。这是从染色体DNA出发材料直接克隆目的基因的主要困难。而从mRNA出发的cDNA克隆比基因组克隆要简单得多。 10、基因芯片 基因芯片又叫DNA芯片(DNA chip),DNA微阵列(DNA microarray), DNA集微芯片(DNA microchip),寡核苷酸阵列(oligonucleotide array)。 是一种将核酸分子杂交原理与微电子技术相结合而形成的高新生物技术。 将靶标样品核酸或探针中的任一方按阵列形式固定在固相载体(硅片、尼龙膜、聚丙烯膜、硝酸纤维素膜、玻璃片等)上,另一方用荧光分子标记后,加样至微阵列上杂交,然后用荧光扫描或摄像技术记录,通过计算机软件分析处理,获得样品中大量的基因序列和表达信息。 11、基因敲除:基因敲除(gene knock out),又称基因打靶(gene targeting),是指用外源的DNA与受体细胞基因组中顺序相同或非常相近的基因发生同源重组,整合至受体细胞基因组中并得以表达的一种外源DNA导入技术。对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因敲除,或用其他顺序相近基因取代,然后从整体观察实验动(植)物,推测相应基因的功能。 12、同源建模:是一种蛋白质结构预测方法,具体指是利用同同源蛋白质结构为模板来预测未知蛋白质的结构。同源性大于50%时,结果比较可靠;30~50%之间,其结果需要参考其它蛋白的信息。同源性小于30%时,人们一般采用折叠识别方法。同源性更小时,从无到有法更有效。 13、Gene:合成有功能的蛋白质或RNA所必需的全部DNA(部分RNA病毒除外),即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。 14.genome:细胞或生物体中,一套完整单体的遗传物质的总和,即某物种单倍体的总DNA。对于二倍体高等生物来说,其配子的DNA总和即一组基因组,二倍体有两份同源基因组。 15.Protein:生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。 16.exon:外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质。 17.蛋白质组学研究的两条途径:一条是类似基因组学的研究,即力图"查清"人类大约3万到4万多基因编码的所有蛋白质,建立蛋白质组数据库,即组成蛋白质组学研究;另一条途径,则是着重于寻找和筛选引起2个样本之间的差异蛋白质谱产生的任何有意义的因素,揭示细胞生理和病理状态的进程与本质,对外界环境刺激的反应途径,以及细胞调控机制,同时获得对某些关键蛋白的定性和功能分析,即比较蛋白质组学研究。 18.组成蛋白质组学研究(结构蛋白质组学) 这是一种针对有基因组或转录组数据库的生物体或组织、细胞,建立其蛋白质或亚蛋白质组(或蛋白质表达谱)及其蛋白质组连锁群的一种全景式的蛋白组学研究,从而获得对有机体生命活动的全景式认识。 应该认识到,全基因组研究的发端和升温,是由于大规模基因组测序技术的实现和其后高通量的基因芯片技术的发展所推动的。而蛋白质组迄今还不具备相应的技术基础,且大规模的高通量DNA研究是建立在4种碱基及其配对性质的相对单一和简

蛋白质组学研究的基本步骤

请简述蛋白质组学研究的基本步骤 1.蛋白质样品的制备:蛋白质样品的制备是蛋白质组学研究的首要环节,也是最为重要的部分。蛋白质样品的质量直接影响到科学研究的真实性和可信度。 2.蛋白质的分离:双向凝胶电泳技术是目前最基础和常用的蛋白质分离方法,它能将数千种蛋白质同时分离与展示的分离技术。双向电泳分为等电聚焦电泳和SDS-PAGE两个步骤,即先进行等电聚焦电泳,按照pI的不同将蛋白分离,然后再进行SDS-PAGE按照分子量的大小不同对蛋白进行分离。IPG胶条的应用,大大提高了双向电泳的重复性。 3. 蛋白质双向电泳凝胶的染色。目前双向电泳凝胶的染色的方法有3种,分别为考马斯亮蓝染色法、银染法和荧光染色法。考马斯亮蓝染色法,操作简便,无毒性,染色后的背景及对比度良好,与下游的蛋白质鉴定方法兼容,但灵敏度较低,可以检测到30~100 ng蛋白质。银染法是一种较为流行的染色方法,银染成本较低,灵敏度高,可检测少到2~5ng的蛋白。荧光试剂显色对蛋白质无固定作用,与质谱兼容性好,而其灵敏度与银染相仿,但线性范围要远高于银染,这使二维电泳分离蛋白质的荧光检测受到普遍关注和应用。 4.双向电泳凝胶图像的采集与分析:图像采集系统通过投射扫描根据吸光度的大小获碍蛋白质点的光密度信息。一般来说,该光密度值与蛋白质点的表达丰度成正比,以便于软件分析时的定量比较。完成图像采集后采用ImageMaster等图像分析软件进行分析。分析步骤:蛋白质点检测、背景消减、归一化处理、蛋白质点匹配。 5.蛋白质鉴定:蛋白质鉴定是蛋白质组学研究中的核心内容。目前蛋白质鉴定技术主要有Edman 降解法测序、质谱。质谱是目前最常用的蛋白质鉴定方法。质谱技术的基本原理是带电粒子在磁场或电场中运动的轨迹和速度依粒子的质量与携带电荷之比质荷比( m/z) 的不同而变化,可以据此来判断粒子的质量和特性。质谱完成后利用蛋白质的各种属性参数如相对分子质量、等电点、序列、氨基酸组成、肽质量指纹谱等在蛋白质数据库中检索,寻找与这些参数相符的蛋白质。

基因组学和蛋白质组学之间的关系

基因组学与蛋白质组学之间的关系 1 基因组学概述 基因组学,研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学)和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 基因组学能为一些疾病提供新的诊断,治疗方法。例如,对刚诊断为乳腺癌的女性,一个名为“Oncotype DX”的基因组测试,能用来评估病人乳腺癌复发的个体危险率以及化疗效果,这有助于医生获得更多的治疗信息并进行个性化医疗。基因组学还被用于食品与农业部门。 基因组学的主要工具和方法包括:生物信息学,遗传分析,基因表达测量和基因功能鉴定。 2 蛋白质组学概述 蛋白质组学(Proteomics)一词,源于蛋白质(protein)与基因组学(genomics)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。蛋白质组本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念最早是由Marc Wilkins 在1995年提出的。 3 两者之间的关系 90年代初期开始实施的人类基因组计划,在经过各国科学家近10年的努力下,已经取得了巨大的成就。不仅完成了十余种模式生物(从大肠杆菌、酿酒酵母到线虫)基因组全序列的测定工作,还有望在2003年提前完成人类所有基因的全序列测定。那么,知道了人类的全部遗传密码即基因组序列,就可以任意控制人的生老病死吗?其实并不是这么简单。基因组学虽然在基因活性和疾病的相关性方面为人类提供了有力根据,但实际上大部分疾病并不是因为基因改变所造成。并且,基因的表达方式错综复杂,同样的一个基因在不同条件、不同时期可能会起到完全不同的作用。关于这些方面的问题,基因组学是无法回答的。所以,随着人类基因组计划的逐步完成,科学家们又进一步提出了后基因组计划,蛋白质组研究是其中一个很重要的内容。 目前,在蛋白质功能方面的研究是极其缺乏的。大部分通过基因组测序而新发现的基因编码的蛋白质的功能都是未知的,而对那些已知功能的蛋白而言,它们的功能也大多是通过同源基因功能类推等方法推测出来的。有人预测,人类基因组编码的蛋

蛋白质组学复习重点

蛋白质组学复习重点 1.名词解释(掌握名词的中英文) 1、蛋白质组(proteome)是指一个基因组、一种细胞或组织表达的所有蛋白质。 2、蛋白质组学 Proteomic 蛋白质组学是通过大规模研究蛋白的表达水平变化、翻译后修饰、蛋白质与蛋白质之间的相互作用,以获取蛋白质水平上疾病变化、细胞进程及蛋白质网络相互作用的整体综合信息的科学研究,是生命科学研究的热点领域之一。 3、电喷雾电离(Electrospray Ionization,ESI) 电喷雾离子化是在质谱系统离子源毛细管的出口处施加一 高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。 4、噬菌体展示技术 (phage display technology) 一种将外源蛋白或多肽的DNA序列插入到噬菌体外壳蛋白 结构基因的适当位置,使外源基因随外壳蛋白的表达而表达,同时,外源蛋白随噬菌体的重新组装而展示到噬菌体表面的生物技术。 5、双向电泳(two-dimensional electrophoresis,2-DE) 指的是按照蛋白质的两个性质即“等电点”和“分子量”进行二维电泳分离。过程主要是先进行等电聚焦电泳,按照等电点分离,然后再进行SDS-PAGE,按照分子大小分离,经染色得到的电泳图是个二维分布的蛋白质图。 6、等电点(isoelectric point) 在某一pH的溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,呈电中性,此时溶液的pH 称为该氨基酸或蛋白质的等电点。 7、质谱分析(mass spectrometry,MS) MS是在高真空系统中测定样品的分子离子及碎片离子质量,以确定样品相对分子质量及分子结构的方法。 8、生物信息学(bioinformatics) 生物信息学是综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量数据所包含的生物学意义的新兴交叉学科,包含了生物信息的获取、处理、存储、发布、分析和解释等在内的所有方面。 9、酵母双杂交(Yeast two hybrid) 酵母双杂交系统是将待研究的两种蛋白质的基因分别克隆 到酵母表达质粒的转录激活因子(如GAL4等)的DNA结合结构 域基因和转录激活因子(如GAL4等)激活结构域基因,构建成 融合表达载体,从表达产物分析两种蛋白质相互作用的系统。10、肽指纹图谱(Peptide mass fingerprinting) 理论上每个蛋白消化后有不同的肽段,这些肽段的质量(分子量)就是这个蛋白的肽指纹图谱。用质谱可以检测出其中所有肽段的质量,然后将这些质量与数据库中所有蛋白指纹进行匹配,就可确定一种未知蛋白。 11、表面等离子共振(surface plasmon resonance,SPR) 表面等离子共振(SPR)是一种物理现象,当入射光以临界角入射到两种不同折射率的介质界面(比如玻璃表面的金或银镀层)时,可引起金属自由电子的共振,由于电子吸收了光能量,从而使反射光在一定角度内大大减弱。其中,使反射光在一定角度内完全消失的入射角称为SPR角。SPR随表面折射率的变化而 变化,而折射率的变化又和结合在金属表面的生物分子质量成正比。因此可以通过获取生物反应过程中SPR角的动态变化,得 到生物分子之间相互作用的特异性信号。 2.简答题 1、please describe the principles of some kinds of protein post-translational modification? 蛋白翻译后修饰 磷酸化(phosphorylation):指由蛋白质激酶催化的把ATP 或GTP γ位的磷酸基转移到底物蛋白质氨基酸残基上的过程, 是生物体内一种普遍的调节方式。 糖基化 (glycosylation):指在酶的控制下,蛋白质附加上糖类的过程,发生于内质网。在糖基转移酶作用下将糖转移至蛋白质,和蛋白质上的氨基酸残基形成糖苷键。 甲基化(methylation):一般都是指精氨酸或赖氨酸在蛋白质序列中的甲基化。典型的甲基化发生在染色质组蛋白上。 乙酰化(acetylation):指在乙酰基转移酶的作用下,在蛋白质赖氨酸残基上添加乙酰基的过程,是细胞控制基因表达,蛋白质活性或生理过程的一种机制。 泛素化(ubiquitination):泛素(一类低分子量的蛋白质)分子在一系列特殊的酶作用下,将细胞内的蛋白质分类,从中选出靶蛋白分子,并对靶蛋白进行特异性修饰(主要是降解)的过程。 2、Please describe the concept of ITRAQ. Isobaric tag for relative and absolute quantitation.相对和绝对定量的同位 素标记 是定量蛋白质组学常用的高通量筛选技术,利用多种同位素试剂标记蛋白多肽N末端或赖氨酸侧链基团,经高精度质谱仪串联分析,可同时比较多达8种样品之间的蛋白表达量。 3、双向电泳基本流程 蛋白质样品的制备:来源于固体组织或培养的细胞,进行细胞裂解及蛋白质变性。 第一向:蛋白质样品上样,进行等电聚焦分离, 第二向:制备凝胶;垂直板SDS-PAGE电泳 考马斯蓝染色或者银染染色、扫描、挖点 4、液相芯片系统与ELISA方法相比较的优点? 灵活性好,可适用于各种蛋白质分析,可以接受实验室已有的实验方案,使用者可以自行设计分析方案,也可使用成套试剂盒。 通量大,可对同一样本中的多种不同目的分子同时进行分析;在35-60分钟内可对96个不同样本进行检测 液相环境更有利于保持蛋白质的天然构象,也更有利于探针和被检测物的反应 灵敏度高,信噪比好,只需要微量的样品即可进行检测 操作简便,耗时短,成本低 5、噬菌体展示实验的设计流程 将多肽或蛋白质的编码基因或目的基因片段克隆入噬菌体 外壳蛋白结构基因的适当位置,在阅读框正确且不影响其他外壳蛋白正常功能的情况下,使外源多肽或蛋白与外壳蛋白融合表达,融合蛋白随子代噬菌体的重新组装而展示在噬菌体表面。 肽库与固相上的靶蛋白分子一起孵育,洗去未结合的游离噬菌体 洗脱下与靶分子结合吸附的噬菌体,洗脱的噬菌体感染宿主细胞后经繁殖扩增,进行下一轮洗脱,经过3轮~5轮的“吸附-洗脱-扩增”后,与靶分子特异结合的噬菌体得到高度富集。 6、酵母双杂交的基本原理及应用? 原理:利用杂交基因激活报道基因的表达,从而探测蛋白-蛋白的相互作用; 应用:用于发现新的蛋白质和蛋白质新功能 在细胞体内研究抗原和抗体的相互作用 利用酵母双杂交筛选药物的作用位点以及药物对蛋白质之 间相互作用的影响 利用酵母双杂交建立基因组蛋白连锁图 7、简述蛋白质组学的基本概念及其研究内容? 蛋白质组是指一个基因组、一种细胞或组织表达的所有蛋白质,而蛋白质组学是通过大规模研究蛋白的表达水平变化、翻译后修饰、蛋白质与蛋白质之间的相互作用,以获取蛋白质水平上疾病变化、细胞进程及蛋白质网络相互作用的整体综合信息的科学研究,是生命科学研究的热点领域之一。 8、简述蛋白质组信息学的主要研究内容? 蛋白质序列与结构信息学:利用蛋白质组信息学数据库,将获得的蛋白序列通过序列比对,可以获得相应的结构信息,进而推测其功能或者鉴定其是否为蛋白质家族的新成员。 蛋白质相互作用信息学:蛋白质相互作用网络的研究、蛋白质相互作用方法学的研究、蛋白质相互作用模拟的研究等。

蛋白质组学主要研究技术

蛋白质组学主要研究技术 目前蛋白质组学的研究手段主要依靠分离技术、质谱技术和生物信息学的发展。分离技术要求达到高分辨率和高重复率,质谱技术主要包括MALDI-TOF、Q-TOF与MS/MS等质谱设备以及样品的预处理,生物信息学则利用算法的改进和数据库查询比对的完善提高数据结果的判断。 1. 蛋白质组学的分离技术 目前蛋白质组学研究广泛采用的是双向电泳技术。高通量性、对实验要求低、操作简便快速是双向电泳具有的最大优点,它特别适合大规模的蛋白质组学研究。尽管当前蛋白质的分离技术多种多样,但目前仍然没有一种可以彻底地取代双向电泳技术。 从1975年,O’Farrells[8]等将IEF与SDS-PAGE结合创立了2D-PAGE电泳技术以来。双向电泳技术在多个方面都得到了提高和改进:(1) IPG胶条的使用。传统的载体两性电解质等电聚焦存在上样量小、长时间电泳过程中pH梯度不稳定、阴极漂移现象及其导致的碱性蛋白损失、不同批次间重复性差等问题。IPG 胶条的使用使这些问题得到了极大的改善,这使蛋白质双向电泳数据库的建立成为现实;(2) 样品制备:蛋白质样品的质量好坏从根本上决定了电泳最终结果的好坏。双向电泳的样品制备有两个关键点,即如何使样品中蛋白质充分溶解以及尽可能减少影响等电点聚焦的杂质,特别是带电杂质。采用超声或核酸酶处理的方法可以去除核酸,超速离心可除去脂类和多糖,透析、凝胶过滤或沉淀/重悬法可以降低盐浓度。近来的研究发现磺基甘氨酸三甲内盐(ASB14-16)的裂解效果最好,而2mol/l的硫脲和4%的表面活性剂CHAPS的混合液能促使疏水蛋白从IPG到第二相胶的转换。以三丁基膦(TBP)取代β-巯基乙醇或DTT,可以完全溶解链间或链内的二硫键,增强了蛋白质的溶解度,并促进蛋白质向第二向的转移。 另外,双向电泳中对低丰度蛋白的分离识别比较困难,除了显色技术的局限外,还存在容易被高丰度蛋白掩盖的问题,这样得到的蛋白质图谱很不完整,经常会忽略那些在生命过程中发挥重要功能的微量活性分子。解决方案包括增加上样量、对样品进行分级纯化从而富集低丰度蛋白、采用更高灵敏度的显色方法,

蛋白质组学常见问题解答(参考资料)

1、iTRAQ和label-free所用的搜库软件及其版本、定量分析软件是否一致? 答:搜库软件是不一致的:iTRAQ数据采用Mascot(2.3.0);label-free则是maxquant(1.4.1.2)。 2、iTRAQ/TMT和Label-free技术都有哪些优缺点? 答:(1)定量准确性:iTRAQ/TMT的定量准确性和重现性要明显优于Label-free,Label-free的样本之间不能直接混合,导致定量的结果受到的影响因素多,因此定量结果的准确度较低; (2)鉴定通量:Label-free通量相对较高,而iTRAQ/TMT由于标记基团的影响,鉴定通量较label-free 低; (3)修饰组学:label-free定量,修饰肽段的富集(即IP)是各组分开进行的,很可能造成富集的不平行,最终造成定量不准确。因此,我们通过加入内标肽段来归一化以减少富集步骤引入的误差。而iTRAQ/TMT标记的修饰组,修饰肽段的富集是各组标记、混合后同时进行的,所以不会存在富集的不平行。因此,修饰组的定量,iTRAQ/TMT方法的定量准确性优于label-free; (4)其它:目前泛素化修饰定量组学只能用label-free来做。。 3、常用的蛋白质翻译后修饰参考数据库有哪些?

4、HPLC分级的标准及作用是什么?是否组分越多通量越高? 答:HPLC分级有两个目的:1.降低每个组分中蛋白的复杂度,利于质谱鉴定;2.增加每个组分中每个蛋白的含量,同样利于质谱的鉴定。组分的多少和样品的复杂程度有关,如果分级数太少,没有达到降低样品复杂度的作用,如果分级数目太多,反而会降低每个组分中每个蛋白的含量,并且组分越多蛋白损失越大,因此分级太少和太多都不利于质谱鉴定,我们公司的分级数目是经过系统考察得到的最优选择。 5、公司目前使用的蛋白浓度测定方法是什么? 答:我们的蛋白浓度测定使用GE公司的2D Quant kit完成,该试剂盒可耐受8 M urea和2% SDS,明显优于其它浓度测定方法。并且我们在浓度测定后会取20μg蛋白通过SDS-PAGE来确定蛋白提取是否良好,浓度测定是否准确。 6、公司采用何种蛋白酶进行蛋白酶解?

蛋白质组学检测及分析方案

iTRAQ检测及数据分析

目录 一、项目简介 (3) 二、实验方案 (3) 2.1样品准备 (3) 2.2实验流程 (3) 2.3实验结果 (4) 三、分析方案 (4) 3.1原始数据预处理及均一化 (4) 3.2差异蛋白筛选 (4) 3.3层次聚类分析 (5) 3.4差异蛋白G ENE O NTOLOGY分析 (6) 3.5差异基因P ATHWAY分析 (6) 3.6差异蛋白N ETWORK分析 (7) 四、费用概算 (7) 五、时间概算 (7)

iTRAQ检测及数据分析方案 一、项目简介 样品情况: 对比情况:针对实验产出的原始数据进行生物信息学处理。组间相互对比筛选差异蛋白,并对差异蛋白进行后续生物信息学数据分析。具体内容见如下方案: 二、实验方案 2.1 样品准备 如果送样为溶液,则溶液中一般不要有SDS、CHAPS、Triton X-100、NP40及吐温 20、40等系列的去污剂。盐浓度小于50mM。 样品可以直接寄送未处理的组织,组织样品需要>100Mg,如蛋白已经提取,则需要蛋白量>200ug。 2.2 实验流程 同位素标记相对和绝对定量(iTRAQ)技术是一种新的、功能强大的可同时对八种样品进行绝对和相对定量研究的方法。作为一种新的蛋白质绝对和相对定量技术,具有很好的精确性和重复性,并且弥补了DIGE及ICAT的不足。它可以结合非凝胶串联质谱技术,对复杂样本、细胞器、细胞裂解液等样本进行相对定量研究。

2.3 实验结果 我们的实验结果将由专业软件Protein Pilot 3.0 (ABI,USA) 进行展示: 鉴定到的该蛋白质的肽断相关信息 同一个group的蛋白质 上图选中绿色的肽断的质谱图信息 所选定蛋白质(上表绿色)的肽断信息 质谱图定量信息 三、分析方案 3.1 原始数据预处理及均一化 首先对原始检测数据进行预处理和均一化处理。使得数据达到后期统计学分析要求。 3.2 差异蛋白筛选 利用统计学方法筛选差异表达的蛋白。一般认为高丰度蛋白鉴定出多个肽段,低丰度蛋

相关文档
最新文档