集合的基本运算

合集下载

集合的基本运算

集合的基本运算


R


A B , R A B , A

0
0

2 3
2 3

7
7
10
10

R





R

A B ,

B .

x
x
0
2 3
7
10
x
0
2 3
7
10
x
问题:怎样才能增强条件的直观性呢?
连续数集——数轴
概念的巩固练习
例 4:图中U 是全集, A, B 是U 的两个子集,用阴影表示:
U A U B U A
B
B
概念的巩固练习
例 4:图中U 是全集, A, B 是U 的两个子集,用阴影表示:
(1) U A




U


B ;


(2) U A





U


B

.


问题:怎样增强条件的直观性呢?
概念的巩固练习


R

A B , R A B , A





R





R

A B ,

B .

解:
R

A x x 3 或x 7 ,
R
A
0
2 3
B x 2 x 3 或7 x 10 .
7
10
x
概念的巩固练习

高中数学-集合的基本运算(并集与交集)

高中数学-集合的基本运算(并集与交集)
AC B
A∪B
思考
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={5,8}
定义
一般地,由既属于集合A又属于集合B 的所有元素组成的集合叫做A与B的交集.
记作 A∩B 读作 A交 B
即 A∩B={x x∈A,且x∈B}
用Venn图表示如下:
AB
A∩B
性质
={x 1< x<2}
。 。。 。
-1 0 1 2 3
练习
1. 已知A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7}
且A∩B=C 求x,y的值及A∪B.
练习
2. 已知集合A={x -2≤x≤4}, B={x x>a}
①若A∩B≠φ,求实数a的取值范围; ②若A∩B≠A,求实数a的取值范围.
则A∩B= {等腰直角三角形}
例题
例2 设A={x x是A∩B= Φ
A∪B= {斜三角形}
例题 例3 设A={x -1< x < 2},B={x 1< x<3},
求A∪B , A∩B. 解: A∪B={x -1< x < 2}∪{x 1< x<3}
={x -1< x<3} A ∩ B={x -1< x < 2} ∩{x 1< x<3}
集合的 基本运算
并集与交集
思考
观察集合A,B,C元素间的关系: A={4,5,6,8}, B={3,5,7,8}, C={3,4,5,6,7,8}
定义
一般地,由属于集合A或属于集合B的 所有元素组成的集合叫做A与B的并集,
记作 A∪B 读作 A并 B
即A∪B={x x∈A,或x∈B}
用Venn图表示如下:

集合的四种基本运算

集合的四种基本运算

集合的四种基本运算稿子一嘿,亲爱的小伙伴们!今天咱们来聊聊集合的四种基本运算,超有趣的哟!先说并集吧。

这就像是把两个篮子里的水果都放到一个大篮子里。

比如集合 A 里有苹果、香蕉,集合 B 里有橙子、草莓,那 A 和B 的并集就是苹果、香蕉、橙子、草莓,都在一块儿啦,是不是很简单?再讲讲交集。

这个呀,就好比找两个篮子里都有的水果。

还是刚才那两个集合,要是只有香蕉同时在 A 和 B 里,那香蕉就是它们的交集。

然后是差集。

比如说集合 A 减去集合 B,就是把集合 A 里属于集合 B 的那些东西拿掉,剩下的就是差集。

就好像从 A 篮子里把和B 篮子一样的水果拿走。

说说补集。

假如我们有个大的集合 U,还有个小集合 A,那 A 在U 里的补集,就是在 U 里但不在 A 里的那些东西。

怎么样,集合的这四种基本运算是不是还挺好玩的?多练习练习,咱们就能熟练掌握啦!稿子二嗨呀,朋友们!今天咱们来好好唠唠集合的四种基本运算。

并集呢,你就想象成两个帮派合并,把两边的人都算上。

比如说一个帮派有、,另一个帮派有、赵六,那并集就是、、、赵六都在一起。

交集呢,这就像是两个帮派里都有的共同成员。

假设一个帮派喜欢武术,另一个帮派喜欢书法,而同时喜欢武术和书法的就只有小明,那小明就是这两个帮派的交集。

差集呢,好比一个帮派开除一些人。

比如原来的帮派有小陈、小周,开除了小陈,剩下的小周就是差集。

补集呢,就像是整个江湖是个大集合,其中一个门派是个小集合。

门派之外的那些江湖人士就是这个门派在整个江湖里的补集。

集合的这四种运算呀,其实不难,只要咱们多琢磨琢磨,很快就能搞明白的!加油哦!。

高中数学集合的基本运算

高中数学集合的基本运算

②若2a-1=-3,则a=-1, 此时A={1,0,-3},B={-4,-3,2},A∩B= {-3}, 综上可知a=-1. 点评:本题考查交集的定义,并考查集合中元 素的性质,注意分类讨论思想的运用,在确定集合 中的元素时,要注意元素的互异性这一属性以及是 否满足题意.
题型三 交集、并集性质的运用 【例3】 若A={x|x2+px+q=0,x∈R},B= {x|x2-3x+2=0,x∈R},A∪B=B,求p,q满足的 条件. 解:B={1,2},而A∪B=B,则A⊆B, 故A=∅或A={1},{2},{1,2}. ①若A=∅,则x2+px+q=0无解, 即Δ=p2-4q<0,∴p2<4q时,A⊆B. ②若A={1}, 则x2+px+q=0有两相等实根1, 显然p=-2,q=1, 即p=-2,q=1时,A⊆B.
误区解密 因没有明确描述法表示集合时的 代表元素而出错
【例4】 设集合A={y∈R|y=x2+1,x∈R},B ={y∈R|y=x+1,x∈R},则A∩B等于 ( ) A.{(0,2),(1,2)} B.{0,1} C.{1,2} D.{y∈R|y≥1}
错解
2 y=x +1 1:解方程 y=x+1
y=x+3 解析:由 y=3x-1 x=2 得 y= 5

y=x+3 ∴A∩B=x,y| y=3x-1 x=2 ={(2,5)}. =x,y| y=5
答案Байду номын сангаас{(2,5)}
4.已知Q={x|x是有理数},Z={x|x是整数}, 则Q∪Z=________. 解析:Q∪Z={x|x是有理数}∪{x|x是整数}= {x|x是有理数}=Q. 答案:Q
课堂练习
1、设A={x|-3<x<2},B={x|x<-1.5,或x>1.5}, 求:A∩B ,A∪B.

第10讲 集合的运算 (解析版)

第10讲 集合的运算  (解析版)

第10讲 集合的基本运算一、 集合的运算 (一)交集文字语言对于两个给定的集合A ,B ,由属于A 又属于B 的所有元素构成的集合,叫做A ,B 的交集,记作A ∩B ,读作“A 交B ”符号语言A ∩B ={x |x ∈A 且x ∈B }图形语言阴影部分为A ∩B .例如(1){}{}1,2,3,4,5,3,4,5,6,8A B ==,{}3,4,5AB =(2)}31|{<<=x x A ,}42|{<<=x x B ,}32|{<<=x x B A性质A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅∩A =∅,如果A ⊆B ,则A ∩B =A【例1】交集(1)已知集合A ={1,2,3},B ={-1,2},则A ∩B 等于( )A .{1}B .{2}C .{-1,2}D .{1,2,3} 【答案】B【解析】由题得A ∩B ={}2(2)已知A ={y |y ≤1},B ={x|x ≥0},则集合A ∩B 等于( )A .∅B .{x |x ≤1}C .{x |0≤x ≤1}D .{x |0<x <1} 【答案】C,利用数轴,容易得到答案。

这里注意,不少同学会认为是A 答案,为什么不对? (3)已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y )|x +y -1=0,x ,y ∈Z},则A ∩B =________. 【答案】{(0,1),(-1,2)}【解析】A ,B 都表示点集,A ∩B 即是由A 中在直线x +y -1=0上的所有点组成的集合,代入验证即可.(4)集合A ={x |2k <x <2k +1,k ∈Z},B ={x |1<x <6},求A ∩B ; (4)A ∩B ={x |2<x <3或4<x <5}.【变式1】(1)设集合{1,2,3,4}A =,{2,4}B =,则集合A B = .答案:(1)AB ={2,4}(2)集合A ={x |-2<x <3},B ={x |x ≤0或x >5},求A ∩B ; 答案:(2)A ∩B ={x |-2<x ≤0}.(3)集合A ={(x ,y )|y =x +2},B ={(x ,y )|y =x +3},求A ∩B . 答案:(3)A ∩B =∅.(4)设集合{}{}290,30A x x B x x a =-≤=+≥,且{}13A B x x ⋂=≤≤,则a =( )A .1-B .3-C .1D .3【答案】B 【分析】求出集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】{}{}29033A x x x x =-≤=-≤≤,3a B x x ⎧⎫=≥-⎨⎬⎩⎭,由{}13A B x x ⋂=≤≤,所以13a-=,即3a =-. 故选:B.(二)并集,阴影部分为A ∈B例如(1){}{}{}1,3,52,3,4,62,3,4,5,6=(2)}31|{<<=x x A ,}42|{<<=x x B ,}41|{<<=x x B A性质A ∈B =B ∈A ,A ∈A =A ,A ∈∅=∅∈A =A ,如果A ∈B ,则A ∈B =B .【例2(1) 设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4} 【答案】A【解析】∈A ={1,2,3},B ={2,3,4},∈A ∈B ={1,2,3,4}.故选A. (2) A ={x |-1<x <2},B ={x |x ≤1或x >3},求A ∈B . 【解析】如图:由图知A ∈B ={x |x <2或x >3}.(3)已知集合2{|20}A x x x =-≥,{|}B x x a =<,且A B =R ,则实数a 的取值范围是 . 【答案】2a ≥ 【分析】先求出集合A ,然后由条件A B =R 结合数轴可得答案. 【详解】由220x x -≥解得0x ≤或2x ≥,则{|0,A x x =≤或}2x ≥,又{|}B x x a =<,若A B =R , 则2a ≥.故选:D .(4)A ={(x ,y )|x =2},B ={(x ,y )|y =2}.求A ∈B ,并说明其几何意义.【解析】A ∈B ={(x ,y )|x =2或y =2},其几何意义是直线x =2和直线y =2上所有的点组成的集合.【变式2】(1)已知集合{}=23A x x -≤≤,{}240B x x x =-≤,则AB = .A .[]2,4-B .[]2,0-C .[]0,3D .[]4,3-【答案】A 【分析】先解出集合B ,再求A B .【详解】由{}240B x x x =-≤解得:{}04B x x =≤≤,所以A B =[]2,4-.故选:A(2)已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .解 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3},解不等式3>2m -1得m <2, 则B ={m |m <2}.用数轴表示集合A 和B ,如图所示,则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.(三)补集 (1)全集定义:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集.记法:全集通常记作U . (2)补集例如(1)}{1,2,3,4,5=U ,{3,4}=A ,{1,2,5}=A C U(2)}51|{<<=x x U ,}32|{<<=x x B ,,21|{≤<=x x A C U 或}53<≤x性质A ∈∈A =U ;A ∩∈A =∈;∈(∈A )=A .【例3】(1)设集合U ={1,2,3,4,5},集合A ={1,2},则A C U =________. 【答案】{3,4,5}(2)若全集U ={x ∈R|-2≤x ≤2},A ={x ∈R|-2≤x ≤0},求A C U 【解析】∈U ={x ∈R|-2≤x ≤2},A ={x ∈R|-2≤x ≤0}, ∈A C U ={x ∈R|0<x ≤2}.(3)设全集U ={x |x 是三角形},A ={x |x 是锐角三角形},B ={x |x 是钝角三角形},求A ∩B ,)(B A C U . 【解析】根据三角形的分类可知,A ∩B =∈,A ∈B ={x |x 是锐角三角形或钝角三角形},)(B A C U ={x |x 是直角三角形}.【变式3】(1)设U ={x |x 是小于9的正整数},A ={1,2,3},B ={3,4,5,6},求A C U ,B C U .【解析】根据题意可知,U ={1,2,3,4,5,6,7,8},所以A C U ={4,5,6,7,8},B C U ={1,2,7,8}. (2)已知集合U =R ,A ={x |x 2-x -2≥0},则A C R =________. 【答案】{x |-1<x <2}(四)集合运算的综合【例4】(1)已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________. 答案 {x |0<x <1} {x |0<x <1}解析 A ∪B ={x |x ≤0或x ≥1},∁U (A ∪B )={x |0<x <1}.∁U A ={x |x >0},∁U B ={x |x <1},∴(∁U A )∩(∁U B )={x |0<x <1}.(2)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )A .-1<a ≤2B .a >2C .a ≥-1D .a >-1 【答案】D【解析】因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1.故选D 。

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算(交集,并集,补集)非常全面的题型分类

集合间的基本运算一、并集(1)文字语言:由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集.(2)符号语言:A∪B={x|x∈A,或x∈B}.(3)图形语言;如图所示.二、交集交集的三种语言表示:(1)文字语言:由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集.(2)符号语言:A∩B={x|x∈A,且x∈B}.(3)图形语言:如图所示.三、并集与交集的运算性质题型一 并集及其运算例1 (1)设集合M ={4,5,6,8},集合N ={3,5,7,8},那么M ∪N 等于( ) A.{3,4,5,6,7,8} B.{5,8} C.{3,5,7,8} D.{4,5,6,8}(2)已知集合P ={x |x <3},Q ={x |-1≤x ≤4},那么P ∪Q 等于( ) A.{x |-1≤x <3} B.{x |-1≤x ≤4} C.{x |x ≤4}D.{x |x ≥-1} (3).已知集合=A {}31<≤-x x ,=B {}52≤<x x ,则B A ⋃=( )A .{}32<<x xB .{}51≤≤-x xC .{}51<<-x xD .{}51≤<-x x变式练习1 已知集合A ={x |(x -1)(x +2)=0};B ={x |(x +2)(x -3)=0},则集合A ∪B 是( ) A.{-1,2,3}B.{-1,-2,3}C.{1,-2,3}D.{1,-2,-3}2.若集合=A {}x ,3,1,=B {}2,1x ,B A ⋃={}x ,3,1,则满足条件的实数x 有( )A .1个B .2个C .3个D .4个题型二 交集及其运算例2 (1)设集合M ={m ∈Z |-3<m <2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2}D.{-1,0,1,2}(2)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A.{x |2<x ≤3} B.{x |x ≥1} C.{x |2≤x <3} D.{x |x >2}变式练习2(1)设集合A ={x |x ∈N ,x ≤4},B ={x |x ∈N ,x >1},则A ∩B =________. (2)集合A ={x |x ≥2或-2<x ≤0},B ={x |0<x ≤2或x ≥5},则A ∩B =________.(3).设集合=M {}23<<-∈m Z m ,{}31≤≤-∈=n Z n N ,则N M ⋂=( ) A .{}1,0 B .{}1,0,1- C .{}2,1,0 D .{}2,1,0,1-(4).集合=A {}121+<<-a x a x ,=B {}10<<x x ,若=⋂B A ∅,求实数a 的取值范围.题型三已知集合的交集、并集求参数例3已知集合A={x|2a≤x≤a+3},B={x|x<-1,或x>5},若A∩B=∅,求实数a的取值范围变式练习3设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则实数k的取值范围为________.例4设集合A={x|x2-x-2=0},B={x|x2+x+a=0},若A∪B=A,求实数a 的取值范围.变式练习4设集合A={x|x2-3x+2=0},集合B={x|2x2-ax+2=0},若A∪B =A,求实数a的取值范围.例5 (1)设集合A={(x,y)|x-2y=1},集合B={(x,y)|x+y=2},则A∩B 等于( )A.∅B.{53,13}C.{(53,13)} D.{x=53,y=13}(2)已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R},求A∩B.变式练习5(1)设集合A={y|y=x2-2x+3,x∈R},B={y|y=-x2+2x+10,x∈R},求A∪B;(2)设集合A ={(x ,y )|y =x +1,x ∈R },集合B ={(x ,y )|y =-x 2+2x +34,x ∈R },求A ∩B .6.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}. (1)若A ∩B =B ,求a 的取值范围; (2)若A ∪B =B ,求a 的值.课后练习 一、选择题1.设集合A ={-1,0,-2},B ={x |x 2-x -6=0},则A ∪B 等于( ) A.{-2} B.{-2,3} C.{-1,0,-2}D.{-1,0,-2,3}2.已知集合M ={x |-1≤x ≤1,x ∈Z },N ={x |x 2=x },则M ∩N 等于( ) A.{1} B.{-1,1} C.{0,1}D.{-1,0,1}3.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A.2个B.4个C.6个D.8个4.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于( )A.{x|x<-5或x>-3}B.{x|-5<x<5}C.{x|-3<x<5}D.{x|x<-3或x>5}三、解答题5.已知集合A={x|-2≤x≤5},B={x|2a≤x≤a+3},若A∪B=A,求实数a的取值范围.6.已知集合A={x|x2-px+15=0}和B={x|x2-ax-b=0},若A∪B={2,3,5},A∩B={3},分别求实数p,a,b的值.7.(1)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值;(2)若P={1,2,3,m},Q={m2,3},且满足P∩Q=Q,求m的值.四、全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.五、补集对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言为∁U A={x|x∈U,且x∉A}图形语言为六、补集的性质①A∪(∁U A)=U;②A∩(∁U A)=∅;③∁U U=∅,∁U∅=U,∁U(∁U A)=A;④(∁U A)∩(∁U B)=∁U(A∪B);⑤(∁U A )∪(∁U B )=∁U (A ∩B ).题型一 补集运算例1 (1)设全集U ={1,2,3,4,5},集合A ={1,2},则∁U A 等于( ) A.{1,2} B.{3,4,5} C.{1,2,3,4,5}D.∅(2)若全集U =R ,集合A ={x |x ≥1},则∁U A =________.变式练习 1 已知全集U ={x |x ≥-3},集合A ={x |-3<x ≤4},则A C U =________.2.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.题型二 补集的应用例2 设全集U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.变式练习2若全集U={2,4,a2-a+1},A={a+4,4},∁U A={7},则实数a=________.题型三并集、交集、补集的综合运算例3 已知全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求∁U A,∁U B,(∁U A)∩(∁U B).变式练习3设全集为R,A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)及(∁R A)∩B.题型四利用Venn图解题例4 设全集U={不大于20的质数},A∩∁U B={3,5},(∁U A)∩B={7,11},(∁U A)∩(∁UB)={2,17},求集合A,B.变式练习4全集U={x|x<10,x∈N*},A⊆U,B⊆U,(∁U B)∩A={1,9},A∩B={3},(∁U A)∩(∁U B)={4,6,7},求集合A,B.变式练习5已知集合A={x|x2-4ax+2a+6=0},B={x|x<0},若A∩B≠∅,求a的取值范围.课后作业一、选择题1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于( )A.{1,3,4}B.{3,4}C.{3}D.{4}2.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(∁U B)等于( )A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}3.设全集U={a,b,c,d,e},集合M={a,c,d},N={b,d,e},那么(∁U M)∩(∁N)等于( )UA.∅B.{d }C.{a ,c }D.{b ,e }4.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( )A.{a |a ≤1}B.{a |a <1}C.{a |a ≥2}D.{a |a >2}5.设全集是实数集R ,M ={x |-2≤x ≤2},N ={x |x <1},则(∁R M )∩N 等于( )A.{x |x <-2}B.{x |-2<x <1}C.{x |x <1}D.{x |-2≤x <1}6.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0},若全集U =R ,且A ⊆∁U B ,则a 的取值范围为________.7.设U ={1,2,3,4,5,6,7,8,9},(∁U A )∩B ={3,7},(∁U B )∩A ={2,8},(∁U A )∩(∁U B )={1,5,6},则集合A =________,B =________.8.已知全集U =R ,A ={x ||3x -1|≤3},B ={x |⎩⎨⎧ 3x +2>0,x -2<0},求∁U (A ∩B ).9.已知集合A ={x |3≤x <6},B ={x |2<x <9}.(1)分别求∁R (A ∩B ),(∁R B )∪A ;(2)已知C ={x |a <x <a +1},若C ⊆B ,求实数a 的取值范围.10.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }.(1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围.11.已知集合{}31<≤-=x x A ;{}242-≥-=x x x B .(1)求B A ⋂;(2)若集合{}02>+=a x x C ,满足C C B =⋃,求实数a 的取值范围.12.设集合A ={x |x 2=4x },B ={x |x 2+2(a -1)x +a 2-1=0}.(1)若A ∩B =B ,求a 的取值范围;(2)若A ∪B =B ,求a 的值.。

集合的基本运算知识点总结

集合的基本运算知识点总结
集合的基本运算知识点总结
本节知识点:
(1)并集.
(2)交集.
(3)全集与补集.
(4)德·摩根定律.
知识点一 并集
自然语言一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集,记作 ,读作“A并B”.
符号语言 .
图形语言(用Venn图表示并集)图中阴影部分表示两个集合的并集.
知识点三 全集与补集
全集一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U.
补集对于一个集合A,由全集U中不属于A的所有元素组成的集合称为集合A相对于全集U的补集,简称集合A的补集,记作CUA,即
CUA .
用Venn图表示为:
对补集的理解
(1)补集是相对于全集而言的,求一个集合的补集,结果因全集的不同而不同.所以求补集前,要先明确全集.
(2)交集概念中的“所有”二字不能省略,否则会漏掉一些元素,一定要将两个集合中的相同元素(公共元素)全部找出来.
(3)当集合A与集合B没有公共元素时,不能说集合A与集合B没有交集,而是交集为空集,.
交集的性质
性质
说明
交集运算满足交换律
任何集合与空集的交集都是空集
任何集合与其本身的交集等于这个集合本身
(1)A与B有公共元素,相互不包含(2)A与B没有公共部分
(3) (4)
(5)
对并集的理解
(1)求两个集合的并集是集合的一种运算,结果仍是一个集合,它是由属于集合A或集合B的元素组成的.
(2)并集概念中的“或”指的是只要满足其中一个条件即可.符号语言“ ”分为三种情况:
① ,但 ;② ,但 ;③ ,且 .
(1)求两个有限集的并集按照并集的定义进行计算,但要特别注意集合元素的互异性.

集合间的基本运算

集合间的基本运算

集合间的基本运算一、知识概述1交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A, B的交集记作 A ' B (读作‘ A 交B'),即卩 A 1 B= {x|x 已A,且B} 2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A, B的并集.记作:A」B (读作’A并B'),即卩A」B ={x|x三A,或B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即…=1 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作。

貝, 即[/ ={小胡且入¥ 2}性质:%/)二月“J©乓0二用全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S, U表示+4、运算性质:(1) I I 「I 'I ;(2)I — -「';(3)I . ;(4)T __「T 1 -;(5)、二一匚 _「丄一「* 二:.(6)「厂_「;:「:冷」'J':,二、例题讲解例1、设集合A={ —4, 2m- 1, m2} , B={9, m-5, 1 —m},又A B={9},求实数m的值.解:I A B={9},二2m—1=9或m2=9,解得m=5或m=3或m=—3.若m=5 贝U A={—4, 9, 25} , B={9, 0,—4}与A B={9}矛盾;若m=3则B中元素m—5=1—m=—2,与B中元素互异矛盾;若m=-3,则A={ —4,—7, 9} , B={9,—8, 4}满足 A B={9}.二m=- 3.例2、设A={x|x 2+ ax+ b=0}, B={x|x 2+ ex + 15=0},又A B={3, 5} , A A B={3}, 求实数a , b , e的值.解:v A A B={3},二3 € B,二32+ 3e+ 15=0,••• e= —8,由方程x2—8x+ 15=0 解得x=3 或x=5.••• B={3 , 5}.由A二(A」B)={3 , 5}知,3€ A, A (否则5€ A A B,与A G B={3}矛盾)故必有A={3},.••方程x2+ ax+ b=0有两相同的根3.由韦达定理得3+ 3=—a, 3 3=b,即a=—6, b=9, c=—8.例3、已知A={x|x 3+ 3x2+ 2x >0} , B={x|x 2+ ax+ b< 0},且A G B={x|0 v x< 2}, A U B={ x | x > —2},求a、b 的值.解:A={x| —2v x v—1 或x>0},设B= [x i, X2],由A G B= (0, 2]知X2= 2,且—1<xW 0,①由A U B= (—2 ,+x)知一2w X1w —1. ②由①②知X i =—1, X2 = 2,a=—( X1+ X2)=—1, b= X1X2= —2.例4、已知A={x|x 2—ax+ a2—19=0}, B={x|x 2—5x + 8=2}, C={x|x 2+ 2x —8=0}. 若E =A G B,且A G C=] , 求a 的值.解:—3)(x —2)=0}={3 , 2},•- B={x|(xC={x|(x + 4)(x —2)=0}={ —4 , 2},又••• E =AG B,又••• A G C==,•可知-4^A, 2^A, 3€ A.• •由9—3a+ a —19=0 ,解得a=5或a=—2.①当a=5 时,A={2, 3},此时A H C={2} ,矛盾,二a^ 5;②当a=—2时,A={—5, 3},此时A H C山,A H B={3}工它,符合条件.综上①②知a=—2.例5、已知全集U={不大于20的质数} ,M N是U的两个子集,且满足MA (•门)={3,5},(「r)H N={7,19},(」')H( •「)={2,17},求M N.解:用图示法表示集合U, M N (如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3, 5, 11, 13}, N={7, 11, 13, 19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①一q : ::②一-r 二:③―_ 5 ■':④一I一、选择题1下列命题中,正确的是()A. 若U=R 祐u,匸B. 若U为全集,①表示空集,则-①=①;C. 若A={1,①,{2}},则{2}二A;D. 若A={1,2,3},B={x|x 二A},则A€ B.3 IM= {工 |畝迄忑€ 血¥_}= (x l 也}『2、设数集 ' - …且MN都是集合{x|0 < x< 1}的子集,如果把b—a叫做集合{x|a <x< b}的“长度”,那么集合Mn N 的“长度”的最小值是()1 2A. - B .」丄5C. 1- D .一3、设M N是两个非空集合,定义M与N的差集为M—N={x|x € M且x己N},则M—(M—N)等于()A. N B . MA NC. MU N D . M 4、已知全集:=R,集合朴11"弔刀和严砂亠■“ L的关系的韦恩(Venn)图如下图所示,贝U阴影部分所示的集合的元素共有()B . 2个 D .无穷个1、 - ••匚 I -①=U, {2} € A, {2}单独看是一个集合,但它又是A 中的一个元素.3 £2、集合M 的“长度”为-,集合N 的“长度”为」,而集合—+ — — 1{x|0 <x < 1}的“长度”为1,故MAN 的“长度”最小值为4」3、M-N={x|x €“且x^N}是指图(1)中的阴影部分.同样M-( M- N )是指图(2)中的阴影部分.4、t 图形中的阴影部分表示的是集合 =;,由;解得集合‘"一—二一,而N 是正奇数的集合;-「,故选B.二、填空题 5、已知集合A={x|x 2— 3x + 2=0},集合B={x|ax — 2=0}(其中a 为实数),且A U B=A 则集合 C={a|a 使得 A U B=A}= ______________ . 5、{0, 1, 2}解析:A={1, 2},由 A U B=A 得 匪 A.••• 1€ A,即得 a=2;或 2€ A,即得 a=1 ;或 B=©,此时 a=0.••• C={0, 1, 2}.A. 3个C. 1个⑴6、非空集合S^{1 ,2,3,4,5},且若a€ S,则6-a€ S,这样的S共有________ 个.6、6解析:S={1, 5}或{2 , 4}或⑶,或{1 , 3, 5},或{2 , 4 , 3},或{1 , 5 , 2 , 4}.三、解答题7、设集合卫={込加7-①,吕―^ —另1—^,9}(1)若■■-丄),求实数a的值.(2)若.''■,求实数a的值.7、解:(1):9 三’1 '',二9 A.则a2=9或.解得a=±3或5.当时,'' ■' ■ ' - '-(舍)当a =—3时,卫={9,一兀一4},£=〔一出4,9〕(符合)当a = 5时,乂={25,9, —= {0,—4,9〕(符合).综上知一 ?或“一-.(2)由(1)知•,一二8已知全集U= R,叮•二•….丄v 0・,_ = “ V呗亠」或x >5 —「一:,,若- J,求实数⑴的取值范围8解:依题设可知全集】=三且打丨■■-0 =0月=缶1一2三工W5),「月=仗冲+1=工w2喘_1},由题设分类如下:①若',贝U m^ 1>2mn 1= mV 2.②若加工0,则m^ i<2mn 1,且I®用一1« 5,解得2< 3.由①②可得:me 3.•••实数m的取值范围为{m|mc 3}.9、已知全集U={|a -1|,(a - 2)(a -1),4,6}.(1)若-八「•求实数a的值;(2)若:4 '求实数a的值.9、解:(1)t L •厂一;' 且多U,•••|a - 1|=0,且(a - 2)(a - 1)=1 ,或|a -1|=1 ,且(a - 2)(a -1)=0 ;第一种情况显然不成立,在第二种情况中由|a -1|=1得a=0或a=2, --a=2.(2)依题意知|a - 1|=3 ,或(a - 2)(a - 1)=3,若|a -1|=3 ,则a=4, 或a=-2;若(a —2)(a —1)=3,贝U -经检验知a=4时,(4 —2)(4 —1)=6,与元素的互异性矛盾.二a=- 2或亠 .10、设集合A ={::广「二1}, B 屮 | ...... - ,*},若A B=B求实数二的值.10、解:先化简集合A=J '.由A】B=B则F A,可知集合B可为二:,或为{0},或{- 4},或".(i) 若B』:,则贝:,解得立<-:;(ii) 若- - B,代入得-- =0=应=1 或:'=一-,当丸=1时,B=A符合题意;当:』=-1时,B={0}二A,也符合题意.(iii)若一4^B,代入得工上L = 口=7或“ =1,当:』=1时,已经讨论,符合题意;当屯=7时,B={- 12,—4},不符合题意.综上可得,^ =1或立€-1.11、已知集合A={x|x —4m灶2计6=0},B={x|x V 0},若A A B M,求实数m的取值范围.= ^ | A = (-4jK)3-4(2^ 4-5)^ 0} = (/w | 或朋11、解:设全集 ' 」m皂U,< 珂4- x- = 4^ 鼻0,若方程X2—4mx+ 2m^ 6=0的两根x’,x?均非负,贝卩山忑八载以―D胆沖一••• {m|- }关于U的补集是{m|m<—1},二实数m的取值范围是{m|m<—1}.1、(全国I,1)设集合A={4,5, 7,9},B={3,4,乙8, 9},全集U=A U B,则集合・⑺厂启)中的元素共有()A. 3个B. 4个C. 5个D. 6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2—2x>0},则干」等于()A. {x|0 < x< 2}B. {x|0<x<2}C. {x|x<0 或x>2} D . {x|x < 0 或x > 2}答案:A解析:■/ x2—2x>0,二x(x —2)>0,得x<0 或x>2,••• A={x|x<0 或x>2},[ 4 ;. ■ i•.3、(山东,1)集合A={0 , 2, a}, B={1 , a2}.若A U B={0, 1, 2, 4, 16},则a 的值为()A. 0B. 1C. 2D. 4答案:D解析:T A U B={0, 1, 2, a, a2},又A U B={0, 1, 2, 4, 16}, • {a , a2}={4 , 16} , • a=4 ,故选D.集合中的交、并、补等运算,可以借助图形进行思考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《集合的基本运算》教学设计
课题:集合的基本运算
教材:普通高中课程标准实验教科书(人教版)必修一
一、教学内容的地位、作用分析
集合是学生升入高中以后学习的第一个内容,不仅是高中数学内容的一个基础,也为以后其他内容的学习提供了帮助。

集合作为现代数学的基本语言,可以简洁、准确地表达数学内容,在现代数学理论体系中的占有基础性的地位。

我们学会集合的基本内容后,不仅可以用集合语言表示有关数学对象,也为后面函数概念的描述打下了基础。

本节《集合的基本运算》是集合这一节里面的核心内容。

本节的主要内容是交集、并集、补集的概念及交、并、补的运算,要从自然语言、符号语言、图形语言三个方面去理解交、并、补的含义,可以培养学生数形结合的数学思想。

同时这一部分不仅是考查的重点知识,同时也是与其他内容很容易交汇出题的知识点,经常作为知识的载体出现。

二、学情分析
学生在小学和初中已经接触过一些集合,例如,自然数的集合,有理数的集合,到一个定点的距离等于定长的点的集合等,对集合有了一个大概的了解。

进入高中以后,学习的第一个内容便是集合。

通过《集合的含义与表示》的学习,学生们知道了集合的概念,和其确定性、无序性和互异性三个特征,了解了元素与集合之间的关系(元素属于集合或元素不属于集合),同时学会了列举法和描述法两种表示方法。

通过《集合间的基本关系》的学习,我们明确学习了集合与集合的关系,包括包含关系(子集和真子集),相等关系,并规定了不含任何元素的集合叫做空集。

同时,在节当中,我们引入了Venn图这个工具,对中集合的运算的学习也提供了帮助。

三、教学目标和重点、难点分析
教学目标
知识目标:(1)理解两个集合之间并集的概念,会求两个简单集合的并集;
(2)理解两个集合之间交集的概念,会求两个简单集合的交集;
(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用;
(4)在解题过程中能灵活选择应用数轴或Venn图.
能力目标:(1)通过Venn图的使用和数轴的使用,让学生们领悟数形结合的数学思想;
(2)通过给出集合作为例子,让学生思考它们之间的关系来给出并集和交集的定义,培养学生观察、分析、归纳、概括等一般能力的发展;
(3)讨论环节锻炼了学生交流合作能力以及表达能力.
情感目标:(1)通过使用符号表示、集合表示、图形表示集合间的关系与运算,引导学生感受集合语言在描述客观现实和数学问题中的意义,从中了解数学的重要意义
和应用的广泛程度,从而增加学生学习数学的兴趣;
(2)另外讨论环节的设置也可以让学生感受到人与人交流的乐趣,利于学生间的合作交流与和谐相处.
教学重点:(1)并集、交集的概念及其运算;
(2)学会使用Venn图和数轴来表示集合间的关系及运算.
教学难点:弄清并集、交集的概念,符号之间的区别与联系
教学方法:讲授式、情景式、合作式
教具学具:幻灯片
四、教学策略分析
本节课的教学难点是弄清并集、交集的概念,符号之间的区别与联系,针对这一教学难点,我们采取下面几个策略进行突破:
1、通过分组讨论,将并集、交集三个内容的概念,符号表示以及Venn图表示进行比较,让学生归纳总结出其中的异同点,从而巩固三个概念的记忆,同时了解这三者之前的区别与联系。

2、通过同一例题给定的两个集合,分别问这两个集合的交集和并集,通过计算过程与
计算结果的不同,给学生一个直观感受来体会并集、交集的不同。

五、教学过程
情景
李华和室友王伟一起到新百购物,李华买了水果、牛奶、纸巾和帽子四种商品,王伟买了牙膏、可乐、纸
巾、饼干和水果五种商品,问两人一共买了多少种商品若回答两人一共买了9(=5+4)种,显然是不对的。

让我们试着从集合的角度考虑这个问题。

思考1:
我们知道,实数有加法运算,类比实数的加法运算,集合是否也可以相加呢
考察下列各个集合,你能说出集合C与集合A,B之间的关系吗
(1)A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}
(2)A={x |x是有理数} B={x |x是无理数}
概念
一般地,由所有属于集合A 或集合B 的元素组成的集合. 称为集合A 与B 的并集,记作:A ∪B ;读作“A 并B ”。

用描述法表示为A ∪B = {x | x ∈A ,或x ∈B} Venn 图表示为: 则刚才思考1中的(1)、(2),集合A ,B 与集合C
之间的关系都可以表示为 A ∪B =C
例题
例1: 设A = {4,5,6,8},B = {3,5,7,8},
求A ∪分析:结合Venn 图 :
解:A ∪B={4,5,6,8}∪{3,5,7,8} ={3,4,5,6,7,8}
_ 3, 7
_
5_ 8
_ 4, 6
A B
A ∪B
例2:设集合A = {x | –1<x≤2},集合B = {x | 1≤x<3},求A∪分析:结合数轴:
解:A∪B={x | –1<x≤2}∪{x | 1≤x<3}
={x | –1<x<3}
(问:若中间两个实点变为虚点后范围改变了吗答:没有)
思考2
下列关系式成立吗
(1)A∪A=A
(2)A∪∅=A 构成集合的求并运算可以采用数轴上画出范围的方式来分析运算(问题的设置意在提醒学生注意端点值能否取到,使并集范围确立地更加仔细)。

既可以考察学生对并集的理解,又向学生介绍了几条常用性质。

(画Venn图)
交集的概念及运算应用
情景回顾
将两人买的商品用Venn图来表示:
通过刚才的学习我们知道,由两集合的所有元素组
成两集合的并集,其中公共部分纸巾和水果只出现一次。

问:由两集合的公共元素组成的集合又会是通过两
集合怎样运算得到的呢
情景再次回顾,在复习
并集的同时也引出了交集的
内容,再次激发学生的学习
兴趣,同时为下面的思考提
供了思路(公共元素)。

–10 1 2 3x
牙膏
可乐
牛奶
纸巾
思考3
考察下面的问题,集合A,B与集合C之间有什么关系(1)A={2,4,6,8,10} ,B={3,5,8,12}
C={8}
(2)A={x |x是新华中学2004年9月在校的女同学},B={x |x是新华中学2004年9月在校的高一年级
同学},
C={x |x是新华中学2004年9月在校的高一年级女同学}.
通过上面的情景回顾,学生很容易看出集合C是集合A、B的公共部分,再引导从元素的角度进行考虑(可适当回去参考并集概念的形式)。

猜测:
如果学生回答,集合C中的元素是由既属于集合A,又属于集合B的元素构成的。

则继续发问:
将(2)中的集合C改为:
C’={x |x是新华中学2004年9月在校的高一年级身高超过一米五的女同学}
同样也是集合C’中的元素既属于集合A,又属于集合B,上面的总结没有抓住全部的条件,比较集合C与集合C’,可以看出集合C是既属于集合A,又属于集合B的最大集合。

通过同学们讨论归纳,得到:上述问题中,集合C 是由那些既属于集合A且又属于集合B的所有元素组成。

概念
一般地,由属于集合A且属于集合B的所有元素组成的集合,成为A与B的交集,记作A∩B,读作“A交B”
用描述法表示为:A∩B = {x | x∈A且x∈B} Venn图表示为:
A B
A∩B
回顾
则刚才思考3中的(1)、(2),集合A,B与集合C 之间的关系都可以表示为
A∩B =C
例题
例3(板书):设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系。

解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P,可表示为
L1∩L2 = {点P};
(2)直线l1,l2平行可表示为
L1∩L2 = ∅;
(3)直线l1,l2重合可表示为
L1∩L2 = L1 = L2
思考4
下列关系式成立吗
(1)A∩A=A;
(2)A∩∅=∅。

练习题
1、
A
B C
集合A、B、C的关系用Venn图表示如上,试用阴影画出下面集合运算后所代表的部分:
A∩(B∪C);
(A∩B)∪C ;
A∩(B∩C).
2、设A={x | x2-4x-5=0 } ,B={x | x2 = 1},
试求A∪B 和A∩B.
并集、交集的概念
并集:A∪B = {x | x∈A或x∈B}交集:A∩B = {x | x∈A且x∈B}
“数形结合”
重视Venn图的作用,充分运用数形结合(数轴,Venn图)解决集合的运算问题,便于直观地解决问题。

必做
A组:第6题、第7题
B组:第3题
选做
A组:第8题。

相关文档
最新文档