集合与常用逻辑用语复习题及答案 (52)

合集下载

2018年高考数学浙江专版三维二轮专题复习训练:知能专

2018年高考数学浙江专版三维二轮专题复习训练:知能专

知能专练(一)集合与常用逻辑用语一、选择题1.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}解析:选A由集合交集的定义可得A∩B={x|-2<x<-1}.2.(2017·浙江延安中学模拟)命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是() A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠0解析:选D“若p,则q”的逆否命题为“若綈q,则綈p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.3.(2017·宁波模拟)“x<0”是“ln(x+1)<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.4.(2017·吉林模拟)已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-3,+∞)D.(-∞,-3]解析:选A设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.5.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.6.(2018届高三·安徽“江南十校”联考)已知集合A={x|x2-x≤0},函数f(x)=2-x(x∈A)的值域为B,则(∁R A)∩B等于()A.{x|1<x≤2} B.{x|1≤x≤2}C.{x|0≤x≤1} D.{x|x>1}解析:选A由题意知,集合A={x|0≤x≤1},∴B={y|1≤y≤2},∁R A={x|x<0或x>1},∴(∁R A)∩B={x|1<x≤2}.7.设集合S n={1,2,3,…,n},n∈N*,若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为() A.7 B.8C.9 D.10解析:选A若n=4,则S n的所有奇子集为{1},{3},{1,3},故所有奇子集的容量之和为7.8.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1 D.0解析:选B因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y=x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.9.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.10.下列关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题的结论中成立的是()A.都为真命题B.都为假命题C.否命题为真命题D.逆否命题为真命题解析:选D对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.二、填空题11.已知集合U ={1,2,3,4,5,6},S ={1,3,5},T ={2,3,6},则S ∩(∁U T )=________,集合S 共有________个子集.解析:由题意可得∁U T ={1,4,5},则S ∩(∁U T )={1,5}.集合S 的子集有∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},共8个.答案:{1,5} 812.(2017·南通模拟)给出下列三个命题: ①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件. 其中正确命题的序号为________.解析:“a >b ”是“3a >3b ”的充要条件,①错误;“α>β”是“cos α<cos β”的既不充分也不必要条件,②错误;“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件,③正确.故正确命题的序号为③.答案:③13.已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x 2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=________,M ∪(∁R N )=________.解析:M =⎩⎨⎧⎭⎬⎫x 2x <1={x |x <0或x >2},N ={y |y =x -1+1}={y |y ≥1}, ∁R M ={x |0≤x ≤2},∁R N ={y |y <1},∴N ∩(∁R M )={x |1≤x ≤2},M ∪(∁R N )={x |x <1或x >2}. 答案:{x |1≤x ≤2} {x |x <1或x >2}14.若“4x +p <0”是“x 2-x -2>0”的充分条件,则实数p 的取值范围是________. 解析:由x 2-x -2>0,得x >2或x <-1. 由4x +p <0得x <-p4.故-p 4≤-1时,“x <-p4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件. 答案:[4,+∞)15.(2017·诸暨质检)已知A ={x |-2≤x ≤0},B ={x |x 2-x -2≤0},则A ∪B =________,(∁R A )∩B =________.解析:∵A ={x |-2≤x ≤0},∴∁R A ={x |x <-2或x >0},又B ={x |x 2-x -2≤0}={x |-1≤x ≤2},∴A ∪B ={x |-2≤x ≤2},∴(∁R A )∩B ={x |0<x ≤2}.答案:{x |-2≤x ≤2} {x |0<x ≤2}16.(2017·四川南山模拟)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知,13<x <12是不等式|x -m |<1成立的充分不必要条件,所以⎩⎨⎧⎭⎬⎫x 13<x <12是{x ||x -m |<1}的真子集.而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎨⎧-1+m ≤13,1+m ≥12(两个不等式不能同时取等号),解得-12≤m ≤43,所以m 的取值范围是⎣⎡⎦⎤-12,43. 答案:⎣⎡⎦⎤-12,43 17.设全集U =R ,集合A ={x |x 2-3x -4<0},B ={x |log 2(x -1)<2},则A ∩B =______,A ∪B =________,∁R A =________.解析:∵A ={x |-1<x <4},B ={x |1<x <5},∴A ∩B ={x |1<x <4},A ∪B ={x |-1<x <5},∁R A ={x |x ≤-1或x ≥4}.答案:{x |1<x <4} {x |-1<x <5} {x ≤-1或x ≥4} [选做题]1.已知集合A ={(x ,y )|x =n ,y =na +b ,n ∈Z},B ={(x ,y )|x =m ,y =3m 2+12,m ∈Z},若存在实数a ,b 使得A ∩B ≠∅成立,称点(a ,b )为“£”点,则“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为( )A .0B .1C .2D .无数个解析:选A A ={(x ,y )|x =n ,y =na +b ,n ∈Z}={(x ,y )|y =ax +b ,x ∈Z},B ={(x ,y )|x=m ,y =3m 2+12,m ∈Z}={(x ,y )|y =3x 2+12,x ∈Z},联立⎩⎪⎨⎪⎧y =ax +b ,y =3x 2+12,故3x 2-ax +12-b =0,①因为A ∩B ≠∅,故Δ=a 2-12(12-b )=a 2+12b -144≥0,即a 2+12b ≥144,联立⎩⎪⎨⎪⎧a 2+12b ≥144,a 2+b 2≤108,解得a =±62,b =6,代入①中可知x =±2,这与x ∈Z 矛盾,故“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为0,故选A.2.对于非空数集A ,B ,定义A +B ={x +y |x ∈A ,y ∈B },下列说法: ①A +B =B +A ;②(A +B )+C =A +(B +C ); ③若A +A =B +B ,则A =B ;④若A +C =B +C ,则A =B . 其中正确的是( ) A .① B .①② C .②③D .①④解析:选B 对于①,A +B ={x +y |x ∈A ,y ∈B }={y +x |x ∈A ,y ∈B }=B +A ,①正确;对于②,(A +B )+C ={(x +y )+z |x ∈A ,y ∈B ,z ∈C }=A +(B +C ),②正确;对于③,当A ={奇数},B ={偶数}时,A +A ={偶数}=B +B ,显然A ≠B ,③错误,对于④,当A ={奇数},B ={偶数},C ={整数}时,A +C ={整数}=B +C ,显然A ≠B ,④错误.综上所述,正确的为①②,故选B.3.已知命题p :对数log a (-2t 2+7t -5)(a >0,a ≠1)有意义;q :关于实数t 的不等式t 2-(a +3)t +(a +2)<0.若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________.解析:由题意知,-2t 2+7t -5>0,解得1<t <52.∵命题p 是命题q 的充分不必要条件,∴1<t <52是不等式t 2-(a +3)t +(a +2)<0解集的真子集.因为方程t 2-(a +3)t +(a +2)=0两根为1,a +2,故只需a +2>52,解得a >12.即实数a 的取值范围是⎝⎛⎭⎫12,+∞. 答案:⎝⎛⎭⎫12,+∞。

第一章 集合与常用逻辑用语综合测试(解析版)

第一章 集合与常用逻辑用语综合测试(解析版)

第一章 集合与常用逻辑用语综合测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2022·新疆昌吉·高一期末)“0a b >>”是“1a b >”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】【分析】根据充分条件、必要条件的定义判断即可;【详解】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1a b >,但是不满足0a b >>, 故“0a b >>”是“1a b>”的充分不必要条件. 故选:B2.(2022·全国·高一期末)已知{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}2230B x R x x =∈--=,{}13C x x =-≤<,则有( )A .U AB = B .U BC = C .U A C ⊇D .A C ⊇【答案】A【解析】【分析】化简集合B ,再由集合的运算即可得解.【详解】 因为{}13U x R x =∈-≤≤,{}13A x U x =∈-<<,{}13C x x =-≤<,所以{}1,3U A =-, 又{}{}22301,3B x R x x =∈--==-,所以U A B =,故A 正确,所以U B A C =≠,故B 错误;所以集合C 与集合U A ,集合A 均没有互相包含关系,故CD 错误.故选:A.3.(2022·福建·莆田一中高一期末)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()U M N ⋃=( ) A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4 【答案】A【分析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:{}1,2,3,4MN =,则(){}5U M N =. 故选:A.4.(2022·江苏·高一)已知集合(){}223A x y x y x Z y Z =+≤∈∈,,,,则A 中元素的个数为( ) A .9B .8C .5D .4【答案】A【解析】【分析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤23,x ∴≤ x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【点睛】本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.5.(2022·宁夏·银川唐徕回民中学高一期中)已知全集U =R ,{|0}A x x =≤,{|1}B x x =≥,则集合()U C A B =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D【解析】【详解】试题分析:因为A ∪B={x|x≤0或x≥1},所以(){|01}U C A B x x ⋃=<<,故选D.考点:集合的运算.6.(2022·江苏·高一期末)已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是A .13a a ⎧⎫<⎨⎬⎩⎭∣ B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13a a ⎧⎫≤⎨⎬⎩⎭∣ D .13a a ⎧⎫≥⎨⎬⎩⎭∣ 【答案】C【解析】【分析】求得命题p 为真命题时a 的取值范围,由此求得命题p 为假命题时a 的取值范围.【详解】先求当命题p :x R ∀∈,2230ax x ++>为真命题时的a 的取值范围(1)若0a =,则不等式等价为230x +>,对于x R ∀∈不成立,(2)若a 不为0,则04120a a >⎧⎨∆=-<⎩,解得13a >, ∴命题p 为真命题的a 的取值范围为13a a ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的a 的取值范围是13a a ⎧⎫≤⎨⎬⎩⎭∣. 故选:C【点睛】本小题主要考查根据全称量词命题真假性求参数的取值范围.7.(2022·广东广雅中学高一期末)设集合U ={1,2,3,4,5},A ={1,3,5},B ={2,3,5},则图中阴影部分表示的集合的真子集有( )个A .3B .4C .7D .8【答案】C【解析】【分析】 先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU (A∩B )={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数.【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:C U (A∩B )={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C .【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题.8.(2022·江苏·高一单元测试)在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}4k n k n Z =+∈,0k =,1,2,3.给出如下四个结论:①[]20151∈;②[]22-∈;③[][][][]0123Z =⋃⋃⋃;④“整数a ,b 属于同一‘类’”的充要条件是“[]0a b -∈”其中正确的结论有( )A .①②B .③④C .②③D .②③④ 【答案】D【解析】【分析】根据“类”的定义计算后可判断①②④的正误,根据集合的包含关系可判断③的正误,从而可得正确的选项.【详解】因为201550343=⨯+,故[]20153∈,故①错误;而242-=+,故[]22-∈,故②正确;由“类”的定义可得[][][][]012Z 3⊆,任意Z c ∈,设c 除以4的余数为}{()0,1,2,3r r ∈,则[]c r ∈,故[][][][]0123c ∈⋃⋃⋃,所以[][][][]0123Z ⊆, 故[][][][]0123Z =,故③正确若整数a ,b 属于同一“类”,设此类为[]}{()0,1,2,3r r ∈,则4,4a m r b n r =+=+,故()4a b m n -=-即[]0a b -∈,若[]0a b -∈,故-a b 为4的倍数,故a ,b 除以4 的余数相同,故a ,b 属于同一“类”,故整数a ,b 属于同一“类”的充要条件为[]0a b -∈,故④正确;故选:二、多选题9.(2022·江苏·高一单元测试)已知p :1x >或3x <-,q :x a >,则a 取下面那些范围,可以使q 是p 的充分不必要条件( )A .3a ≥B .5a ≥C .3a ≤-D .1a <【答案】AB【解析】【详解】p :1x >或3x <-,q :x a >,q 是p 的充分不必要条件,故1a ≥,范围对应集合是集合{}1a a ≥的子集即可,对比选项知AB 满足条件.故选:AB.10.(2022·江苏·南京师大附中高一期末)设r 是p 的必要条件,r 是q 的充分条件,s 是r 的充分必要条件,s 是p 的充分条件,则下列说法正确的有( ) A .r 是q 的必要条件B .s 是q 的充分条件C .s 是p 的充分必要条件D .p 是q 的既不充分也不必要条件【答案】BC【解析】【分析】 根据条件得到p r s q ⇔⇔⇒可判断每一个选项.【详解】由题意,,,,p r r q r s s p ⇒⇒⇔⇒,则p r s q ⇔⇔⇒.故选:BC.11.(2022·广东汕尾·高一期末)设{}29140A x x x =-+=,{}10B x ax =-=,若A B B =,则实数a 的值可以为( )A .2B .12C .17D .0【答案】BCD【解析】【分析】先求出集合A ,再由A B B =可知B A ⊆,由此讨论集合B 中元素的可能性,即可判断出答案.【详解】集合2{|9140}{2A x x x =-+==,7},{|10}B x ax =-=,又A B B =,所以B A ⊆,当0a =时,B =∅,符合题意,当0a ≠时,则1{}B a =,所以12a=或17a =, 解得12a =或17a =, 综上所述,0a =或12或17, 故选:BCD 12.(2022·重庆·高一期末)已知全集为U ,A ,B 是U 的非空子集且U A B ⊆,则下列关系一定正确的是( )A .x U ∃∈,x A ∉且xB ∈B .x A ∀∈,x B ∉C .x U ∀∈,x A ∈或x B ∈D .x U ∃∈,x A ∈且x B ∈ 【答案】AB【解析】【分析】根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.【详解】全集为U ,A ,B 是U 的非空子集且U A B ⊆,则A ,B ,U 的关系用韦恩图表示如图,观察图形知,x U ∃∈,x A ∉且x B ∈,A 正确;因A B =∅,必有x A ∀∈,x B ∉,B 正确;若A U B ,则()()U U A B ⋂≠∅,此时x U ∃∈,[()()]U U x A B ∈⋂,即x A ∉且x B ∉,C 不正确; 因A B =∅,则不存在x U ∈满足x A ∈且x B ∈,D 不正确.故选:AB三、填空题13.(2022·安徽·高一期中)设集合12|3A x N y N x ⎧⎫=∈=∈⎨⎬+⎩⎭,则集合A 的子集个数为________ 【答案】16【解析】【分析】先化简集合A ,再利用子集的定义求解.【详解】解:{}0,1,3,9=A ,故A 的子集个数为4216=,故答案为:1614.(2022·浙江浙江·高一期中)0x ∃>,12x x +>的否定是___________. 【答案】0x ∀>,12x x+≤ 【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为0x ∃>,12x x +>是存在量词命题, 所以其否定是全称量词命题,即0x ∀>,12x x+≤, 故答案为:0x ∀>,12x x +≤. 15.(2022·江苏·高一)某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.【答案】5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.16.(2022·江苏·高一)已知集合{|1A x x =<-,或{}2}|23x B x a x a >=≤≤+,,若“x A ∈”是“x B ∈”的必要条件,则实数a 的取值范围是___________.【答案】4a或13a【解析】∵“x A ∈”是x B ∈”的必要条件,∴B A ⊆,当B =∅时,23a a >+,则3a >;当B ≠∅时,根据题意作出如图所示的数轴,由图可知3231a a a +>⎧⎨+<-⎩或3222a a a +>⎧⎨>⎩,解得4a 或13a ,综上可得,实数a 的取值范围为4a或13a .四、解答题 17.(2022·江苏·高一)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,()U A B ;(2)若A ∩C ≠∅,求a 的取值范围.【答案】(1)A ∪B ={x |1<x ≤8},()U A B ={x |1<x <2} (2){a |a <8}【解析】【分析】(1)根据集合的交并补的定义,即可求解;(2)利用运算结果,结合数轴,即可求解.(1)A ∪B ={x |2≤x ≤8}∪{x |1<x <6}={x |1<x ≤8}.∵U A ={x |x <2或x >8},∴()U A ∩B ={x |1<x <2}.(2)∵A ∩C ≠∅,作图易知,只要a 在8的左边即可,∴a <8.∴a 的取值范围为{a |a <8}.18.(2022·江苏·高一)设全集为Z ,2{|2150}A x x x =+-=,{|10}B x ax =-=.(1)若15a =,求()Z A B ⋂; (2)若B A ⊆,求实数a 的取值组成的集合C .【答案】(1){}5,3- (2)11,,053⎧⎫-⎨⎬⎩⎭【解析】【分析】(1)若15a =,求出集合A ,B ,即可求()Z A B ⋂; (2)若B A ⊆,讨论集合B ,即可得到结论.(1)解: {}2{|2150}5,3A x x x =+-==-, 当15a =,则{}{|10}5B x ax =-==, 则{}()5,3Z A B ⋂=-;(2)解:当B =∅时,0a =,此时满足B A ⊆,当B ≠∅时,1{}B a=,此时若满足B A ⊆, 则15a =-或13a=,解得15a =-或13, 综上11,,053C ⎧⎫=-⎨⎬⎩⎭. 19.(2022·河南驻马店·高一期末)已知集合{}213A x t x t =-≤≤-,{}215B x x =-<+<.(1)若A B =∅,求实数t 的取值范围;(2)若“x B ∈”是“x A ∈”的必要不充分条件,求实数t 的取值范围.【解析】(1)解:由215x -<+<得解34x -<<,所以{}{}21534B x x x x =-<+<=-<<,又{}213A x t x t =-≤≤- 若A B =∅,分类讨论:当A =∅,即213t t ->-解得43t >,满足题意; 当A ≠∅,即213t t -≤-,解得43t ≤时,若满足A B =∅,则必有21443t t -≥⎧⎪⎨≤⎪⎩或3343t t -≤-⎧⎪⎨≤⎪⎩; 解得t ∈∅.综上,若A B =∅,则实数t 的取值范围为43t >. (2)解:由“x B ∈”是“x A ∈”的必要不充分条件,则集合A B ,若A =∅,即213t t ->-,解得43t >, 若A ≠∅,即213t t -≤-,即43t ≤,则必有4321334t t t ⎧≤⎪⎪->-⎨⎪-<⎪⎩,解得413t -<≤, 综上可得,1t >-,综上所述,当“x B ∈”是“x A ∈”的必要不充分条件时,1t >-即为所求. 20.(2022·江苏·高一)已知命题:R P x ∃∈,使240x x m -+=为假命题.(1)求实数m 的取值集合B ;(2)设{}34A x a x a =<<+为非空集合,若x A ∈是x B ∈的充分不必要条件,求实数a 的取值围.【解析】(1)解:由题意,得关于x 的方程240x x m -+=无实数根,所以1640∆=-<m ,解得4m >,即}|{4m m B =>;(2)解:因为{}34A x a x a =<<+为非空集合,所以34a a <+,即2a <,因为x A ∈是x B ∈的充分不必要条件,则34a ≥,即43a ≥, 所以423a ≤<, 21.(2022·江苏·高一)已知集合{}|14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ,()A ⋂R B ;(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.【答案】(1){}25B x x =-≤≤R ,()()(),25,R A B ⋂=-∞-⋃+∞(2)2m ≤-或1m ≥【解析】(1){}25B x x =-≤≤R ,{R 1A x x =<-或}4x >,(){R 2A B x x ⋂=<-或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即1m ≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩, 解得2m ≤-,综上,m 的取值范围为2m ≤-或1m ≥.22.(2022·北京西城·高一期末)设A 是实数集的非空子集,称集合{|,B uv u v A =∈且}u v ≠为集合A 的生成集.(1)当{}2,3,5A =时,写出集合A 的生成集B ;(2)若A 是由5个正实数构成的集合,求其生成集B 中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =,并说明理由.【答案】(1){}6,10,15B =(2)7(3)不存在,理由见解析【解析】【分析】(1)利用集合的生成集定义直接求解.(2)设{}12345,,,,A a a a a a =,且123450a a a a a <<<<<,利用生成集的定义即可求解;(3)不存在,理由反证法说明. (1){}2,3,5A =,{}6,10,15B ∴=(2)设{}12345,,,,A a a a a a =,不妨设123450a a a a a <<<<<,因为41213141525355a a a a a a a a a a a a a a <<<<<<,所以B 中元素个数大于等于7个,又{}254132,2,2,2,2A =,{}34689572,2,2,2,2,2,2B =,此时B 中元素个数大于等于7个, 所以生成集B 中元素个数的最小值为7.(3)不存在,理由如下:假设存在4个正实数构成的集合{},,,A a b c d =,使其生成集{}2,3,5,6,10,16B =,不妨设0a b c d <<<<,则集合A 的生成集{},,,,,B ab ac ad bc bd cd =则必有2,16ab cd ==,其4个正实数的乘积32abcd =;也有3,10ac bd ==,其4个正实数的乘积30abcd =,矛盾;所以假设不成立,故不存在4个正实数构成的集合A ,使其生成集{}2,3,5,6,10,16B =【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A 的生成集的定义,考查学生的分析解题能力,属于较难题.。

2022届一轮复习高中数学第一章 集合、常用逻辑用语与不等式

2022届一轮复习高中数学第一章 集合、常用逻辑用语与不等式

第一章集合、常用逻辑用语与不等式第1课时集合[复习要求] 1.了解集合的含义,元素与集合的属于关系;能用列举法或描述法表示集合.2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解并会求并集、交集、补集;能用Venn(韦恩)图表示集合的关系与运算.集合的基本概念(1)集合的概念:把一些元素组成的总体叫做集合(简称为集);(2)集合中元素的三个特性:确定性、无序性、互异性;(3)集合的三种表示方法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N+(或N*)Z Q R集合的基本关系(1)子集:若对于任意的x∈A都有x∈B,则A⊆B;(2)真子集:若A⊆B,且A≠B,则A B;(3)相等:若A⊆B,且B⊆A,则A=B;(4)∅是任何集合的子集,是任何非空集合的真子集.集合的基本运算(1)交集:A∩B={x|x∈A且x∈B};(2)并集:A∪B={x|x∈A或x∈B};(3)补集:若U为全集,A⊆U,则∁U A={x|x∈U且x∉A}.集合的常用运算性质(1)A∩∅=∅;A∩A=A;(2)A∪∅=A;A∪A=A;(3)A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A;(4)A⊆B⇔A∩B=A⇔A∪B=B;A⊆B⇔(∁U A)⊇(∁U B)⇔A∩(∁U B)=∅;(5)∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B);(6)如图所示,用集合A ,B 表示图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分所表示的集合分别是A ∩B ;A ∩(∁U B);B ∩(∁U A);∁U (A ∪B)或(∁U B)∩(∁U A);(7)card(A ∪B)=card(A)+card(B)-card(A ∩B).1.判断下列说法是否正确(打“√”或“×”).(1)集合{x ∈N |x 3=x},用列举法表示为{-1,0,1}.(2){x|y =x 2}={y|y =x 2}={(x ,y)|y =x 2}.(3)若5∈{1,m +2,m 2+4},则m 的取值集合为{1,-1,3}.(4)若P ∩M =P ∩N =A ,则A ⊆M ∩N.(5)设U =R ,A ={x|lgx<1},则∁U A ={x|lgx ≥1}={x|x ≥10}.答案 (1)× (2)× (3)× (4)√ (5)×解析 (1)由于-1∉N ,故(1)错.(2)中{x|y =x 2}=R ,{y|y =x 2}={y|y ≥0}=[0,+∞),以上两集合为数集,{(x ,y)|y =x 2}表示抛物线y =x 2上所有点的集合,故(2)错.(3)当m =-1时,m +2=1,与集合中元素的互异性矛盾,故(3)错.(4)正确.(5)中A ={x|0<x<10},∁U A ={x|x ≤0或x ≥10}.故(5)错.2.(课本习题改编)若x ∈R ,则x 2+1=0的解集A =________;不等式x 2≤0的解集B =________;0与A 的关系为________;A 与B 的关系为________.答案 ∅ {0} 0∉A A ⊆B(或填A B)3.(2020·课标全国Ⅱ)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B)=( )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}答案 A解析 由题意,得A ∪B ={-1,0,1,2},则∁U (A ∪B)={-2,3}.故选A.4.(1)(2021·衡水中学调研卷)已知集合A ={x ∈Z |x 2-2x -3≤0},B ={y|y =2x },则A ∩B 的子集的个数为________.(2)已知集合M ={x|x -a =0},N ={x|ax -1=0},若M ∩N =N ,则实数a 的值是________. 答案 (1)8 (2)0或1或-15.(2020·《高考调研》原创题)已知全集U =A ∪B ={x ∈N |0≤x ≤9},若集合B ={1,3,5,7},则A ∩(∁U B)=________.答案 {0,2,4,6,8,9}解析 由题意知集合A 中至少包含0,2,4,6,8,9几个元素,而∁U B ={0,2,4,6,8,9},∴A ∩(∁U B)={0,2,4,6,8,9}.题型一 集合的基本概念例1 (1)已知集合A =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,则A 与B 之间的关系是( )A .A =BB .A BC .B AD .无法比较【解析】 方法一(列举法):A =⎩⎨⎧⎭⎬⎫…,-12,12,32,52,72,…, B =⎩⎨⎧⎭⎬⎫…,-12,0,12,1,32,2,52,3,72,…. 显然A B.方法二(描述法):集合A =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k +12,k ∈Z ,B =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,2k +1可以表示任意奇数,k 可以表示任意整数,故A B. 【答案】 B(2)(2021·重庆八中摸底考试)设集合M ={y|y =2cosx ,x ∈[0,5]},N ={x|y =log 2(x -1)},则M ∩N =( )A .{x|1<x ≤5}B .{x|-1<x ≤0}C .{x|-2≤x ≤0}D .{x|1<x ≤2}【解析】 ∵M ={y|y =2cosx ,x ∈[0,5]}={y|-2≤y ≤2},N ={x|y =log 2(x -1)}={x|x>1},∴M ∩N ={y|-2≤y ≤2}∩{x|x>1}={x|1<x ≤2}.【答案】 D(3)集合A ={1,0,x},B ={|x|,y ,lg(xy)},且A =B ,则x ,y 的值分别为________.【解析】 ∵x ,y 均不能为0,∴lg(xy)=0,故xy =1.又∵x ≠1,∴y ≠1,从而y =1x,且|x|=1,故x =y =-1. 【答案】 -1,-1状元笔记由本例讲透集合的基础知识(1)由本例(1)讲清:列举法与描述法及它们之间的相互转换,并通过此题使学生深刻理解元素与集合,集合与集合之间的关系,并共同总结此类题的解法.(2)本例(2)的难点是对集合M ,N 的识别:M 是函数y =2cosx 的值域,N 是函数y =log 2(x -1)的定义域.(3)由本例(3)深刻理解集合中元素的互异性的应用.思考题1 (1)给出以下四个命题:①{(x ,y)|x =1或y =2}={1,2};②{x|x =3k +1,k ∈Z }={x|x =3k -2,k ∈Z };③由英文单词“apple ”中的所有字母组成的集合有15个真子集;④设2 021∈{x ,x 2,x 2},则满足条件的所有x 组成的集合的真子集的个数为3. 其中正确的命题是________.【解析】 ①中左边集合表示横坐标为1或纵坐标为2的所有点组成的集合,即x =1或y =2两直线上所有点的集合,右边集合表示有两个元素1和2,左、右两集合的元素属性不同.②中3k +1,3k -2(k ∈Z )都表示被3除余1的数,正确.易错点在于认为3k +1与3k-2中的k 为同一个值,对集合的属性理解错误.③中真子集的个数为24-1=15.④中x =-2 021或x =- 2 021,∴集合为{-2 021,- 2 021},∴真子集有22-1=3(个).正确.【答案】 ②③④(2)(2020·课标全国Ⅲ)已知集合A ={(x ,y)|x ,y ∈N *,y ≥x},B ={(x ,y)|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6【解析】 由题意,A ∩B 中的元素满足⎩⎪⎨⎪⎧y ≥x ,x +y =8,且x ,y ∈N *,由x +y =8≥2x ,得x ≤4,所以满足x +y =8的有(1,7),(2,6),(3,5),(4,4),故A ∩B 中元素的个数为4.故选C.【答案】 C(3)(2020·杭州学军中学月考)集合A ={-4,2a -1,a 2},B ={9,a -5,1-a},若A ∩B ={9},则a =( )A .-3B .3或-3C .3D .3或-3或5【解析】 由A ∩B ={9}可知9为集合A 与B 的公共元素,也是唯一公共元素.当2a -1=9时,解得a =5,此时A ={-4,9,25},B ={9,0,-4},不合题意(舍去); 当a 2=9时,解得a =3或-3.若a =3,则A ={-4,5,9},a -5=1-a =-2,集合B 不满足互异性,不合题意(舍去).若a =-3,则A ={-4,-7,9},B ={9,-8,4},符合题意.综上所述,a =-3.【答案】 A题型二 集合的基本关系例2 (1)已知集合A ={x|(x +1)(x -6)≤0},B ={x|m -1≤x ≤2m +1}.若A ∩B =B ,则实数m 的取值范围为________.【解析】 A ={x|-1≤x ≤6}.∵A ∩B =B ,∴B =∅或B ≠∅.当B =∅时,m -1>2m +1,即m<-2,符合题意.当B ≠∅时,⎩⎪⎨⎪⎧m -1≤2m +1,m -1≥-1,2m +1≤6.解得0≤m ≤52.得m<-2或0≤m ≤52. 【答案】 (-∞,-2)∪⎣⎡⎦⎤0,52 (2)设A ={0,-4},B ={x|x 2+2(a +1)x +a 2-1=0},①若B ⊆A ,则实数a 的取值范围为________;②若A ⊆B ,则实数a 的取值范围为________.【解析】 ①A ={0,-4},当B =∅时,Δ=4(a +1)2-4(a 2-1)=8(a +1)<0,解得a<-1;当B 为单元素集合时,a =-1,此时B ={0}符合题意;当B =A 时,由根与系数的关系,得⎩⎪⎨⎪⎧-2(a +1)=-4,a 2-1=0,解得a =1. 综上可知,a ≤-1或a =1.②若A ⊆B ,必有A =B ,由①知a =1.【答案】 ①(-∞,-1]∪{1} ②{1}状元笔记判断两集合关系的常用方法(1)化简集合法:用描述法表示的集合,若代表元素的表达式比较复杂,往往需化简表达式,再寻求两个集合的关系,如本例(2).(2)数形结合法:利用数轴或Venn 图直观判断,如本例(1).易错提醒:当B 为A 的子集时,易漏掉B =∅的情况而致误.思考题2 (1)已知集合A ={1,3,m},B ={1,m},A ∪B =A ,则m =________.【解析】 ∵A ={1,3,m},B ={1,m},A ∪B =A ,∴m =3或m =m.∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符.【答案】 0或3(2)设A ={x|x 2-8x +15=0},B ={x|ax -1=0}.①若a =15,试判定集合A 与B 的关系; ②若B A ,求实数a 组成的集合C.【解析】 ①由x 2-8x +15=0,得x =3或x =5,∴A ={3,5}.若a =15,由ax -1=0,得15x -1=0,即x =5. ∴B ={5}.∴B A.②∵A ={3,5},又BA , 故若B =∅,则方程ax -1=0无解,有a =0;若B ≠∅,则a ≠0,由ax -1=0,得x =1a . ∴1a =3或1a =5,即a =13或a =15. 故C =⎩⎨⎧⎭⎬⎫0,13,15. 【答案】 ①B A ②⎩⎨⎧⎭⎬⎫0,13,15题型三 集合的基本运算(微专题)微专题1:集合的交、并、补运算例3 (1)(2021·兰州市高三诊断)设集合M ={x|x 2-3x -4<0},N ={x|0≤x ≤5},则M ∩(∁R N)=( )A .(0,4]B .[0,4)C .[-1,0)D .(-1,0)【解析】 ∵M ={x|x 2-3x -4<0}={x|-1<x<4},N ={x|0≤x ≤5},∴∁R N ={x|x<0或x>5}.M ∩(∁R N)={x|-1<x<0}.【答案】 D(2)(2021·湖北黄冈重点中学联考)全集U ={x|x<10,x ∈N *},A ⊆U ,B ⊆U ,(∁U B)∩A ={1,9},A ∩B ={3},(∁U A)∩(∁U B)={4,6,7},则A ∪B =________.【解析】 由已知条件可得U ={1,2,3,4,5,6,7,8,9},画出Venn 图如图所示.从而A ∪B ={1,2,3,5,8,9}.【答案】 {1,2,3,5,8,9} (3)(2021·八省联考)已知M ,N 均为R 的子集,且∁R M ⊆N ,则M ∪(∁R N)=( )A .∅B .MC .ND .R【解析】 方法一:如图所示易知答案为B.方法二:特值法. 不妨设∁R M =(1,2),N =(0,3),则M ∪(∁R N)=M.【答案】 B状元笔记集合运算的基本类型(1)具体集合的运算:高考对集合的考查,多是考查具体集合(给出或可以求出集合的具体元素)的交、并、补运算,如本例(1),(2),其解法依然是化简集合、列举法或借助于数轴、韦恩图等.预测明年对于集合的考查仍以此类题为主.(2)抽象集合的运算:本例(3)是考查抽象集合(没有给出具体元素的集合)间的关系判断和运算的问题.解决此类问题的途径有二:一是利用特例法将抽象集合具体化;二是利用韦恩图化抽象为直观.思考题3(1)(2021·湖北八校联考)已知集合A={x||x|≤2,x∈R},B={x|x ≤4,x∈Z},则A∩B=()A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}【解析】由已知得A={x|-2≤x≤2},B={0,1,…,16},所以A∩B={0,1,2}.【答案】D(2)(2020·《高考调研》原创题)已知复数集U,f(n)=i n,(n∈N*),集合A={z|z=f(n)},集合B=N*,则A∩(∁U B)中有________个元素.【解析】A={1,-1,i,-i},∁U B是由复数集中不属于N*的所有数组成的集合,∴A∩(∁U B)={-1,i,-i}.【答案】3(3)如图,图形中的阴影部分表示集合()A.(A∪B)∩(B∪C) B.(A∪B)∩(A∪C)C.(A∩B)∪C D.(A∪B)∩C【答案】C微专题2:利用集合的运算求参数例4(1)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)【解析】因为A∩B有4个子集,所以A∩B中有2个不同的元素,所以a∈A,所以a2-3a<0,解得0<a<3.又a≠1,所以实数a的取值范围是(0,1)∪(1,3).故选B.【答案】B(2)设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.(-1,2] B.(2,+∞)C.[-1,+∞) D.(-1,+∞)【答案】D状元笔记(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.思考题4(1)(2020·启东中学模拟)已知集合A={x∈Z|x2-4x-5<0},B={x|4x >2m },若A ∩B 有三个元素,则实数m 的取值范围是( )A .[3,6)B .[1,2)C .[2,4)D .(2,4]【解析】 ∵A ={x ∈Z |-1<x<5}={0,1,2,3,4},B ={x |x>m 2},A ∩B 有三个元素,∴1≤m 2<2,即2≤m<4. 【答案】 C(2)(2020·课标全国Ⅰ,理)设集合A ={x|x 2-4≤0},B ={x|2x +a ≤0},且A ∩B ={x|-2≤x ≤1},则a =( )A .-4B .-2C .2D .4【解析】 求解二次不等x 2-4≤0可得A ={x|-2≤x ≤2},求解一次不等式2x +a ≤0可得B =⎩⎨⎧⎭⎬⎫x |x ≤-a 2.因为A ∩B ={x|-2≤x ≤1},所以-a 2=1,解得a =-2.故选B. 【答案】 B1.通过例1~例3的讲解使学生对集合的表示及子、交、并、补运算等基础知识再一次巩固并系统化,体现本书:以“基础知识”为根本、以“通性通法”为重点的宗旨.2.解决集合问题的关键是正确地将集合进行化简求解,一般规律为:(1)若给定的集合是点集(离散型),用列举法(或结合Venn 图)求解.(2)若给定的集合是不等式的解集(连续型),用数轴求解.(3)若给定的集合是抽象集合,用Venn 图求解.集合中的创新型问题在知识交汇点处命题的信息迁移题是今后几年高考中的热点题型,解决此类问题,既要有扎实的基本功,又要有创新意识,要迅速阅读理解题意,准确把握新的信息,敢于下笔计算.例1 定义集合的商集运算为A B ={x |x =m n,m ∈A ,n ∈B},已知集合A ={2,4,6},B =⎩⎨⎧⎭⎬⎫x |x =k 2-1,k ∈A ,则集合B A ∪B 中的元素个数为( ) A .6 B .7C .8D .9【解析】 由题意知,B ={0,1,2},B A ={0,12,14,16,1,13 },则B A∪B =⎩⎨⎧⎭⎬⎫0,12,14,16,1,13,2,共有7个元素. 【答案】 B例2 当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M ={x|ax 2-1=0,a>0},N ={-12,12,1},若M 与N “相交”,则a =________. 【解析】 M =⎩⎨⎧⎭⎬⎫-1a ,1a ,若1a =12,则a =4,若1a=1,则a =1. 当a =4时,M =⎩⎨⎧⎭⎬⎫-12,12,此时M ⊆N ,不合题意; 当a =1时,M ={-1,1},满足题意.【答案】 1例3 设全集U ={1,2,3,4,5,6},且U 的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若M ={2,3,6},则∁U M 表示的6位字符串为________;(2)已知A ={1,3},B ⊆U ,若集合A ∪B 表示的字符串为101001,则满足条件的集合B 的个数是________.【解析】 (1)由已知,得∁U M ={1,4,5},则∁U M 表示的6位字符串为100110.(2)由题意可知A ∪B ={1,3,6},而A ={1,3},B ⊆U ,则B 可能为{6},{1,6},{3,6},{1,3,6},故满足条件的集合B 的个数是4.【答案】 (1)100110 (2)4题组层级快练(一)一、单项选择题1.下列各组集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y)|x +y =1},N ={y|x +y =1}D .M ={2,3},N ={(2,3)}答案 B2.集合M ={x ∈N |x(x +2)≤0}的子集个数为( )A .1B .2C .3D .4答案 B解析 ∵M ={x ∈N |x(x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.选B.3.已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |32-x ∈Z ,则集合A 中的元素个数为( ) A .2B .3C .4D .5答案 C 4.(2021·长沙市高三统一考试)若集合M ={x ∈R |-3<x<1},N ={x ∈Z |-1≤x ≤2},则M ∩N =( )A .{0}B .{-1,0}C .{-1,0,1}D .{-2,-1,0,1,2}答案 B解析 由题意,得N ={x ∈Z |-1≤x ≤2}={-1,0,1,2},M ={x ∈R |-3<x<1},则M ∩N ={-1,0}.故选B.5.(2021·山东新高考模拟)设集合A ={(x ,y)|x +y =2},B ={(x ,y)|y =x 2},则A ∩B =( )A .{(1,1)}B .{(-2,4)}C .{(1,1),(-2,4)}D .∅答案 C6.(2021·清华附中诊断性测试)已知集合A ={x|log 2(x -2)>0},B ={y|y =x 2-4x +5,x ∈A},则A ∪B =( )A .[3,+∞)B .[2,+∞)C .(2,+∞)D .(3,+∞)答案 C解析 ∵log 2(x -2)>0,∴x -2>1,即x>3,∴A =(3,+∞),∴y =x 2-4x +5=(x -2)2+1>2,∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.7.已知集合A ={x ∈N |1<x<log 2k},集合A 中至少有3个元素,则( )A .k>8B .k ≥8C .k>16D .k ≥16答案 C解析 因为集合A 中至少有3个元素,所以log 2k>4,所以k>24=16.故选C.8.(2020·重庆一中月考)已知实数集R ,集合A ={x|log 2x<1},B ={x ∈Z |x 2+4≤5x},则(∁R A)∩B =( )A .[2,4]B .{2,3,4}C .{1,2,3,4}D .[1,4]答案 B解析 由log 2x<1,解得0<x<2,故A =(0,2),故∁R A =(-∞,0]∪[2,+∞),由x 2+4≤5x ,即x 2-5x +4≤0,解得1≤x ≤4,又x ∈Z ,所以B ={1,2,3,4}.故(∁R A)∩B ={2,3,4}.故选B.9.(2021·郑州质检)已知集合A ={x|x>2},B ={x|x<2m ,m ∈R }且A ⊆∁R B ,那么m 的值可以是( )A .1B .2C .3D .4答案 A解析 由B ={x|x<2m ,m ∈R },得∁R B ={x|x ≥2m ,m ∈R }.因为A ⊆∁R B ,所以2m ≤2,m ≤1.故选A.10.(2021·江淮十校联考)已知集合A ={y |y =x +1x,x ≠0},集合B ={x|x 2-4≤0},若A ∩B =P ,则集合P 的子集个数为( )A .2B .4C .8D .16答案 B二、多项选择题11.(2021·沧州七校联考)设集合A =⎩⎨⎧⎭⎬⎫x |12<2x <7,下列集合中,是A 的子集的是( ) A .{x|-1<x<1} B .{x|1<x<3}C .{x|1<x<2}D .∅答案 ACD解析 依题意得,A ={x|-1<x<log 27},∵2=log 24<log 27<log 28=3,∴选ACD.12.设集合M ={x|(x -3)(x +2)<0},N ={x|x<3},则( )A .M ∩N =MB .M ∪N =NC .M ∩(∁R N)=∅D .M ∪N =R答案 ABC解析 由题意知,M ={x|-2<x<3},N ={x|x<3},所以M ∩N ={x|-2<x<3}=M ,M ∪N =N ,因为∁R N ={x|x ≥3},所以M ∩(∁R N)=∅.故选ABC.三、填空题与解答题13.(2021·浙江温州二模)集合A ={0,|x|},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x|∈B ,又|x|≥0,结合集合中元素的互异性,知|x|=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.14.(1)设全集U =A ∪B ={x ∈N *|lgx<1},若A ∩(∁U B)={m|m =2n +1,n =0,1,2,3,4},则集合B =________.答案 {2,4,6,8}解析 U ={1,2,3,4,5,6,7,8,9},A ∩(∁U B)={1,3,5,7,9},∴B ={2,4,6,8}.(2)已知集合A ={x|log 2x<1},B ={x|0<x<c},c>0.若A ∪B =B ,则c 的取值范围是________.答案 [2,+∞)解析 A ={x|0<x<2},由数轴分析可得c ≥2.15.已知集合A ={x|1<x<3},集合B ={x|2m<x<1-m}.(1)若A ⊆B ,求实数m 的取值范围;(2)若A ∩B =(1,2),求实数m 的取值范围;(3)若A ∩B =∅,求实数m 的取值范围.答案 (1)(-∞,-2] (2)-1 (3)[0,+∞)解析 (1)由A ⊆B ,得⎩⎪⎨⎪⎧1-m>2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(2)由已知,得⎩⎪⎨⎪⎧2m ≤1,1-m =2⇒⎩⎪⎨⎪⎧m ≤12,m =-1,∴m =-1. (3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意; ②若2m<1-m ,即m<13时,需⎩⎪⎨⎪⎧m<13,1-m ≤1或⎩⎪⎨⎪⎧m<13,2m ≥3,得0≤m<13或∅,即0≤m<13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).16.已知集合A ={x|1<x<k},集合B ={y|y =2x -5,x ∈A},若A ∩B ={x|1<x<2},则实数k 的值为( )A .5B .4.5C .2D .3.5答案 D解析 B =(-3,2k -5),由A ∩B ={x|1<x<2},知k =2或2k -5=2,因为k =2时,2k -5=-1,A ∩B =∅,不合题意,所以k =3.5.故选D.17.设f(n)=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ^={n ∈N |f(n)∈P},Q ^={n ∈N |f(n)∈Q},则P ^∩(∁N Q ^)=( )A .{0,3}B .{0}C .{1,2}D .{1,2,6,7}答案 B解析 设P 中元素为t ,由方程2n +1=t ,n ∈N ,解得P ^={0,1,2},Q ^={1,2,3},∴P ^∩(∁N Q ^)={0}.18.(2018·课标全国Ⅱ,理)已知集合A ={(x ,y)|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4答案 A解析 方法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 31C 31=9.故选A.方法二:根据集合A 的元素特征及圆的方程在坐标系中作出图象,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数.故选A.第2课时充分条件与必要条件、全称量词与存在量词[复习要求] 1.理解充分条件、必要条件与充要条件的意义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.充分条件与必要条件(1)若p⇒q且q p,则p是q的充分不必要条件.(2)若q⇒p且p q,则p是q的必要不充分条件.(3)若p⇒q且q⇒p,则p是q的充要条件.(4)若p q且q p,则p是q的既不充分也不必要条件.全称量词和存在量词(1)全称量词有:一切,每一个,任给,用符号“∀”表示.存在量词有:有些,有一个,对某个,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题;“对M中任意一个x,有p(x)成立”可用符号简记为:∀x∈M,p(x),读作:“对任意x属于M,有p(x)成立”.(3)含有存在量词的命题,叫做特称命题(存在性命题);“存在M中的元素x0,使p(x0)成立”可用符号简记为:∃x0∈M,p(x0),读作:“存在M中的元素x0,使p(x0)成立”.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,綈p(x0)∃x0∈M,p(x0)∀x∈M,綈p(x)1.(课本习题改编)(1)x>0是x(x+1)>0的________条件.(2)|a|>0是a>0的________条件.(3)α>β是sinα>sinβ的________条件.答案(1)充分不必要(2)必要不充分(3)既不充分也不必要2.(2021·八省联考)关于x的方程x2+ax+b=0,有下列四个命题:甲:x=1是该方程的根;乙:x=3是该方程的根;丙:该方程两根之和为2;丁:该方程两根异号.如果只有一个假命题,则该命题是()A.甲B.乙C.丙D.丁答案A解析(1)若甲是假命题,则乙、丙、丁是真命题,则x1=3.x2=-1,符合题意.(2)若乙是假命题,则甲、丙、丁是真命题,则x1=1.x2=1,两根不异号,不符合题意.(3)若丙是假命题,则甲、乙、丁是真命题,则两根不异号,不符合题意.(4)若丁是假命题,则甲、乙、丙是真命题,则两根和不为2,不符合题意.故选A.3.(2020·上海春季高考题)“α=β”是“sin2α+cos2β=1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若α=β,则sin2α+cos2β=sin2α+cos2α=1,∴“α=β”是“sin2α+cos2β=1”的充分条件;若sin2α+cos2β=1,则sin2α=sin2β,得不出α=β,∴“α=β”不是“sin2α+cos2β=1”的必要条件,∴“α=β”是“sin2α+cos2β=1”的充分不必要条件.故选A.4.特称命题“存在实数x0,y0,使得x0+y0>1”,用符号表示为________;此命题的否定是________(用符号表示),是________(填“真”或“假”)命题.答案∃x0,y0∈R,x0+y0>1∀x,y∈R,x+y≤1假5.【多选题】下列命题的否定是真命题的是()A.有些实数的绝对值是正数B.所有平行四边形都不是菱形C.∃x∈R,sinx+cosx=3D.∀x∈R,|x|+x2≥0答案BC解析此类题的解法有二:①判断原命题的真假,则其否定与其结论相反.②先写出命题的否定,再判断真假,本题宜用方法①.题型一充分、必要条件的判定例1(1)判断下列各题中,p是q的什么条件?①p:a>b,q:a>b-1;②p:a>b,q:lga>lgb;③p :a>b ,q :2a >2b; ④p :a>b ,q :a 2>b 2.【解析】 ①p ⇒q ,q ⇒/p ,∴p 是q 的充分不必要条件.②q ⇒p ,p q ,∴p 是q 的必要不充分条件.③p ⇒q ,且q ⇒p ,∴p 是q 的充要条件.④p q ,q p ,∴p 是q 的既不充分也不必要条件.【答案】 ①充分不必要条件 ②必要不充分条件③充要条件 ④既不充分也不必要条件(2)判断下列各题中,p 是q 的什么条件?①在△ABC 中,p :A>B ,q :BC>AC ;②p :x>1,q :x 2>1;③p :(a -2)(a -3)=0,q :a =3;④p :a<b ,q :a b <1. 【解析】 ①定义法:由三角形中大角对大边可知,若A>B ,则BC>AC ;反之,若BC>AC ,则A>B.因此,p 是q 的充要条件.②方法一(定义法):由x>1可以推出x 2>1;由x 2>1得x<-1或x>1,不一定有x>1.因此p 是q 的充分不必要条件.方法二(集合法):p =(1,+∞),q =(-∞,-1)∪(1,+∞),∴p ⊆q ,故p 是q 的充分不必要条件.③由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3;由a =3可以得出(a -2)(a -3)=0.因此p 是q 的必要不充分条件.④由于a<b ,当b<0时,a b >1;当b>0时,a b <1,故若a<b ,不一定有a b <1.当b>0,a b<1时,可以推出a<b ;当b<0,a b<1时,可以推出a>b.因此p 是q 的既不充分也不必要条件. 【答案】 ①p 是q 的充要条件 ②p 是q 的充分不必要条件 ③p 是q 的必要不充分条件 ④p 是q 的既不充分也不必要条件(3)设a ,b ∈R ,则“a >b ”是“a|a|>b|b|”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 方法一:当a>b>0时,a>b ⇔a|a|>b|b|;当a>0>b 时,a>b ⇔a|a|>b|b|;当b<a<0时,a>b ⇔a|a|>b|b|,∴选C.方法二:构造函数f(x)=x|x|,则f(x)在定义域R 上为奇函数.因为f(x)=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f(x)在R 上单调递增,所以a >b ⇔f(a)>f(b)⇔a|a|>b|b|.选C.【答案】 C状元笔记判断充分必要条件的步骤(1)弄清条件p 和结论q 分别是什么.(2)尝试p ⇒q ,q ⇒p.(3)可简记为:充分条件是小推大,必要条件是大推小.(4)充要条件可以融入到数学各个分支,题型灵活多变,但万变不离其宗,只要紧扣定义,结合其他知识,便可迎刃而解.思考题1 (1)(2020·天津)设a ∈R ,则“a>1”是“a 2>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 定义法:由a 2>a 得a>1或a<0,反之,由a>1得a 2>a ,则“a>1”是“a 2>a ”的充分不必要条件.故选A.【答案】 A(2)“1x>1”是“e x -1<1”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 ∵1x >1,∴x ∈(0,1).∵e x -1<1,∴x<1,即x ∈(-∞,1).∴“1x>1”是“e x -1<1”的充分不必要条件.或用集合法:∵(0,1)(-∞,1),∴“1x>1”是“e x -1<1”的充分不必要条件. 【答案】 A(3)(2021·衡水中学调研卷)如果x ,y 是实数,那么“x ≠y ”是“cosx ≠cosy ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【解析】 “x ≠y ”不能推出“cosx ≠cosy ”,但“cosx ≠cosy ”一定有“x ≠y ”.【答案】 C(4)(2021·合肥一模)已知偶函数f(x)在[0,+∞)上单调递增,则对实数a ,b ,“a>|b|”是“f(a)>f(b)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 因为f(x)为偶函数,所以f(x)=f(-x)=f(|x|),由于f(x)在[0,+∞)上单调递增,因此若a>|b|≥0,则f(a)>f(|b|),即f(a)>f(b),所以“a>|b|”是“f(a)>f(b)”的充分条件;若f(a)>f(b),则f(|a|)>f(|b|),可得|a|>|b|≥0,由于a ,b 的正负不能判断,因此无法得到a>|b|,则“a>|b|”不是“f(a)>f(b)”的必要条件,所以“a>|b|”是“f(a)>f(b)”的充分不必要条件.故选A.【答案】 A题型二 充分、必要条件的应用例2 (1)已知P ={x|x 2-8x -20≤0},非空集合S ={x|1-m ≤x ≤1+m}.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.【解析】 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x|-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3,所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].【答案】 [0,3](2)在(1)中若把条件“若x ∈P 是x ∈S 的必要条件”改为“若x ∈P 是x ∈S 的必要不充分条件”,则m 的取值范围是________.【解析】 方法一:由(1)若x ∈P 是x ∈S 的必要条件,则0≤m ≤3,当m =0时,S ={1},满足题意;当m =3时,S ={x|-2≤x ≤4}满足题意,故m 的取值范围为[0,3].方法二:若x ∈P 是x ∈S 的必要且充分条件,则P =S ,即⎩⎪⎨⎪⎧1-m =-2,1+m =10⇒m 无解, ∴m 的取值范围是[0,3].【答案】 [0,3]状元笔记本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题化归为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.思考题2 (1)已知p :1≤x ≤2,q :(x -a)(x -a -1)≤0,若p 是q 的充要条件,则实数a 的值为________.【答案】 1(2)已知p :4x +m<0,q :x 2-x -2>0,若p 是q 的一个充分不必要条件,求m 的取值范围.【解析】 ∵4x +m<0,∴x<-m 4,∴p :x<-m 4. ∵x 2-x -2>0,∴x<-1或x>2,∴q :x<-1或x>2.∵p ⇒q ,∴-m 4≤-1,∴m ≥4. 即m 的取值范围是[4,+∞).【答案】 [4,+∞)(3)(2021·北京西城区期末)已知函数f(x)=sin2x ,x ∈[a ,b],则“b -a ≥π2”是“f(x)的值域为[-1,1]”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 由图可知,若a =0,π2<b<3π4,则b -a>π2,但f(x)=sin2x 的值域不是[-1,1].反之,因为值域是[-1,1],说明b -a ≥12T ,而T =π.所以b -a ≥π2.【答案】B题型三全(特)称命题及其真假的判断例3指出下列命题中,哪些是全称命题,哪些是特称命题,并判断真假.(1)若a>0,且a≠1,则对任意实数x,a x>0;(2)对任意实数x1,x2,若x1<x2,则tanx1<tanx2;(3)∃T∈R,使|sin(x+T)|=|sinx|;(4)∃x0∈R,使x02+1<0.【解析】(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0,a≠1)恒成立,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1<x2,但tan0=tanπ,∴命题(2)是假命题.(3)y=|sinx|是周期函数,π就是它的一个周期,∴命题(3)是真命题.(4)对任意x∈R,x2+1>0,∴命题(4)是假命题.【答案】(1)(2)是全称命题,(3)(4)是特称命题;(1)(3)是真命题,(2)(4)是假命题状元笔记全(特)称命题真假的判断方法(1)要判定一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一个x=x0,使得p(x0)不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个特称命题是真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可;否则,这一特称命题就是假命题.(3)不管是全称命题还是特称命题,当其真假不易判定时,可先判断其否定的真假.思考题3(2021·湖北宜昌一中月考)下列命题中是假命题的是() A.∃x0∈R,log2x0=0B.∃x0∈R,cosx0=1C.∀x∈R,x2>0 D.∀x∈R,2x>0【解析】因为log21=0,cos0=1,所以A,B项均为真命题,因为02=0,所以C项为假命题,因为2x>0,所以选项D为真命题.【答案】C题型四含量词命题的否定例4写出下列命题的否定,并判断真假.(1)p1:所有的正方形都是矩形;(2)p2:至少有一个整数,它既能被2整除,又能被5整除;(3)p3:∀x∈{x|x是无理数},x2是无理数;(4)p4:∃x0∈{x|x∈Z},log2x0>0.【解析】(1)綈p1:至少存在一个正方形不是矩形,是假命题.(2)綈p2:所有的整数,都不能被2或5整除,是假命题.(3)綈p3:∃x0∈{x|x是无理数},x02不是无理数,是真命题.(4)綈p4:∀x∈{x|x∈Z},log2x≤0,是假命题.【答案】命题的否定见解析,(1)(2)(4)的否定为假命题,(3)的否定为真命题状元笔记(1)全(特)称命题的否定与命题的否定有着一定的区别,全(特)称命题的否定是将其全称量词改为存在量词(或存在量词改为全称量词),并把结论否定;而命题的否定则是直接否定结论即可.(2)常见词语的否定形式有:原语句是都是>至少有一个至多有一个对任意x∈A使p(x)真否定形式不是不都是≤一个也没有至少有两个存在x0∈A使p(x0)假思考题4(1)写出下列命题的否定并判断真假.①p:所有末位数字是0或5的整数都能被5整除;②p:每一个非负数的平方都是正数;③p:存在一个三角形,它的内角和大于180°;④p:有的四边形没有外接圆.【解析】①綈p:存在末位数字是0和5的整数不能被5整除,是假命题.②綈p:存在一个非负数的平方不是正数,是真命题.③綈p:任何一个三角形,它的内角和不大于180°,是真命题.④綈p:所有的四边形都有外接圆,是假命题.【答案】命题的否定见解析,①④的否定为假命题,②③的否定为真命题(2)(高考真题·浙江卷)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.∃n∈N*,f(n)∉N*且f(n)>nD.∃n∈N*,f(n)∉N*或f(n)>n【解析】全称量词命题的否定为存在量词命题,因此命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定是“∃n∈N*,f(n)∉N*或f(n)>n”.【答案】D1.充分、必要条件的判定方法.(1)定义法.(2)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若A⊆B,则p是q的充分条件;②若B⊆A,则p是q的必要条件;③若A=B,则p是q的充要条件.2.含一个量词的命题的否定,既要否定量词,又要否定结论.题组层级快练(二)一、单项选择题1.(2021·开封市一模)若a ,b 是非零向量,则“a ·b >0”是“a 与b 的夹角为锐角”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 因为a ,b 为非零向量,a ·b >0,所以由向量数量积的定义知,a 与b 的夹角为锐角或a 与b 方向相同;反之,若a 与b 的夹角为锐角,由向量数量积的定义知,a ·b >0成立.故“a ·b >0”是“a 与b 的夹角为锐角”的必要不充分条件.故选B.2.(2021·湖南长郡中学模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A 3.“(m -1)(a -1)>0”是“log a m>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 B解析 (m -1)(a -1)>0等价于⎩⎨⎧m>1,a>1或⎩⎪⎨⎪⎧m<1,a<1,而log a m>0等价于⎩⎨⎧m>1,a>1或⎩⎪⎨⎪⎧0<m<1,0<a<1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m>0.故选B.4.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关,黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( )A .必要条件B .充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 设p :攻破楼兰,q :返回家乡,由已知綈p ⇒綈q ,得q ⇒p ,故p 是q 的必要条件.5.(2019·北京)设A ,B ,C 不共线,则“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 C解析 若|AB →+AC →|>|BC →|,则|AB →+AC →|2>|BC →|2,AB →2+AC →2+2AB →·AC →>|BC →|2,∵点A ,B ,C 不共线,∴线段AB ,BC ,AC 构成一个三角形ABC ,设内角A ,B ,C 对应的边分别为a ,b ,c ,则由平面向量的数量积公式及余弦定理可知,c 2+b 2+2bc·cosA>c 2+b 2-2bc·cosA ,∴cosA>0,又A ,B ,C 三点不共线,故AB →与AC →的夹角为锐角.反之,易得当AB →与AC →的夹角为锐角时,|AB →+AC →|>|BC →|,∴“AB →与AC →的夹角为锐角”是“|AB →+AC →|>|BC →|”的充分必要条件.故选C.6.(2019·浙江)设a>0,b>0,则“a +b ≤4”是“ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为a>0,b>0,所以a +b ≥2ab ,由a +b ≤4可得2ab ≤4,解得ab ≤4,所以充分性成立;当ab ≤4时,取a =8,b =13,满足ab ≤4,但a +b>4,所以必要性不成立.所以“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.7.(2018·北京)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 (定义法)a ,b ,c ,d 是非零实数,若ad =bc ,则b a =dc,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =cd ,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件.故选B.8.命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是( ) A .∃x 0∈R ,⎝⎛⎭⎫13x 0<0 B .∀x ∈R ,⎝⎛⎭⎫13x ≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫13x 0≤0答案 D解析 全称命题“∀x ∈R ,⎝⎛⎭⎫13x >0”的否定是把量词“∀”改为“∃”,并把结论进行否定,即把“>”改为“≤”.故选D.9.命题“∃x 0∈∁R Q ,x 03∈Q ”的否定是( ) A .∃x 0∉∁R Q ,x 03∈Q B .∃x 0∈∁R Q ,x 03∈Q C .∀x ∉∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3∉Q 答案 D解析 该特称命题的否定为“∀x ∈∁R Q ,x 3∉Q ”.10.(2021·湖南邵阳高三大联考)若命题“∃x 0∈R ,x 02+2mx 0+m +2<0”为假命题,则m 的取值范围是( )A .(-∞,-1)∪[2,+∞)B .(-∞,-1)∪(2,+∞)C .[-1,2]D .(-1,2) 答案 C解析 命题的否定是“∀x ∈R ,x 2+2mx +m +2≥0”,该命题为真命题,所以Δ=4m 2-4(m +2)≤0,解得-1≤m ≤2.故选C.11.“m>2”是“关于x 的方程x 2-mx +m +3=0的两根都大于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 B解析 设方程x 2-mx +m +3=0有两根,两根分别为x 1,x 2,则Δ≥0,且x 1+x 2=m ,x 1·x 2=m +3.。

西安电子科技中学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

西安电子科技中学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

一、选择题1.已知:250p x ->,2:20q x x -->,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.已知非空集合A ,B 满足以下两个条件: (i ){}1,2,3,4,5AB =,A B =∅;(ii )A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素, 则有序集合对(),A B 的个数为( ) A .7B .8C .9D .103."tan 1"α=是""4πα=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④5.全集U =R ,集合04xA x x ⎧⎫=≤⎨⎬-⎩⎭,集合(){}2log 12B x x =->,图中阴影部分所表示的集合为( )A .(][],04,5-∞B .()(],04,5-∞C .()[],04,5-∞D .(](),45,-∞+∞6.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R7.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.“3k >”是“方程22133x y k k -=-+表示双曲线”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10.“3,a =23b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为7( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件11.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈12.命题“∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为( )A .∀a ,b >0,a +1b<2和b +1a <2至少有一个成立B .∀a ,b >0,a +1b≥2和b +1a ≥2都不成立C .∃a ,b >0,a +1b<2和b +1a <2至少有一个成立D .∃a ,b >0,a +1b≥2和b +1a ≥2都不成立二、填空题13.已知集合U =R ,集合[]5,2A =-,()1,4B =,则下图中阴影部分所表示的集合为__________.14.设集合{132}A x x x =-<-,集合1{1}B x x=<,则A B =________. 15.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 16.已知集合{}{}21,,A m B m ==,若B A ⊆,则实数m 的值是__________.17.已知集合{}1,2,3,4A =,集合{}3,4,5B =,则A B =_______.18.给出下列四个命题:⑴“直线a ∥直线b ”的必要不充分条件是“a 平行于b 所在的平面”; ⑵“直线l ⊥平面α”的充要条件是“l 垂直于平面α内的无数条直线”; ⑶“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件; ⑷“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 上面命题中,所有真命题的序号为______. 19.定义全集的子集的特征函数为,这里表示在全集中的补集,那么对于集合,下列所有正确说法的序号是 .(1)(2)()1()U A A f x f x =- (3)()()()A B A B f x f x f x ⋃=+ (4)()()()A B A B f x f x f x ⋂=⋅20.对于各数互不相等的正数数组()12,,,n i i i ⋅⋅⋅(n 是不小于2的正整数),如果在p q <时有p q i i >,则称p i 与q i 是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.若各数互不相等的正数数组()1234567,,,,,,a a a a a a a 的“逆序数”是4,则()7654321,,,,,,a a a a a a a 的“逆序数”是______.三、解答题21.已知命题:p x R ∀∈,()()221140a x a x -+-+>,:q x R ∃∈,()22110x a x -++<(1)若“2321t a t --≤≤-”是p 成立的充分条件,求实数t 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数a .22.已知集合12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥.对于1212(,,,),(,,,)n n n A a a a B b b b S ==∈,定义:A 与B 的差为1122(||,||,||)n n A B a b a b a b -=---;A 与B 之间的距离为1(,)||niii d A B a b ==-∑.(1)当2,5k n ==时,设(1,2,1,1,2),(2,1,1,2,1)A B ==,求,(,)A B d A B -; (2)若对于任意的,,n A B C S ∈,有n A B S -∈,求k 的值并证明:(,)(,)d A C B C d A B --=.23.已知集合{}2650A x x x =+->,集合()(){}110B x x a x a =-+-->,其中0a >.(1)若2a =,求()RAB ;(2)设:p x A ∈,:q x B ∈.若p ⌝是q 的充分不必要条件,求a 的取值范围. 24.已知集合{}2|5140A x x x =--≤,{}|14B x x =-≤.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.25.已知命题p :∀x ∈R ,ax 2+ax +1>0及命题q :∃x 0∈R ,x 02﹣x 0+a =0,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.26.已知条件{}2:230,p x A x x x x R ∈=--≤∈,条件{}22:240,q x B x x mx m x R ∈=-+-≤∈.(1)若[]0,3AB =,求实数m 的值;(2)若p ⌝是q 的必要条件,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先求出,p q 对应的不等式的解,再利用集合包含关系,进而可选出答案. 【详解】由题意,5:2502p x x ->⇒>,设5|2A x x ⎧⎫=>⎨⎬⎩⎭2:20q x x -->,解得:2x >或1x <-,设{|2B x x =>或}1x <-显然A 是B 的真子集,所以p 是q 的充分不必要条件. 故选:A. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.2.B解析:B 【分析】结合题意,按照集合中的元素个数分类,即可得解. 【详解】由题意,符合要求的情况分为以下几类:(1)当集合A 只有一个元素时,集合B 中有四个元素,1A ∉且4B ∉, 故{4}A =,{1,2,3,5}B =,共计1种;(2)当集合A 有两个元素时,集合B 中有三个元素,2A ∉且3B ∉, 故可能结果为:①{1,3}A =,{2,4,5}B =;②{3,4}A =,{}1,2,5B =; ③{}3,5A =,{1,2,4}B =,共计3种;(3)当集合A 有三个元素时,集合B 中有两个元素,3A ∉且2∉B , 故可能结果为:①{2,4,5}A =,3{}1,B;②{}1,2,5A =,{3,4}B =;③{1,2,4}A =,{}3,5B =,共计3种;(4)当集合A 中有4个元素时,集合B 中有1个元素,4A ∉且1B ∉, 故{1,2,3,5}A =,{4}B =,共计1种. 所以有序集合对(),A B 的个数为13318+++=. 故选:B. 【点睛】本题考查了根据集合的运算结果及集合中元素的性质确定集合,考查了运算求解能力,属于中档题.3.B解析:B 【解析】 由"tan 1"α=,得,而""4πα=得"tan 1"α=,所以"tan 1"α=是""4πα=的必要非充分条件. 故选B4.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.5.C解析:C 【分析】由图可得,阴影部分表示的集合为()U C A B ⋃.求出集合,,A B A B ⋃,即求()U C A B ⋃. 【详解】∵集合{}04A x x =≤<,{}5B x x =>,由Venn 图可知阴影部分对应的集合为()U C A B ⋃,又{04A B x x ⋃=≤<或}5x >,()()[],04,5U C A B ∴=-∞⋃.故选:C . 【点睛】本题考查集合的运算,属于基础题.6.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.7.B解析:B 【解析】当α⊥β时,平面α内的直线m 不一定和平面β垂直,但当直线m 垂直于平面β时,根据面面垂直的判定定理,知两个平面一定垂直,故“α⊥β”是“m ⊥β”的必要不充分条件.8.A解析:A 【分析】根据充分条件、必要条件的定义,结合双曲线的方程即可判定. 【详解】因为当3k >时,30k ->,30k +>,方程22133x y k k -=-+表示双曲线;当方程22133x y k k -=-+表示双曲线时,(3)(3)0k k -+>,即3k >或3k <-,不能推出3k >,所以“3k >”是“方程22133x y k k -=-+表示双曲线”的充分不必要条件,故选:A 【点睛】本题主要考查了充分条件、必要条件,双曲线的标准方程,属于中档题.9.C解析:C 【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++, 设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.10.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b-=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有2222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.11.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.12.D解析:D 【分析】将“全称量词”改“存在量词”,“至少有一个成立”改为“都不成立”即可得到. 【详解】 “∀a ,b >0,a +1b≥2和b +1a ≥2至少有一个成立”的否定为:∃a ,b >0,a +1b≥2和b +1a ≥2都不成立.故选:D 【点睛】本题考查了全称命题的否定,属于基础题. 二、填空题13.【解析】因为所以或则图中阴影部分所表示的集合为应填答案 解析:[]5,1-【解析】因为[]5,2A =-,()1,4B =,所以{|1U C B x x =≤或4}x ≥,则图中阴影部分所表示的集合为(){|51}U C B A x x ⋂=-≤≤,应填答案[]5,1-.14.【分析】先解不等式再根据交集的定义求解即可【详解】由题因为则解得;又因为则即解得或则或即故答案为:【点睛】本题考查绝对值不等式分式不等式的解法考查交集考查运算能力解析:()4,013⎛⎫-∞⋃ ⎪⎝⎭,【分析】先解不等式,再根据交集的定义求解即可 【详解】由题,因为132x x -<-,则23132x x x -<-<-,解得43x <; 又因为11x<,则10xx -<,即()10x x -<,解得0x <或1x >, 则{|0A B x x ⋂=<或413x <<},即()4,013⎛⎫-∞⋃ ⎪⎝⎭, 故答案为:()4,013⎛⎫-∞⋃ ⎪⎝⎭, 【点睛】本题考查绝对值不等式、分式不等式的解法,考查交集,考查运算能力15.【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式若 解析:()1,2-【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B 的结果.【详解】因为12x -<,所以13x ,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2AB =-.故答案为:()1,2-. 【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.16.【解析】分析:根据集合包含关系得元素与集合属于关系再结合元素互异性得结果详解:因为所以点睛:注意元素的互异性在解决含参数的集合问题时要注意检验集合中元素的互异性否则很可能会因为不满足互异性而导致解题 解析:0【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为B A ⊆,所以22110.m m m m m m m=≠⎧⎧∴=⎨⎨≠=⎩⎩或 点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.17.{34}【分析】利用交集的概念及运算可得结果【详解】【点睛】本题考查集合的运算考查交集的概念与运算属于基础题解析:{3,4}. 【分析】利用交集的概念及运算可得结果. 【详解】{}1234A =,,,,{}345B =,, {}34A B ∴⋂=,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.18.⑶⑷【分析】根据线面位置关系以及充要关系概念进行逐一判断【详解】(1)a 平行于b 所在的平面是直线a ∥直线b 的既不充分也不必要条件;所以(1)错;(2)l 垂直于平面α内的无数条直线是直线l ⊥平面α的必解析:⑶⑷ 【分析】根据线面位置关系以及充要关系概念进行逐一判断. 【详解】(1)“a 平行于b 所在的平面” 是“直线a ∥直线b ”的既不充分也不必要条件;所以(1)错;(2)“l 垂直于平面α内的无数条直线” 是“直线l ⊥平面α”的必要不充分条件;所以(2)错;(3)若“平面α∥平面β”则“α内有无数条直线平行于平面β”,若 “α内有无数条直线平行于平面β”则“平面α,平面β不一定平行”,所以“平面α∥平面β”是“α内有无数条直线平行于平面β”的充分不必要条件;(4)若“有一条与α平行的直线l 垂直于β”,则α内存在一条直线垂直于β,即“平面α⊥平面β”,所以“平面α⊥平面β”的充分条件是“有一条与α平行的直线l 垂直于β”. 综上填(3)(4) 【点睛】本题考查线面位置关系以及充要关系,考查基本分析判断能力,属基础题.19.(1)(2)(4)【详解】试题分析:(1)∵A ⊆B 分类讨论:①当则此时②当且即此时③当且即时此时综合有故(1)正确;(2)故(2)正确;故(3)不正确;故(4)正确;考点:集合的交并补运算解析:(1)(2)(4) 【详解】试题分析:(1)∵A ⊆B ,分类讨论: ①当,则,此时,②当,且,即,此时,③当,且,即时,,,此时,综合有,故(1)正确;(2),故(2)正确;1,()()()0,()A B A B U x A B f x f x f x x C A B ⋃∈⋃⎧=≠+⎨∈⋃⎩,故(3)不正确;,故(4)正确; 考点:集合的交并补运算20.17【分析】用减去4即得【详解】由题意知正数数组的逆序数与的逆序数和为所以的逆序数为故答案为:17【点睛】本题考查新定义问题考查排列组合的应用解题关键是理解认识到数组与中逆序数的和为解析:17 【分析】 用27C 减去4即得. 【详解】由题意知正数数组()1234567,,,,,,a a a a a a a 的“逆序数”与()7654321,,,,,,a a a a a a a 的“逆序数”和为27C ,所以()7654321,,,,,,a a a a a a a 的“逆序数”为27417C -=.故答案为:17. 【点睛】本题考查新定义问题,考查排列组合的应用.解题关键是理解认识到数组()12,,,n i i i ⋅⋅⋅与()11,,,n n i i i -⋅⋅⋅中逆序数的和为2n C .三、解答题21.(1)1,15⎛⎫-∞- ⎪⎝⎭;(2) 3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭【分析】(1)当命题,p q 为真时,求得a 的取值范围,“2321t a t --≤≤-”是p 成立的充分条件即[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭,计算求解即可; (2)p q ∧为假,p q ∨为真,即即,p q 一真一假,分情况讨论即可得出结果.【详解】(1)命题p 为真时,1a =或()()2221014140a a a ⎧->⎪⎨∆=--⨯-⨯<⎪⎩,解得:1a =或1a >或1715a <-,综上:p 为真,a 的取值范围为[)17,1,15⎛⎫-∞-⋃+∞ ⎪⎝⎭;命题q 为真时,()2=2140a ∆+->,解得a 的取值范围为31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭; 若“2321t a t --≤≤-”是p 成立的充分条件,则[][)1723,21,1,15t t ⎛⎫---⊆-∞-⋃+∞ ⎪⎝⎭, ①2321t t -->-时,15t <-,符合题意. ②2321172115t t t --≤-⎧⎪⎨-<-⎪⎩时,即15115t t ⎧≥-⎪⎪⎨⎪<-⎪⎩,11515t -≤<-. ③2321231t t t --≤-⎧⎨--≥⎩时,151t t ⎧≥-⎪⎨⎪<-⎩,无解.综上:t 的取值范围为:1,15⎛⎫-∞-⎪⎝⎭. (2)若p q ∧为假,p q ∨为真,即,p q 一真一假:①p 真q 假:171153122a a a ⎧<-≥⎪⎪⎨⎪-<<⎪⎩或,即317215a -<<-②p 假q 真:171153122a a a ⎧-≤<⎪⎪⎨⎪≤-≥⎪⎩或,即112a ≤<.综上:实数a 的取值范围:3171,,12152⎛⎫⎡⎫--⋃ ⎪⎪⎢⎝⎭⎣⎭. 【点睛】方法点睛:根据命题的真假求參数的取值范围的方法 (1)求出当命题,p q 为真命题时所含參数的取值范围; (2)判断命题,p q 的真假性;(3)根据命题的真假情况,利用集合的交集和补集的运算,求解參数的取值范围. 22.(1)()1,1,0,1,1;4;(2)0k =;证明见解析. 【分析】(1)直接代入计算A B -和(,)d A B ;(2)根据{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,可计算得0k =;然后表示出()()1|()|,ni i i i i a d A C B C c b c =-----=∑,分别讨论0i c =与1i c =两种情况.【详解】(1)()()12,21,11,12,211,1,0,1,1A B -=-----=;1(,)||1+1+0+1+1=4ni i i d A B a b ==-=∑;(2)证明:因为12{|(,,,),{,1},1,2,,}(2)n n i S X X x x x x k i n n ==∈=≥, 1122(||,||,||)n n n A B a b a b a b S -=---∈,所以对于任意的,n A B S ∈,即对{},,1(1,2,,)i i a b k i n ∈=,都有n n a b k -=或1,所以得0k =.设12(,,,)n n C c c c S =∈则()()1|()|,niiiii a d A C B C c b c =-----=∑,当0ic=时,()()=i i i i i ia cbc a b ----;当1i c =时,()()()()=11i i i i i i i i a c b c a b a b ------=-. 所以()()()11||(,)||,nniiiiiii i d A a c b c a b d A B B C C ==--=--=-=-∑∑【点睛】解答该题的关键是需要注意理解并表示出()()1|()|,niiiii a d A C B C c b c =-----=∑,然后代入化简判断0i c =与1i c =两种情况. 23.(1){}13x x -<≤;(2)(0,2]. 【分析】分别求解一元二次不等式化简A 与B .(1)把2a =代入集合B ,再由交、并、补集的混合运算得答案; (2)由p ⌝是q 的充分不必要条件,得RA B ,进一步转化为两集合端点值间的关系列不等式组求解. 【详解】2{|650}{|16}A x x x x x =+->=-<<,{|(1)(1)0}{|1B x x a x a x x a =-+-->=<-或1}x a >+.(1)若2a =,则{|1B x x =<-或3}x >,{|13}R B x x =-, (){|16}{|13}{|13}R A B x x x x x x ∴⋂=-<<⋂-=-<;(2)若p ⌝是q 的充分不必要条件,A R1{|x x =≤-或6}x ≥则RAB .∴01116a a a >⎧⎪--⎨⎪+⎩且不等式组中两等号不同时成立,解得02a <. a ∴的取值范围是(0,2].【点睛】本题考查交、并、补集的混合运算以及利用包含关系求参数,考查充分条件与必要条件的判定方法,考查数学转化思想方法,是中档题. 24.(1)3m ≤;(2)m 1≥. 【分析】 (1)先求出AB ,再根据包含关系可得关于m 的不等式组,从而求实数m 的取值范围,注意对C 是否为空集分类讨论; (2)先求出A B ,再根据()A BD =∅得到关于m 的不等式,从而求实数m 的取值范围. 【详解】(1){}|27A x x =-≤≤,{}|35B x x =-≤≤,{}|25A B x x =-≤≤,①若C =∅,则121m m +>-,∴2m <;②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤,综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴m 1≥. 【点睛】本题考查集合的包含关系以及一元二次不等式的解的求法,注意根据集合关系得到不同集合中的范围的端点满足的不等式(或不等式组),要验证等号是否可取,还要注意含参数的集合是否为空集或全集. 25.0a <或144a << 【分析】题:p x R ∀∈,210ax ax ++>,对a 分类讨论:当0a =时,直接验证;当0a ≠时,可得2040a a a >⎧⎨∆=-<⎩.命题0:q x R ∃∈,200x x a -+=,可得10∆.由p q ∨为真命题,p q ∧为假命题,可得命题p 与q 必然一真一假.解出即可.【详解】解:命题:p x R ∀∈,210ax ax ++>,当0a =时,10>成立,因此0a =满足题意;当0a ≠时,可得240a a a >⎧⎨∆=-<⎩,解得04a <<. 综上可得:04a <.命题0:q x R ∃∈,200x x a -+=,∴1140a =-∆,解得14a . p q ∨为真命题,p q ∧为假命题,∴命题p 与q 必然一真一假.∴0414a a <⎧⎪⎨>⎪⎩或0414a a a <⎧⎪⎨⎪⎩或, 解得0a <或144a <<. ∴实数a 的取值范围是0a <或144a <<. 【点睛】本题考查了一元二次不等式与一元二次方程的解集与判别式的关系、简易逻辑的判定,考查了推理能力与计算能力,属于基础题. 26.(1)2m =;(2)()(),35,-∞-+∞.【分析】(1)求出集合A 、B ,根据交集运算结果得出关于m 的等式和不等式,即可求出实数m的值; (2)求出A R,由p ⌝是q 的必要条件,可得出RB A ⊆,可得出关于实数m 的不等式,即可求得实数m 的取值范围.【详解】 (1){}[]2230,1,3A x x x x R =--≤∈=-,{}()(){}[]222402202,2B x x mx m x x m x m m m ⎡⎤⎡⎤=-+-≤=-+⋅--≤=-+⎣⎦⎣⎦,又[]0,3A B ⋂=,则2023m m -=⎧⎨+≥⎩,解得2m =;(2)()(),13,RA =-∞-⋃+∞,且p ⌝是q 的必要条件,则RB A ⊆,所以,21m +<-或23m ->,解得3m <-或5m >. 因此,实数m 的取值范围是()(),35,-∞-⋃+∞. 【点睛】本题考查了利用交集的结果求参数,同时也考查了利用必要条件求参数,考查了推理能力与计算能力,属于中档题.。

高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练01 集合与常用逻辑用语(含解析)

高考数学复习考点知识与题型专题讲解训练专题01集合与常用逻辑用语考点1 集合的含义与表示1.(2021·江苏高三模拟)已知集合(){},2,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A .9 B .10C .12D .13【答案】D【解析】由题意可知,集合A 中的元素有:()2,0-、()1,1--、()1,0-、()1,1-、()0,2-、()0,1-、()0,0、()0,1、()0,2、()1,1-、()1,0、()1,1、()2,0,共13个.故选:D.2.(2021·江西高三模拟)已知集合{}2|210,A x ax x a =++=∈R 只有一个元素,则a 的取值集合为( ) A .{1} B .{0} C .{0,1,1}- D .{0,1}【答案】D【解析】①当0a =时,1{}2A =-,此时满足条件;②当0a ≠时,A 中只有一个元素的话,440a ∆=-=,解得1a =,综上,a 的取值集合为{0,1}.故选:D . 考点2 集合间的基本关系3.(2021·西安市经开第一中学高三模拟)集合{1A x x =<-或3}x ≥,{}10B x ax =+≤若B A ⊆,则实数a 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .()[),10,-∞-⋃+∞D .()1,00,13⎡⎫-⋃⎪⎢⎣⎭【答案】A 【解析】B A ⊆,∴①当B =∅时,即10ax +无解,此时0a =,满足题意.②当B ≠∅时,即10ax +有解,当0a >时,可得1xa-, 要使B A ⊆,则需要011a a>⎧⎪⎨-<-⎪⎩,解得01a <<.当0a <时,可得1xa-, 要使B A ⊆,则需要013a a <⎧⎪⎨-⎪⎩,解得103a -<,综上,实数a 的取值范围是1,13⎡⎫-⎪⎢⎣⎭.故选:A .4.(2021·四川石室中学高三一模)已知集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,则M 的子集个数是( ) A .2 B .3 C .4 D .8【答案】D【解析】因为集合x y z xyz M m m x y z xyz ⎧⎪==+++⎨⎪⎩∣,x 、y 、z 为非零实数} ,所以当,,x y z 都是正数时,4m =;当,,x y z 都是负数时,4m =-;当,,x y z 中有一个是正数,另两个是负数时,0m =, 当,,x y z 中有两个是正数,另一个是负数时,0m =,所以集合M 中的元素是3个,所以M 的子集个数是8,故选D. 考点3 集合的基本运算 角度1:交集运算5.(2021·四川高三三模(文))设集合A ={x |1≤x ≤3},B ={x |24x x --<0},则A ∩B =( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】A【解析】∵A ={x |1≤x ≤3},B ={x |2<x <4},∴A ∩B ={x |2<x ≤3}.故选:A .6.(2021·浙江瑞安中学高三模拟)已知集合{}31A x Z x =∈-<<,{}2,B y y x x A ==∈,则A B 的元素个数为( )A .1B .2C .3D .4【答案】B【解析】因为{}{}2,1,031A x Z x =-∈--=<<所以{}{}4,2,02,=B y y x x A =--=∈, 所以{}=2,0A B -,所以A B 的元素个数为2个.故选B. 角度2:并集运算7.(2021·陕西高三模拟)已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( )A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈C .{}21,x x k k Z =+∈D .∅【答案】C【解析】因为集合{}21,M x x k k ==+∈Z ,集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立,所以{}21,M N x x k k ⋃==+∈Z .故选:C.8.(2021·天津高三二模)已知集合{|42}M x x =-<<,2{|60}N x x x =--=,则M N ⋂=___________.【答案】{}2-【解析】因为集合{|42}M x x =-<<,{}2{|60}2,3N x x x =--==-,所以M N ⋂= {}2-角度3:补集运算9.(2021·四川高三零模(文))设全集{}*|9U x x =∈<N ,集合{}3,4,5,6A =,则U A ( )A .{}1,2,3,8B .{}1,2,7,8C .{}0,1,2,7D .{}0,1,2,7,8【答案】B【解析】因为{}{}*91,2,3,4|,5,6,7,8U x x =∈<=N ,{}3,4,5,6A =,所以{}1,2,7,8U A =.故选:B .10.(2021·江苏省江浦高级中学高三月考)已知集合{}1U x x =>,{}2A x x =>,则UA________.【答案】{}12x x <≤【解析】{}1U x x =>,{}2A x x =>,∴12U A x x ,角度4:交、并、补混合运算11.(2021·辽宁高三二模)已知U =R ,{}2M x x =≤,{}11N x x =-≤≤,则UM N =( )A .{1x x <-或}12x <≤B .{}12x x <≤C .{1x x ≤-或}12x ≤≤D .{}12x x ≤≤【答案】A【解析】因为{1U N x x =<-或1}x >,所以{1U M C N x x ⋂=<-或12}x <≤.故选:A.12.(2021·山东烟台市·烟台二中高三三模)已知集合{}13A x x =<<,{}2B x x =<,则RAB =( )A .{}12x x <<B .{}23x x <<C .{}23x x ≤<D .{}3x x >【答案】C 【解析】{}13A x x =<<,{}2B x x =<,{}R 2B x x ∴=≥,{}R 23A B x x ∴⋂=≤<.故选:C.13.【多选】(2021·重庆高三三模)已知全集U 的两个非空真子集A ,B 满足()U A B B =,则下列关系一定正确的是( ) A .A B =∅ B .A B B = C .A B U ⋃= D .()U B A A =【答案】CD【解析】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =,但A B ⋂≠∅,A B B ≠,故A ,B 均不正确; 由()U A B B =,知UA B ⊆,∴()()UU AA AB =⊆,∴A B U ⋃=,由UA B ⊆,知UB A ⊆,∴()U B A A =,故C ,D 均正确.故选CD.14.(2021·江苏高三模拟)某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是________. 【答案】6【解析】如图所示,(a +b +c +x )表示周一开车上班的人数,(b +d +e +x )表示周二开车上班人数,(c +e +f +x )表示周三开车上班人数,x 表示三天都开车上班的人数,则有:1410820a b c x b d e x c e f x a b c d e f x +++=⎧⎪+++=⎪⎨+++=⎪⎪++++++=⎩,即22233220a b c d e f x a b c d e f x ++++++=⎧⎨++++++=⎩,即212b c e x +++=,当0b c e ===时,x 的最大值为6, 即三天都开车上班的职工人数至多是6. 角度5:利用集合的运算求参数15.(2021·江西高三模拟)已知集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B φ⋂≠,则实数m 的取值范围是_______. 【答案】{|113}m m -<<【解析】由题意,集合{|23},{|9}A x x B x m x m =-<<=<<+,若A B ⋂=∅时,则有92m +≤-或3m ≥,解得11m ≤-或3m ≥,所以当A B ⋂≠∅时,实数m 的取值范围为{|113}m m -<<.16.(2021·山东高三模拟)集合{}{}240,1,,2,.A a B a =-=-若{}2,1,0,4,16A B ⋃=--,则a =( ) A .±1 B .2± C .3± D .4±【答案】B【解析】由{}2,1,0,4,16A B ⋃=--知,24416a a ⎧=⎨=⎩,解得2a =±故选:B考点4 集合中的新定义17.(2021·黑龙江哈师大附中高三三模(理))设全集{}1,2,3,4,5,6U =,且U 的子集可表示由0,1组成的6位字符串,如:{}2,4表示的是自左向右的第2个字符为1,第4个字符为1,其余字符均为0的6位字符串010100,并规定,空集表示的字符串为000000;对于任意两集合A ,B ,我们定义集合运算{A B x x A -=∈且}x B ∉,()()A B A B B A *=-⋃-.若{}2,3,4,5A =,{}3,5,6B =,则A B *表示的6位字符串是( ) A .101010 B .011001C .010101D .000111【答案】C【解析】由题意可得若{}2,3,4,5A =,{}3,5,6B =,则{}2,4,6A B *=, 所以此集合的第2个字符为1,第4个字符为1,第6个字符为1, 其余字符均为0,即A B *表示的6位字符串是010101.故选C18.【多选】(2021·开原市第二高级中学高三三模)满足{}1234,,,M a a a a ⊆,且{}{}12312,,,Ma a a a a =的集合M 可能是( )A .{}12,a aB .{}123,,a a aC .{}124,,a a aD .{}1234,,,a a a a【答案】AC 【解析】∵{}{}12312,,,Ma a a a a =,∴集合M 一定含有元素12,a a ,一定不含有3a ,∴12{,}M a a =或124{,,}M a a a =.故选AC .19.(2021·江苏省宜兴中学高三模拟)设A 是整数集的一个非空子集,对于k A ∈,若1k A -∉且1k A +∉,则k 是A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8,9S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有_________个. 【答案】7【解析】由集合的新定义知,没有与之相邻的元素是“孤立元”,集合S 不含“孤立元”, 则集合S 中的三个数必须连在一起,所以符合题意的集合是{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,{}7,8,9,共7个.考点5 全称量词与特称量词20.“0[2,)x ∃∈+∞,20log 1x <”的否定是( ) A .[2,)x ∀∈+∞,2log 1x ≥ B .(,2)x ∀∈-∞,2log 1x > C .0(,2)x ∃∈-∞,20log 1x ≥ D .[2,)x ∃∈+∞,2log 1x ≤【答案】A【解析】“0[2,)x ∃∈+∞,20log 1x <”是特称命题,特称命题的否定是全称命题, 所以“0[2,)x ∃∈+∞,20log 1x <”的否定是“[2,)x ∀∈+∞,2log 1x ≥”.故选:A21.(2021·黑龙江大庆中学高三期末)命题“0x ∀>,总有()11xx e +>”的否定是( )A .0x ∀>,总有()11xx e +≤ B .0x ∀≤,总有()11xx e +≤C .00x ∃≤,使得()0011xx e +≤D .00x ∃>,使得()0011xx e +≤【答案】D【解析】由全称命题的否定可知,命题“0x ∀>,总有()11xx e +>”的否定是“00x ∃>,使得()0011xx e +≤”.故选D.考点6 充分条件、必要条件的判断22.(2021·南京师范大学附属扬子中学高三模拟)设乙的充分不必要条件是甲,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分又不必要【答案】A【解析】甲是乙的充分不必要条件,即甲⇒乙,乙⇒甲, 乙是丙的充要条件,即乙⇔丙,丁是丙的必要非充分条件,即丙⇒丁,丁⇒丙,所以甲⇒丁,丁⇒甲,即甲是丁的充分不必要条件,故选:A .23.(2021·宁波中学高三模拟)△ABC 中,“△ABC 是钝角三角形”是“AB AC BC +<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】在△ABC 中,若∠A 为锐角,如图画出平行四边形ABCD ∴AB AC AD +=易知AD BC >∴“△ABC 是钝角三角形”不一定能推出“AB AC BC +<”; 在△ABC 中,A B C ,,三点不共线, ∵AB AC BC +<∴AB AC AC AB +<-∴22AB AC AC AB +<-∴0AB AC ⋅<∴∠A 为钝角∴△ABC 为钝角三角形 ∴“AB AC BC +<”能推出“△ABC 是钝角三角形”故“△ABC 是钝角三角”是“AB AC BC +<”的必要不充分条件,故选:B. 考点7 充分条件、必要条件的应用24.(2021·内蒙古高三二模(理))设计如下图的四个电路图,则能表示“开关A 闭合”是“灯泡B 亮”的必要不充分条件的一个电路图是( )A .B .C .D .【答案】C【解析】选项A :“开关A 闭合”是“灯泡B 亮”的充分不必要条件; 选项B :“开关A 闭合”是“灯泡B 亮”的充要条件; 选项C :“开关A 闭合”是“灯泡B 亮”的必要不充分条件;选项D :“开关A 闭合”是“灯泡B 亮”的既不充分也不必要条件.故选:C.25.(2021·山东高三其他模拟)已知p :x a ≥,q :23x a +<,且p 是q 的必要不充分条件,则实数a 的取值范围是( )A .(]1-∞-,B .()1-∞-,C .[)1+∞,D .()1+∞,【答案】A【解析】因为q :23x a +<,所以:2323q a x a --<<-+, 记{}|2323A x a x a =--<<-+;:p x a ≥,记为{}|B x x a =≥.因为p 是q 的必要不充分条件,所以A B ,所以23a a ≤--,解得1a ≤-.故选:A .26.(2021·河北衡水中学高三模拟)若不等式()21x a -<成立的充分不必要条件是12x <<,则实数a 的取值范围是________. 【答案】[]1,2【解析】由()21x a -<得11a x a -<<+,因为12x <<是不等式()21x a -<成立的充分不必要条件, ∴满足1112a a -≤⎧⎨+≥⎩且等号不能同时取得,即21a a ≤⎧⎨≥⎩,解得12a ≤≤. 考点8 根据命题的真假求参数的取值范围11 / 11 27.(2021·涡阳县育萃高级中学高三月考(文))若命题“0x R ∃∈,200220x mx m +++<”为假命题,则m 的取值范围是( )A .12m -≤≤B .12m -<<C .1m ≤-或2m ≥D .1m <-或2m >【答案】A【解析】若命题“0x R ∃∈,200220x mx m +++<”为假命题, 则命题“x R ∀∈,2220x mx m +++≥”为真命题,即判别式()2=4420m m ∆-+≤,即()()210m m -+≤,解得12m -≤≤.故选:A.28.(2021·广东石门中学高三其他模拟)若“2[4,6],10x x ax ∃∈-->”为假命题,则实数a 的取值范围为___________. 【答案】356a ≥ 【解析】因为“2[4,6],10x x ax ∃∈-->”为假命题,所以[]24,6,10x x ax ∀∈--≤恒成立, 即1x a x -≤在[]4,6恒成立,所以max 1a x x ⎛⎫≥- ⎪⎝⎭且[]4,6x ∈, 又因为()1f x x x=-在[]4,6上是增函数,所以()()max 1356666f x f ==-=,所以356a ≥.。

人教A版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷 word版,含答案

人教A版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷 word版,含答案

人教A 版(2019)高中必修第一册数学第一章《集合与常用逻辑用语》训练卷一、选择题1.下列四组对象中能构成集合的是( ).A .本校学习好的学生B .在数轴上与原点非常近的点C .很小的实数D .倒数等于本身的数2.下列命题不是存在量词命题的是( )A .有的无理数的平方是有理数B .有的无理数的平方不是有理数C .对于任意x ∈Z ,21x +是奇数D .存在x ∈R ,21x +是奇数 3.集合A ={x |0≤x <3,x ∈N}的真子集的个数是( )A .7B .8C .16D .44.设,a b ∈R ,则“a b >”是“22a b >”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 5.已知集合{}2A x x x ==,那么 A .0∈A B .1∉A C .{}1∈A D .{0,1}≠A6.设集合{}2,1,2A a =-,{}2,4B =,则“2a =”是“{}4A B ⋂=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 7.若集合3,2,1,0,1,2A ,集合{}1,B y y x x A ==+∈,则B =( ) A .{}1,2,3 B .{}0,1,2 C .{}0,1,2,3 D .{}1,0,1,2,3- 8.设集合{|12},{|}A x x B x x a =-≤<=<,若A B ⋂≠∅,则a 的取值范围是( )A .(1,2]-B .(2,)+∞C .[1,)-+∞D .(1,)-+∞9.设集合A ={0,1,2},B ={m |m =x +y ,x ∈A ,y ∈A },则集合A 与B 的关系为( )A .AB ∈ B .A B =C .B A ⊆D .A B ⊆10.已知集合{0,1}A =,{|}B x x A =⊆,则下列关于集合A 与B 的关系正确的是( )A .AB ⊆B .A B ≠⊂C .B A ≠⊂D .A B ∈ 二、填空题11.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z Z ;13______Q ;π______R . 12.命题“对任意一个实数x ,221x x ++都不小于零”,用“∃”或“∀”符号表示为________________.13.满足{1,2}{1,2,3,4,5}M ≠⊂⊆的集合M 有______个. 14.若命题“存在x∈R ,使得2ax 2x a 0++≤”为假命题,则实数a 的取值范围为_____.15.已知:13p x ,:11q x m -<<+,若q 是p 的必要不充分条件,则实数m 的取值范围是_____.16.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R =,则实数a 的取值范围是______________________ .17.若集合(){}22210A x k x kx =+++=有且仅有2个子集,则满足条件的实数k 的最小值是____. 三、解答题18.用列举法表示下列集合:(1)大于1且小于6的整数;(2){}(1)(2)0A x x x =-+=;(3){}3213B x Z x =∈-<-<.19.已知A ={|x x 满足条件p },B ={|x x 满足条件q },(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?(3)如果A B =,那么p 是q 的什么条件?20.设集合{|116}A x x =-≤+≤,{|121}B x m x m =-<<+.(1)当x ∈Z 时,求A 的非空真子集的个数;(2)若A B ⊇,求m 的取值范围.21.设2{|450}A x x x =--=,2{|1}B x x ==,求A B ,A B .22.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()U U A B ; (2)()()UU A B ⋃.23.已知集合{}25A x x -≤≤=,{}121B x m x m +≤≤-=.(1)若B A ,求实数m 的取值范围;(2)若A B ⊆,求实数m 的取值范围.24.设集合{|12}A x x =-≤≤,集合{|21}B x m x =<<.(1)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围;(2)若()R B C A ⋂中只有一个整数,求实数m 的取值范围.参考答案1.D【分析】根据集合中元素具有确定性判断选项即可得到结果.【详解】集合中的元素具有确定性,对于,,A B C ,学习好、非常近、很小都是模糊的概念,没有明确的标准,不符合确定性;对于D ,符合集合的定义,D 正确.故选:D .【点睛】本题考查集合的定义,关键是明确集合中的元素具有确定性,属于基础题.2.C【分析】直接根据全称量词与存在量词的概念,找出四个选项中的全称量词与存在量词得答案.【详解】A 、B 、D 中都有存在量词,是存在量词命题,C 中含有量词“任意”,为全称量词命题,故选:C .【点睛】本题考查存在量词与存在量词命题,是基础题.3.A【分析】首先用列举法表示集合A ,含有n 个元素的集合的真子集的个数是21n -个.【详解】{}0,1,2A =,集合含有3个元素,真子集的个数是3217-=,故选A.【点睛】本题考查集合的真子集个数的求解,属于基础题型,一个集合含有n 个元素,其子集个数是2n 个,真子集个数是21n -个.4.D【详解】若0,2a b ==-,则22a b <,故不充分;若2,0a b =-=,则22a b >,而a b <,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.5.A【分析】解方程x 2=x ,化简集合A ,然后根据元素与集合的关系,以及集合之间的关系判断.【详解】已知A={x|x 2=x},解方程x 2=x ,即x 2-x=0,得x=0或x=1,∈A={0,1}.故选A【点睛】本题主要考查元素与集合的关系,以及集合之间的关系,这类题目通常需要先化简集合,再进行判断.6.A【分析】由2a =可以推出{}4A B ⋂=,由{}4A B ⋂=,推出2a =或2a =-,从而进行判断,得到答案.【详解】当“2a =”时,{}1,4,2A =-,{2,4}B =,所以可以推出“{}4A B ⋂=”.当“{}4A B ⋂=”时,得到24a =,所以2a =或2a =-,故不能推出“2a =”.由此可知“2a =”是“{4}A B ⋂=”的充分不必要条件.故选:A.【点睛】本题考查判断充分不必要条件,根据交集运算结果求参数,属于简单题.7.C【分析】将A 集合中元素逐个代入1y x =+中计算y 的值,然后根据元素的互异性得到B 集合的组成.【详解】 由1y x =+,x A ∈得,当3x =-,1时,2y =;当2x =-,0时,1y =;当1x =-时,0y =;当2x =时,3y =.故集合{}0,1,2,3B =,故选C.【点睛】本题考查对集合的两种表示方法的理解,难度较易.通过运算得到函数值的集合时,注意利用互异性对函数值进行取舍.8.D【分析】由A B ⋂≠∅知,集合A ,B 有公共元素,作出图示即可得到结论.【详解】因为A B ⋂≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知1a >-.故选:D.【点睛】本题考查集合的交集的运算,属于基础题.9.D【分析】先分别求出集合A 和B ,由此能求出结果.【详解】∈合A={0,1,2},B={m|m=x+y ,x∈A ,y∈A}={0,1,2,3,4},∈A∈B .故选D .【点睛】本题考查命题真假的判断,考查集合的包含关系等基础知识,考查运算求解能力,是基础题.10.D【分析】根据集合间的基本关系分析即可.【详解】因为x A ⊆,所以{,{0},{1},{0,1}}B =∅,集合{0,1}A =是集合B 中的元素,所以A B ∈.故选:D【点睛】本题主要考查了集合间的基本关系的理解,属于基础题型.11.∈ ∉ ∉ ∉ ∈ ∈【分析】根据自然数,整数,有理数,实数的定义即可判断.【详解】0是自然数,则0N ∈;3-不是自然数,则3N -∉;不是整数,则0.5Z Z ∉;13是有理数,则13Q ∈;π是无理数,则R π∈ 故答案为:(1)∈;(2)∉;(3)∉;(4)∉;(5)∈;(6)∈【点睛】本题主要考查了元素与集合间的关系,属于基础题.12.x ∀∈R ,2210x x ++≥【分析】根据全称量词命题:()x M p x ∀∈,,以及含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,据此即可表示出结果.【详解】含有全称量词“任意一个”,用符号“∀”表示,“不小于零”就是“0≥”,因此命题用符号表示为“x ∀∈R ,2210x x ++≥”,故填:x ∀∈R ,2210x x ++≥.【点睛】本题考查含有全称量词的命题就称为全称量词命题.一般形式为:全称量词命题:()x M p x ∀∈,.13.7【分析】利用枚举法直接求解即可.【详解】由{1,2}{1,2,3,4,5}M ≠⊂⊆,可以确定集合M 必含有元素1,2,且至少舍有元素3,4,5中的一个,因此依据集合M 的元素个数分类如下:含有三个元素:{1,2,3},{1,2,4},{1,2,5};含有四个元素:{1,2,3,4},{1,2,35},,{1,2,4,5};含有五个元素:{1,2,3,4,5},故满足题意的集合M 共有7个.故答案为:7【点睛】本题主要考查了集合间的基本关系与枚举法的运用,属于中等题型.14.()1,+∞【解析】【分析】由原命题为假命题,则其否定为真命题,得x R ∀∈,使得2ax 2x a 0++>恒成立,即可得a 的范围.【详解】命题“0x R ∃∈,使得a 2x 2x a 0++≤”是假命题,则命题“x R ∀∈,使得2ax 2x a 0++>”是真命题,∈∈a=0,x>0不恒成立;22a>024a 0⎧⇒⎨∆=-<⎩②a >1. 故答案为(1,+∞).【点睛】本题考查了存在命题的否定,不等式恒成立问题,考查转化思想以及计算能力,属于基础题.15.()2,+∞【分析】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,根据集合的包含关系,即可求解.【详解】由题意,命题:13p x ,:11q x m -<<+,因为q 是p 的必要不充分条件,即p q ⊆,则13m +>,解得2m >,即实数m 的取值范围是(2,)+∞.【点睛】本题主要考查了必要不充分条件的应用,以及集合包含关系的应用,其中解答中根据题意得出集合p 是集合q 的子集,根据集合的包含关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16.1a ≤【分析】由并集的定义及数轴表示可得解.【详解】在数轴上表示出集合A 和集合B ,要使A B R =,只有1a ≤.【点睛】本题主要考查了集合的并集运算,利用数轴找关系是解题的关键,属于基础题.17.-2【分析】根据题意可知,集合A 只有一个元素,从而2k =-时,满足条件,而2k ≠-时,可得到()24420k k ∆=-+=,求出k ,找到最小的k 即可.【详解】 A 只有2个子集;A ∴只有一个元素;2k ①∴=-时,14A ⎧⎫=⎨⎬⎩⎭,满足条件; ∈2k ≠-时,()24420k k ∆=-+=; 解得1k =-或2;综上,满足条件的实数k 的最小值为﹣2.故答案为﹣2.【点睛】考查子集的概念,描述法和列举法表示集合的定义,以及一元二次方程实根个数和判别式∆的关系.18.(1){}2,3,4,5;(2){}1,2A =-;(3){}0,1B =【分析】根据题意,求出集合的元素,用列举法表示出来即可.【详解】解:用列举法表示下列集合(1)大于1且小于6的整数,{}2,3,4,5;(2){|(1)(2)0}A x x x =-+=;所以{}1,2A =-(3){|3213}B x Z x =∈-<-<,由3213x -<-<解得12x -<<,x ∈Z ,故表示为{}0,1B =,19.(1)充分条件;(2)必要条件;(3)充要条件.【分析】(1) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(2) 根据集合间的基本关系判断p 和Q 的包含关系再即可.(3) 根据集合间的基本关系判断p 和Q 的包含关系再即可.【详解】(1)如果A B ⊆,则满足条件p 也满足条件q .故p 是q 的充分条件.(2)如果B A ⊆,则满足条件q 也满足条件p .故p 是q 的必要条件.(3)如果A B =,则满足条件p 满足条件q ,且满足条件q 也满足条件p .故p 是q 的充要条件.【点睛】本题主要考查了集合的关系与充分必要条件的关系,属于基础题型.20.(1)254;(2){|122}m m m -≤≤-或.【分析】对于(1),根据x 的取值范围,可确定集合A 中所含元素,根据其元素的个数可判断出其子集的个数,若集合含有n 个元素时,则有2n 的子集,当1n >时,其非空真子集的个数为22n -,即可得到答案;对于(2),由于空集是任何非空集合的子集,故对于B 集合是否为空集需分情况讨论:∈集合B 为空集,即121m m -≥+; ∈集合B 为非空集合,即121m m -<+.【详解】由题意得{|25}A x x =-≤≤.(1)∈x ∈Z ,∈{2,1,0,1,2,3,4,5}A =--,即A 中含有8个元素,∈A 的非空真子集的个数为822254-=.(2)∈当121m m -≥+,即2m ≤-时,B A =∅⊆;∈当121m m -<+,即2m >-时,{|121}B x m x m =-<<+,因此,要使B A ⊆,则12,12215m m m --⎧⇒-⎨+⎩. 综上所述,m 的取值范围{|12m m -≤≤或2}m -.【点睛】本题主要考查的是非空子集和真子集的定义,集合的包含关系及应用,考查不等式的解法,考查学生的计算能力,考查的核心素养是数学运算、逻辑推理,误区警示:(1)确定方程的解的集合或不等式的解集之间的关系时,当其含有参数时,注意要分类讨论,不讨论易导致误判.(2)()A B B ⊆≠∅包含三种可能,∈A 为∅;∈A 不为必∅,且A B ;∈A 不为∅,且A B =.只写其中一种是不全面的,如果A ,B 是确定的,就只有一种可能,此时只能写出一种形式.是基础题.21.{}1,1,5A B =-,{}1A B ⋂=-.【分析】根据一元二次方程的解法分别求得集合,A B ,由并集和交集的定义直接得到结果.【详解】{}()(){}{}24505101,5A x x x x x x =--==-+==-,{}{}211,1B x x ===- {}1,1,5A B ∴=-,{}1A B ⋂=-【点睛】本题考查集合运算中的交集和并集运算,涉及到一元二次方程的求解问题,属于基础题.22.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】 如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.23.(1){}3m m ≤;(2)不存在实数m 使A B ⊆.【分析】(1) ∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,根据子集关系列式可解得;(2)根据两个集合的子集关系列式无解,故不存在实数m .【详解】(1)∈当B ∅=时,由121m m +>-,得2m <,满足题意;∈当B ≠∅时,如图所示,12215121m m m m +≥-⎧⎪∴-≤⎨⎪+≤-⎩且12m +=-与215m -=不能同时取等号,解得23m ≤≤. 综上可得,m 的取值范围是:{}3m m ≤.(2)当A B ⊆时,如图所示,此时B ≠∅,21112215m m m m ->+⎧⎪∴+≤-⎨⎪-≥⎩,即233m m m >⎧⎪≤-⎨⎪≥⎩,∈m 不存在,即不存在实数m 使A B ⊆.【点睛】本题考查了根据集合间的子集或真子集关系,容易漏掉空集情况,属于中档题.24.(1)1[,)2-+∞;(2)3[,1)2--. 【分析】(1)由“x A ∈”是“x B ∈”的必要条件,得B∈A ,然后分1122m m =<,,m >12三种情况讨论求解实数m 的取值范围;(2)把()R B C A ⋂中只有一个整数,分1122m m =<,,m >12时三种情况借助于两集合端点值间的关系列不等式求解实数m 的取值范围.【详解】(1)若“x A ∈”是“x B ∈”,则B∈A ,∈A={x|-1≤x≤2}, ∈当12m <时,B={x|2m <x <1},此时-1≤2m <1∈1122m -≤< ; ∈当12m = 时,B=∈,有B∈A 成立; ∈当12m >时B=∈,有B∈A 成立; 综上所述,所求m 的取值范围是1,2⎡⎫-+∞⎪⎢⎣⎭. (2)∈A={x|-1≤x≤2},∈∈R A={x|x <-1或x >2},∈当12m <时,B={x|2m <x <1}, 若(∈R A)∩B 中只有一个整数,则-3≤2m <-2,得312m -≤-<; ∈当m 当12m =时,不符合题意; ∈当12m >时,不符合题意;综上知,m的取值范围是3,12⎡⎫--⎪⎢⎣⎭.【点睛】在集合运算中,不等式的解集、函数的定义域、函数的值域问题,能解的先解出具体的实数范围,再结合数轴进行集合的运算,若端点位置不定时,要注意对端点的位置进行讨论求解,此题是中档题.。

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章集合与常用逻辑用语 单元测试(含答案)

人教A版数学必修一第一章一、单选题1.设集合A={x|x2―4x+3≤0},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.集合A={x∈N|―1<x<3}的真子集的个数为( )A.3B.4C.7D.83.下列式子中,不正确的是( )A.3∈{x|x≤4}B.{―3}∩R={―3}C.{0}∪∅=∅D.{―1}⊆{x|x<0} 4.已知集合M={1,4,2x},N={1,x2},若N⊆M,则实数x=( )A.-2或2B.0或2C.-2或0D.-2或0或25.下列四个条件中,使a>b成立的必要而不充分的条件是( )A.a>b﹣1B.a>b+1C.|a|>|b|D.2a>2b6.在平面直角坐标系xOy中,设Ω为边长为1的正方形内部及其边界的点构成的集合.从Ω中的任意点P作x轴、y轴的垂线,垂足分别为M P,N p.所有点M P构成的集合为M,M中所有点的横坐标的最大值与最小值之差记为x(Ω);所有点N P构成的集合为N,N中所有点的纵坐标的最大值与最小值之差记为y(Ω).给出以下命题:①x(Ω)的最大值为2:②x(Ω)+y(Ω)的取值范围是[2,22];③x(Ω)―y(Ω)恒等于0.其中所有正确结论的序号是( )A.①②B.②③C.①③D.①②③7.已知M={(x,y)|y―3x―2=3},N={(x,y)|ax+2y+a=0}且M∩N=∅,则a=( )A.-6或-2B.-6C.2或-6D.-28.设集合A={x|(x+2)(x―3)⩽0},B={a},若A∪B=A,则a的最大值为( )A.-2B.2C.3D.4二、多选题9.已知命题p:关于x的不等式2x―1≥0,命题q:a<x<a+1,若p是q的必要非充分条件,则实数a 的取值可以为( )A.a≥0B.a≥1C.a≥2D.a≥310.已知集合M={x∣x=kπ4+π4,k∈Z},集合N={x∣x=kπ8―π4,k∈Z},则( )A.M∩N≠ϕB.M⊆N C.N⊆M D.M∪N=M11.已知正实数m,n满足9n2―24n+17―4m2+1=2m+3n―4,若方程1m +1n=t有解,则实数t的值可以为( )A.5+264B.2+32C.1D.11412.1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割.试判断下列选项中,可能成立的是( )A.M={x∈Q|x<2},N={x∈Q|x≥2}满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素三、填空题13.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B= .14.设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程a1x2+b1x+c1a2x2+b2x+c2=0的解集用集合M、N可表示为 .15.若规定集合M={a1,a2,…,a n}(n∈N*)的子集{ a i1,a i2,… a in}(m∈N*)为M的第k个子集,其中k= 2i1―1+ 2i2―1+…+ 2i n―1,则M的第25个子集是 16.记关于x的方程a x2―2ax+1=0在区间(0,3]上的解集为A,若A有2个不同的子集,则实数a的取值范围为 .四、解答题17.已知集合M={x|―2<x<4},N={x|x+a―1>0}.(1)若M∪N={x|x>―2},求实数a的取值范围;(2)若x∈N的充分不必要条件是x∈M,求实数a的取值范围.18.已知命题p:∀x∈R,|x|+x≥0;q:关于x的方程x2+mx+1=0有实数根.(1)写出命题p的否定,并判断命题p的否定的真假;(2)若命题“p∧q”为假命题,求实数m的取值范围.19.设全集为R,集合A={x|x2―7x―8>0},B={x|a+1<x<2a―3}.(1)若a=6,求A∩∁R B;(2)在①A∪B=A;②A∩B=B;③(∁R A)∩B=∅,这三个条件中任选一个作为已知条件,求实数a的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求( ∁R A)∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.21.已知集合A={―1,1},B={x|x2―2ax+b=0},若B≠∅,且A∪B=A求实数a,b的值。

集合与常用逻辑用语

集合与常用逻辑用语

集合与常用逻辑用语数学专题一:集合与常用逻辑用语发布:徐雄 时间:2009-3-19 20:50:27 来源:兴庆区教育局信息中心 一、考纲解读1、考纲要求(1)集合的含义与表示①了解集合的含义、元素与集合的“属于”关系。

②能用自然语言、图形语言、符号语言(列举法或描述法)描述不同的具体问题。

(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用韦恩图表达集合的关系及运算。

(4)命题及其关系①理解命题的概念。

②了解“若p,则q”形式的命题的逆命题、否命题、逆否命题,会分析四种命题的相互关系。

③理解必要条件、充分条件与充要条件的意义。

(5)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义。

(6)全称量词与存在量词①理解全称量词与存在量词的意义。

②能正确地对含有一个量词的命题进行否定。

2、考纲解读集合与常用逻辑用语是高中数学的重要重要基础知识,是高考的必考内容。

本章知识的高考命题热点有以下两个方面:一是对集合的运算、集合的有关术语和符号、集合的简单应用、命题的真假判断、四种命题的关系、充要条件的判定、逻辑联结词、全称量词与存在量词等作基础性知识的考查,题型多以选择题、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言为表现形式,结合逻辑知识考查数学思想、数学方法和数学能力,题型常以解答题的形式出现。

二、要点知识分析1、集合的概念:(1)集合中元素特征:确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(1)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N={0,1,2,3,…};②描述法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档