┃精选3套试卷┃2018届临沂市七年级下学期期末检测数学试题
【3套打包】临沂市最新七年级下册数学期末考试试题(含答案)

最新七年级下册数学期末考试题【含答案】一、选择题:(本大题有10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填在答题卡相应的位置上)1.下列运算中,正确的是( )A .33a a a ⋅=B .632a a a ÷=C .22(2)4a a -=- D .2(3)(2)6a a a a -+=-- 2.若a b >,则下列判断中错误的是( )A .22a b +>+B . 22ac bc <C . 33a b -<-D .44a b > 3.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( )4.已知21x y =⎧⎨=-⎩是二元一次方程21x my +=的一个解,则m 的值为( )A .3B .-5C .-3D .55.下列命题中真命题...的是( ) A .同旁内角互补 B .三角形的一个外角等于两个内角的和 C .若22a b =,则a b = D .同角的余角相等6.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C . BD CD = D .AB AC = 7.若311393m ⨯=,则m 的值为( )A . 2B . 3C . 4D . 5 8.若2216x mx ++是一个完全平方式,则m 的值为( ) A .±4 B .±2 C . 4 D .-4 9.若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( ) A . 8 B . 6 C .5 D . 4 10.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( )A. M N =B. M N >C. M N <D. M 与N 的大小由x 的取值而定 A . 3个 B . 2个 C . 1个 D . 0个二、填空题:(本大题有8小题,每小题2分,共16分.不需要写出解答过程,请把答案直接填写在答题卡对应的横线上)11.肥皂泡的泡壁厚度大约是0.0007mm ,0.0007mm 用科学记数法表示为 mm .12.若4,9n n x y ==,则()nxy = .13.已知25x y -=,若用含x 的代数式表示y ,则y = . 14.若2x y +=,则代数式224x y y -+的值等于 .15.如图,//a b ,将三角尺的直角顶点落在直线a 上,若160∠=︒, 250∠=︒新七年级(下)数学期末考试试题(含答案)一、填空题(本大题共6个小题,每小题3分,满分18分) 1.9的平方根是 .2.如果水位升高2m 时水位变化记作m 2+,那么水位下降3m 时的水位变化记 作 m .3. 点P 在第四象限内,点P 到x 轴的距离是1,到y 轴的距离是2,那么点P 的坐标为 .4. 若1-=x 是关于x 的方程22=+a x 的解,则a 的值为 .5.如图,AB ∥CD ,AD ⊥BD ,∠A =56°, 则∠BDC 的度数为__________.6.某次知识竞赛共有道25题,每一道题答对得5分,答错或不答扣3分,在这次竞赛中小明的得分超过了100分,他至少答对 题. 二、选择题(本大题共8个小题,每小题4分,满分32分) 7.下列各点中,在第二象限的点是( ). A .(-4,2) B .(-2,0) C .(3,5)D .(2,-3)8.据统计,今年全国共有10310000名考生参加高考,10310000用科学记数法可表示为( ).A .4101031⨯B .61031.10⨯C .710031.1⨯ D .810031.1⨯9.如图,已知直线a //b ,∠1=100°,则∠2等于( ). A .60° B .70° C .80° D .100° 10.下列调查中,适宜采用全面调查方式的是( ). A .了解我县中学生每周使用手机所用的时间ABCDB .了解一批手机电池的使用寿命C .调查端午节期间市场上粽子质量情况D .调查某校七年级(三)班45名学生视力情况 11.下列不等式中一定成立的是( ). A .a 5>a 4B .a ->a 2-C .a 2<a3D .2+a <3+a 12.不等式5--x ≤0的解集在数轴上表示正确的是( ).13. 已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O , ∠BOD =35°.则∠COE 的度数为( ). A .35° B .55° C .65° D .70°14.如图,已知点A ,B 的坐标分别为(3,0),(0,4),将线段AB 平移到CD ,若点A 的对应点C 的坐标为(4,2),则B 的对应 点D 的坐标为( ).A .(1,6)B .(2,5)C .(6,1)D .(4,6)三、解答题(本大题共9个小题,满分70分) 15. (本小题6分)计算:168)2(32-+-3223---16. (本小题10分) (1)解方程组⎩⎨⎧=+=-24352y x y x(2)不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解.0 5 0 5 -5 0 -5 0 ABCDABCD O① ②①②17.(本小题6分)某班去看演出,甲种票每张25元,乙种票每张20元.如果 40名学生购票恰好用去880元,甲乙两种票各买了多少张?18.(本小题7分)如图,已知, OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.19.(本小题7分)完成下列推理结论及推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE . 证明:∵∠B +∠BCD =180°(已知) ∴AB ∥CD ( ) ∴∠B = ( ) 又∵∠B =∠D (已知)= (等量代换)∴AD ∥BE ( ) ∴∠E =∠DFE ( )20.(本小题8分)如图所示,△ABC 在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A (﹣2,0),B (﹣5,﹣2),C (-3,﹣4),先将△ABC 向右平移4个单位长度,再向上平移3个单位长度,得到△111C B A . (1)在图中画出△111C B A ;ABCDEF-1 1 2 3 4 5 -2 -3 -4 -5 10 2 3 4-165 -6 A AOECDFB(2)写出△111C B A 的三个顶点 的坐标;(3)求△111C B A 的面积.21. (本小题7分) 如图,已知: DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG最新七年级(下)期末考试数学试题【含答案】一、选择题(本大题共6小题,每小题3分,共18分) 1、下列实数是无理数的是( )A 、- 1B 、0C 、 3.14D 、 5 2、如图,能判断AB ∥CD 的条件是( )A 、∠1=∠2B 、∠3=∠4C 、∠1+∠3=180°D 、∠3+∠4=180° 3、下列结论正确的是( )A 、-(-6)2 =-6B 、(- 3 )2=9C 、(-16)2 =±16D 、-(-1625 )2=16254、已知二元一次方程3x +y =0的一个解是⎩⎨⎧x =ay =b,其中a ≠0,那么( )A 、b a >0B 、b a =0C 、ba <0 D 、以上都不对5、下列说法错误的是( )A 、不等式x -3>2的解是x >5B 、不等式x <3的整数解有无数个C 、x =0是不等式2x <3的一个解D 、不等式x +3<3的整数解是0 6、如图,矩形BCDE 的各边分别平等于x 轴或y 轴,物体甲 和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边 作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动, 物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体 运动后第26次相遇地点的坐标是( )A 、(2,0)B 、(-1,-1)C 、(-2,1)D 、(-1,1) 二、填空题(本大题共8小题,每小题3分,共24分) 7、1的平方根是 。
山东省临沂市七年级2018学年度七年级数学第二学期期末考试人教新课标版 精品

临沂市七年级2018—2018学年度第二学期期末考试数 学 试卷(无答案)第Ⅰ卷(选择题 共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
) 1.下列方程中变形正确的是( )① 4x +8=0变形为x +2=0; ② x +6=5-2x 变形为3x =-1; ③ 4x5=3变形为4x =15; ④ 4x =2变形为x =2A .①④B .①②③C .③④D .①②④ 2.在下列对称图形中,对称轴的条数最少的图形是( )A .圆B .等边三角形C .正方形D .正六边形 3. 下列正多边形的组合中,能够铺满地面的是( )A .正六边形和正方形B .正五边形和正八边形C .正六边形和正三角形D .正十边形和正三角形4.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13( - x -12+x )=1-x -▲5,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( )A .2B .3C .4D .55. 已知代数式15x a -1y 3与-5x -b y2a +b是同类项,则a 与b 的值分别是( )A .⎩⎨⎧-==12b aB .⎩⎨⎧==12b aC .⎩⎨⎧-=-=12b aD .⎩⎨⎧=-=12b a6.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+128my x ny mx 的解,则(2m -n )2=( )A .4B .2C .16D .2或-27.已知等腰三角形的两边长是5和12,则它的周长是( ) A .22 B .29 C .22或29 D .178.一个多边形的内角和与它的一个外角和为570°,则这个多边形的边数为( ) A .5 B .6 C .7 D .8 9.若不等式组⎩⎨⎧<-<+022m x mx 的解集为x <2m -2,则m 的取值范围是( )A .m≤2B .m≥2C .m >2D .m <210.关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 3223215只有5个整数解,则a 的取值范围是( )A .-143≤a ≤-133B .-143≤a <-133C .-143<a <-133D .-143<a ≤-133第Ⅱ卷(非选择题 共90分)二、填空题(本大题6个小题,每小题3分,共18分。
∥3套精选试卷∥2018年临沂市七年级下学期期末经典数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果m是任意实数,则点P(m+2,m﹣4)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】求出点P的横坐标大于纵坐标,再根据各象限内点的坐标特征解答.【详解】∵(m+2)﹣(m﹣4)=m+2﹣m+4=6,∴点P的横坐标大于纵坐标,∴点P一定不在第二象限.故选:B.【点睛】本题考查了点的坐标,求出点的横坐标与纵坐标的大小关系是解题的关键.2.下列各数是无理数的是()A.﹣2 B.227C.0.010010001 D.π【答案】D【解析】试题分析:A.是整数,是有理数,选项错误;B.是分数,是有理数,选项错误;C.是有限小数,是有理数,选项错误;D.是无理数,选项正确.故选D.考点:无理数.3.2018年我市有近3万名学生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.近3万名考生是总体B.这1000名考生是总体的一个样本C.每位考生的数学成绩是个体D.1000名学生是样本容量【答案】C【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A.近3万名考生的数学成绩是总体,此选项错误;B.这1000名考生的数学成绩是总体的一个样本,此选项错误;C.每位考生的数学成绩是个体,此选项正确;D .1000是样本容量,此选项错误;故选C .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.若点A (2,6),点B (-3,6),那么点A 、B 所在的直线是( )A .直线6y = ;B .直线6x =;C .直线2x =;D .直线3x =-.【答案】A【解析】由点A 与点B 的坐标得到它们到x 轴的距离相等,都为1,所以点A 、B 所在的直线为y=1.【详解】∵点A (2,1),点B (-3,1),即点A 与点B 的纵坐标都为1,∴直线AB 过(0,1),且与y 轴垂直,∴点A 、B 所在的直线为y=1.故选:A .【点睛】考查了坐标与图形:点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x 轴的距离与纵坐标有关,到y 轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.5.如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有( )A .1个B .2个C .3个D .4个【答案】C【解析】根据函数图像与描述即可进行判断.【详解】①汽车在途中停留了2-1.5=0.5小时,正确;②汽车行驶3小时后离出发地最远,正确;③汽车共行驶了120+120=240千米,故错误;④汽车返回时的速度是120÷(4.5-3)=80千米/小时,正确.故正确的个数为3,故选C.【点睛】此题主要考查函数图像的信息判断,解题的关键是根据函数图像进行判断.6.在下列四个图案中,不能用平移变换来分析其形成过程的是()A.B.C.D.【答案】B【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【详解】解:观察图形可知图案B通过平移后可以得到.故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.7.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第100个图中正方形和等边三角形的个数之和是()A.900 B.903 C.906 D.807【答案】B【解析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【详解】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3,∴第100个图中正方形和等边三角形的个数之和=9×100+3=1.故选:B.【点睛】本题考查的是图形的变化类问题,根据题意找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.为了调查某校学生的视力情况,在全校的800名学生中随机抽取了80名学生,下列说法正确的是()A.此次调查属于全面调查B.样本容量是80C.800名学生是总体D.被抽取的每一名学生称为个体【答案】B【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【详解】本题的样本是1名学生的视力情况,故样本容量是1.故选B.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握其定义.9.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是( )A.22cm B.23cm C.24cm D.25cm【答案】C【解析】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选C.10.如图,已知DE∥BC,如果∠1=70°,那么∠B的度数为()A .70°B .100°C .110°D .120°【答案】C 【解析】根据平行线的性质可知∠B 与∠2互补,再根据对顶角的性质可知∠2=∠1=70°,据此即可得答案.【详解】解:如图,∵DE//BC ,∴∠2+∠B=180°,∵∠2=∠1=70°,∴∠B=180°-70°=110°,故选C.【点睛】本题考查了平行线的性质、对顶角的性质,熟练掌握平行线的性质是解题的关键.二、填空题题11. (2014福建泉州)已知m 、n 为两个连续的整数,且11m n <,则m +n =________.【答案】1【解析】∵9<11<16,所以91116<<,即3114<<,∴m =3,n =4,因此m +n =1. 12.已知()1(1)x f x x =+,则(1)(2)1111,,1(11)122(12)23f f ====⋯⨯+⨯⨯+⨯,已知(1)(2)(3)()1415n f f f f ++++=,则n 的值为_____. 【答案】14 【解析】根据()1(1)x f x x =+把(1)(2)(3)()1415n f f f f ++++=进行化简变形为1141115n -=+,从而求得n 的值即可. 【详解】解:根据题意得:14(1)(2)()15f f f n ++⋯+=, 变形得:111141223(1)15n n ++⋯+=⨯⨯+,整理得:11111141223115n n -+-+⋯+-=+,即1141115n -=+, 去分母得:15(n+1)﹣15=14(n+1),去括号得:15n+15﹣15=14n+14,移项合并得:n =14,故答案是:14【点睛】 考查了分式的加减,解题关键是将()1(1)x f x x =+把(1)(2)(3)()1415n f f f f ++++=进行化简变形为1141115n -=+. 13.要了解一批灯泡的使用寿命,从10000只灯泡中抽取60只灯泡进行试验,在这个问题中,样本容量是_______.【答案】1【解析】根据样本容量的定义求解即可.【详解】样本容量是1故答案为:1.【点睛】本题考查了样本容量的问题,掌握样本容量的定义是解题的关键.14.已知x+y=10,xy=16,则x 2y+xy 2的值为______ .【答案】1.【解析】试题解析:∵x+y=10,xy=16,∴x 2y+xy 2=xy (x+y )=10×16=1.考点:因式分解-提公因式法.15.多项式﹣2m 3+3m 2﹣12m 的各项系数之积为_____ 【答案】3【解析】根据多项式各项系数的定义求解.多项式的各项系数是单项式中各项的系数,由此即可求解.【详解】多项式﹣2m 3+3m 2﹣12m 的各项系数之积为: -2×3×(-12)=3. 故答案为:3.【点睛】本题考查了多项式的相关定义,解题的关键是熟练掌握多项式的各项系数和次数的定义.16.如图,请任意选取一幅图,根据图上信息,写出一个关于温度x (℃)的不等式: .【答案】第一个图:x≥﹣8;第二个他图:x <30或x≤1【解析】第一个图与温度有关话是:最低气温是﹣8℃,那么温度x 一定大于或等于﹣8;第二个图与温度有关的话是:30℃以下;不超过1℃.那么温度x 应小于30;小于或等于1. 解:根据题意,得第一个图:x≥﹣8;第二个他图:x <30或x≤1.17.△ABC 是等边三角形,点O 是三条中线的交点,△ABC 以点O 为旋转中心,则至少旋转____________度后能与原来图形重合.【答案】120°.【解析】试题分析:连接OA 、OB 、OC ,易知OA=OB=OC ,A 、B 、C 三点可看作对应点,且∠AOB=∠BOC=∠COA=120°,可知旋转角至少是120°.考点:旋转的性质.三、解答题18.关于x y 、的方程组025x y a x y +-=⎧⎨-=⎩①②的解满足11x y >,≤,求满足条件的整数a . 【答案】满足条件的整数a 的解有0,1,2,3,4,5,6,7,8【解析】根据加减消元法,再结合题意进行计算,即可得到答案.【详解】解:025x y a x y +-=⎧⎨-=⎩①② ① - ②得:5353a y a y --=-= ①×② + ②得:253a x += 由题意得:2513513a a +⎧>⎪⎪⎨-⎪⎪⎩ 解得:18a -<∴满足条件的整数a的解有0,1,2,3,4,5,6,7,8【点睛】本题考查二元一次方程组,解题的关键是熟练掌握加减消元法.19.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A',点B'、C'分别是B、C的对应点.(1)请画出平移后的△A'B'C',并求△A'B'C'的面积=;(2)请在AB上找一点P,使得线段CP平分△ABC的面积,在图上作出线段CP;(3)请在图中画出过点C且平行于AB的直线CM.【答案】(1)作图见解析,1;(2)取AB的中点P,作线段CP;(3)作图见解析.【解析】(1)根据点A到A'的平移规律:向右移6个单位,再向下平移2个单位,直接平移并利用面积差计算面积;(2)作中线AP,可平分△ABC的面积;(3)作平行线CM.【详解】(1)画△A'B'C',S△A'B'C'=4×412-⨯2×412-⨯2×312-⨯1×4=1.故答案为:1;(2)取AB的中点P,作线段CP;(3)画AB的平行线CM.【点睛】本题考查了平移变换的作图、三角形的面积、平分三角形的面积、平行线,知道三角形的中线平分三角形的面积,并会根据一个对应点的平移规律进行作图.20.母亲节过后,某校在本校学生中做了一次抽样调查,并把调查的结果分成三种类型:A.不知道那一天是母亲节的;B.知道但没有行动的;C.知道并问候母亲的.如图是根据调查结果绘制的统计图(部分).(1)已知A类学生占被调查学生人数的30%,则被调查的学生共有多少人?(2)计算B类学生的人数并根据计算结果补全统计图;(3)如果该校共有学生2000人,你估计这个学校学生中有多少人知道母亲节并问候了母亲.【答案】(1)200人;(2)110人,见解析;(3)这个学校学生中有300人知道母亲节并问候了母亲.【解析】(1)根据A类占被调查学生人数的30%,且A类的人数是60人,即可求得总人数;(2)根据(1)中计算的总人数减去A类和C类的即可;(3)根据C类所占的百分比进行计算.【详解】解:(1)6030%200÷=(人)答:被调查的学生共有200人.(2)2006030110--=(人)B类学生人数为110人,(3)302000300200⨯=(人)答:这个学校学生中有300人知道母亲节并问候了母亲.【点睛】此题考查条形统计图,用样本估计总体,解题关键在于看懂图中数据.21.已知方程组的解满足x+y=﹣2,求k的值.【答案】k=1【解析】①﹣②得出x+2y=2③,由③和x+y=﹣2组成方程组,求出方程组的解,把x和y的值代入②,即可求出k.解:,①﹣②得:x+2y=2③,由③和x+y=﹣2组成方程组, 解得:,把x=﹣6,y=4代入②得:﹣12+12=k ,解得:k=1.22.解方程组或不等式组:(1)解方程组:231324x y x y +=⎧⎨-=-⎩(2)解不等式组:3511343x x x -≤⎧⎪-⎨<⎪⎩ 【答案】(1)23x y =⎧⎨=⎩;(2)12x <≤ 【解析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)231324x y x y +=⎧⎨-=-⎩①②, ①-②2⨯,得:721y =,解得3y =,将3y =代入②,得:64x -=-,解得2x =,所以方程组的解为23x y =⎧⎨=⎩; (2)解不等式351x -,得:2x , 解不等式1343x x -<,得:1x >, 则不等式组的解集为12x <.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?【答案】(1)40% ,144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.【解析】试题分析:(1)利用100%减去D、C、B三部分所占百分比即可得到最喜欢A项目的人数所占的百分比;所在扇形统计图中对应的圆心角度数用360°×40%即可;(2)根据频数=总数×百分比可算出总人数,再利用总人数减去D、C、B三部分的人数即可得到A部分的人数,再补全图形即可;(3)利用样本估计总每个体的方法用1000×样本中喜欢踢毽子的人数所占百分比即可.解:(1)100%﹣20%﹣10%﹣30%=40%,360°×40%=144°;(2)抽查的学生总人数:15÷30%=50,50﹣15﹣5﹣10=20(人).如图所示:(3)1000×10%=100(人).答:全校最喜欢踢毽子的学生人数约是100人.24.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来. 【答案】-7<x ≤1.数轴见解析.【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:3(2)421152x x x x --≥⎧⎪⎨-+<⎪⎩①② 解不等式①,得x ≤1解不等式②,得x >-7∴不等式组的解集为-7<x ≤1.在数轴上表示不等式组的解集为故答案为-7<x ≤1.【点睛】本题考查了解一元一次不等式组,熟知“大大取大,小小取小,大小小大中间找,大大小小找不了“的原则是解此题的关键.25.(10.00分)解下列二元一次方程组或不等式组:(1)131222x y x y ⎧-=⎪⎨⎪+=⎩ (2)43(2)2113x x x x -<-⎧⎪+⎨+>⎪⎩ 【答案】 (1)121x y ⎧=⎪⎨⎪=⎩ ;(2)1<x<1.【解析】(1)把①×2+②,消去y ,求出x 的值,再把求得的x 的值代入②求出y 的值即可; (2)先分别解两个不等式,求出它们的解集,然后求出这两个不等式解集的公共部分即可.【详解】(1)解:①×2+②得到x=,把x=代入②得到y=1,∴.(2)由①得到x>1,由②得到x<1,∴1<x<1.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,熟练掌握二元一次方程组和一元一次不等式组的解题步骤是解答本题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在下列方程组中,不是二元一次方程组的是().A.222x yy-=⎧⎨=-⎩B.1531xy+=⎧⎨+=-⎩C.34x yxy-=⎧⎪⎨=⎪⎩D.27325x yx y+=⎧⎨-=-⎩【答案】C【解析】根据二元一次方程组的定义对各选项进行逐一分析即可.【详解】解:A、B、D、符合二元一次方程组的定义;C中的第二个方程是分式方程,故C错误.故选:C.【点睛】本题考查二元一次方程组的定义,熟知二元一次方程组必须满足三个条件:①方程组中的两个方程都是整式方程;②方程组中共含有两个未知数;③每个方程都是一次方程是解题的关键.2.在平面坐标系内,点A位于第二象限,距离x轴1个单位长度,距离y轴4个单位长度,则点A的坐标为()A.(1,4)B.(﹣4,1)C.(﹣1,﹣4)D.(4,﹣1)【答案】B【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点A的横坐标与纵坐标,然后写出即可.【详解】∵点A位于第二象限,距离x轴1个单位长度,距离y轴4个单位长度,∴点A的横坐标为-4,纵坐标为1,∴点A的坐标为(-4,1).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.3.P(m,n)是第二象限内一点,则P′(m﹣2,n+1)位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】分析:根据P(m,n)是第二象限内一点,可知m,n的正负,从而得出m﹣2,n+1的正负性即可.详解:∵P(m,n)是第二象限内一点,∴m0,n0,∴m20,n10-+,∴P′(m﹣2,n+1)在第二象限,故选:B.点睛:本题考查了象限内点的坐标.正确掌握各象限内点的横纵坐标的正负性是解题的关键. 4.2-的值等于()A.2 B.12-C.12D.﹣2【答案】A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A.5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是().A.18 B.15 C.18或15 D.无法确定【答案】C.【解析】试题分析:分情况讨论,假设7作腰长,则三边分别为7,7,4,周长为18;假设4作腰长,则三边分别为4,4,7,周长为15,所以此等腰三角形的周长是18或15.故选:C.考点:等腰三角形的周长;三角形的三边关系.6.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=115°,则∠β的度数是()A.40°B.65°C.70°D.75°【答案】C【解析】根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=115°−45°=70°,则∠1=70°,根据对顶角相等即可得到∠β的度数.【详解】解答:解:如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=115°,∴∠2=115°−45°=70°,∴∠1=70°,∴∠β=70°.故选:C .【点睛】本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质以及对顶角的性质. 7.若点(39,1)M a a --在第三象限,则点a 的取值范围是( )A .3a <B .1a >C .13a <<D .空集【答案】C【解析】根据第三象限点的符号特点列出不等式组,解之可得.【详解】解:根据题意知 39010a a -⎧⎨-⎩<<, 解得1<a <3,故选:C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.在下列4种正多边形的瓷砖图案中不能铺满地面的是( )A .B .C .D .【答案】C【解析】利用一种正多边形的镶嵌应符合一个内角度数能整除360°分别判断即可.【详解】A 、正三角形的每个内角是60°,能整除360°,能密铺,故此选项不符合题意;B 、正方形的每个内角是90°,4个能密铺,故此选项不符合题意;C 、正五边形的每个内角为:180°-360°÷5=108°,不能整除360°,不能密铺,故此选项符合题意;D 、正六边形的每个内角是120°,能整除360°,能密铺,故此选项不符合题意.故选:C【点睛】此题主要考查了平面镶嵌知识,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.9.若关于x的一元一次不等式组322xx a->⎧⎨->⎩恰有3个整数解,那么a的取值范围是()A.﹣2<a<1 B.﹣3<a≤﹣2 C.﹣3≤a<﹣2 D.﹣3<a<﹣2【答案】C【解析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解不等式3﹣2x>2,得:x<12,解不等式x﹣a>0,得:x>a,则不等式组的解集为a<x<12,∵不等式组恰有3个整数解,∴不等式组的整数解为﹣2、﹣1、0,则﹣3≤a<﹣2,故选:C.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a的不等式组.10.如图,已知a∥b,∠1=55°,则∠2的度数是( ).A.35°B.45°C.55°D.125°【答案】C【解析】根据两直线平行,同位角相等可得∠3=∠1=55°,再根据对顶角相等即可求得答案.【详解】∵a//b,∴∠3=∠1=55°,∴∠2=∠3=55°.故选C.二、填空题题11.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了__________道题.【答案】19【解析】设他做对了x 道题,则小英做错了(25-x )道题,根据总得分=4×做对的题数-1×做错的题数,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设他做对了x 道题,则他做错了(25-x )道题,根据题意得:4x-(25-x )=70,解得:x=19,故答案为:19.【点睛】本题考查了一元一次方程的应用,根据总得分=4×做对的题数-1×做错的题数列出关于x 的一元一次方程是解题的关键.12.生物学家发现一种病毒,其长度约为0.00000032米,数据0.00000032用科学记数法表示为________.【答案】73.210-⨯【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a 10n -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000032=3.2×710-;故答案为:73.210-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.如图,长方形ABCD 的周长为12,分别以BC 和CD 为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD 的面积是______.【答案】1.【解析】设长方形的长为x ,宽为y ,由题意列方程组,利用完全平方公式即可解答.【详解】设长方形的长为x ,宽为y ,由题意得:22221220x y x y +⎧⎨+⎩==, ∴x+y=6,∴(x+y )2=36,∴x 2+2xy+y 2=36∴2xy=36-(x 2+y 2)=16,∴xy=1,∴长方形ABCD 的面积是1,故答案为:1.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式的结构特征.14.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.小亮同学为班级买奖品,他准备买6个文具盒和若干个笔记本.已知文具盒每个15元,笔记本每个8元,他至少买__________个笔记本才能打折.【答案】14【解析】本题可设该同学要买x 个笔记本,再根据题意列出不等式:15×6+8x≥200,求解得出x 的取值范围,取值范围内的最小整数即为本题的答案.【详解】解:设该同学买x 个笔记本,根据题意得15×6+8x≥200 解得3134x ≥ ∵x 为整数∴x=14∴该同学至少要买14个笔记本才能打折.故答案为:14【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.计算:()()13x x +-=_______.【答案】x 2-2x-1【解析】根据多项式与多项式相乘的法则计算:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【详解】解:(x+1)(x-1)=x 2-1x+x-1=x 2-2x-1,故答案为x 2-2x-1.【点睛】本题考查了多项式乘多项式的法则,解题时牢记法则是关键,此题比较简单,易于掌握.16. “若a b >,则22a b >”是一个假命题,请举反例说明______________________.【答案】1,3a b ==-【解析】根据题意找到一个a b >,但22a b ≤的即可.【详解】若1,3a b ==-,此时22221,9,a b a b ==<,所以“若a b >,则22a b >”是一个假命题, 故答案为:1,3a b ==-.【点睛】本题主要考查通过举反例说明一个命题为假命题,举反例是证明一个命题为假命题的常用方法,反例无需多,一个即可.反例是满足命题条件而不满足结论的例子,一般不唯一.17.如图所示,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿平移,阴影部分的面积为 .【答案】140cm 1【解析】试题分析:根据平移的性质得S 梯形ABCD =S 梯形EFGH ,BC=FG=10,则FQ=FG ﹣QG=15,S 阴影部分=S 梯形BCQF ,然后根据梯形的面积公式求解即可.解:如图,∵梯形ABCD 平移到梯形EFGH 的位置,∴S 梯形ABCD =S 梯形EFGH ,BC=FG=10,∴FQ=FG ﹣QG=10﹣5=15,S 阴影部分=S 梯形BCQF ,而S 梯形BCQF =×(15+10)×8=140,∴S 阴影部分=140cm 1.故答案为140cm 1.三、解答题18.某工厂准备用图甲所示的A 型正方形板材和B 型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.()1若该工厂准备用不超过10000元的资金去购买A ,B 两种型号板材,并全部制作竖式箱子,已知A 型板材每张30元,B 型板材每张90元,求最多可以制作竖式箱子多少只?()2若该工厂仓库里现有A 型板材65张、B 型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?()3若该工厂新购得65张规格为33m ⨯的C 型正方形板材,将其全部切割成A 型或B 型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只.【答案】(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1.【解析】()1表示出竖式箱子所用板材数量进而得出总金额即可得出答案;()2设制作竖式箱子a 只,横式箱子b 只,利用A 型板材65张、B 型板材110张,得出方程组求出答案;()3设裁剪出B 型板材m 张,则可裁A 型板材()6593m ⨯-张,进而得出方程组求出符合题意的答案.【详解】解:()1设最多可制作竖式箱子x 只,则A 型板材x 张,B 型板材4x 张,根据题意得 3090410000x x +⨯≤ 解得252539x ≤. 答:最多可以做25只竖式箱子.()2设制作竖式箱子a 只,横式箱子b 只,根据题意,得26543110a b a b +=⎧⎨+=⎩, 解得:530a b =⎧⎨=⎩. 答:能制作竖式、横式两种无盖箱子分别为5只和30只.()3设裁剪出B 型板材m 张,则可裁A 型板材()6593m ⨯-张,由题意得:2659343a b m a b m +=⨯-⎧⎨+=⎩, 整理得,1311659a b +=⨯,()111345b a =-.竖式箱子不少于20只,4511a ∴-=或22,这时34a =,13b =或23a =,26b =.则能制作两种箱子共:341347+=或232649+=.故答案为47或1.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式. 19.某中学为了丰富学生的课余生活,准备从体育用品商店一次性购买若干个排球和篮球,若购买2个排球和1个篮球共需190元.购买3个排球和2个篮球共需330元.(1)购买一个排球、一个篮球各需多少元?(2)根据该校的实际情况,需从体育用品商店一次性购买排球和篮球共100个,要求购买排球和篮球的总费用不超过6500元,这所中学最多可以购买多少个篮球?【答案】(1)购买一个排球需10元、一个篮球需90元;(2)这所中学最多可以购买2个篮球.【解析】(1)设每个排球x 元,每个篮球y 元,根据“购买2个排球和1个篮球共需190元,购买3个排球和2个篮球共需330元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买篮球a 个,则购买排球(100-a )个,根据总价=单价×数量结合购买排球和篮球的总费用不超过6100元,即可得出关于a 的一元一次不等式,解之取其中的最大值整数值即可得出结论.【详解】解:(1)设每个排球x 元,每个篮球y 元,依题意,得:219032330x y x y ++⎧⎨⎩== 解得:5090x y ⎧⎨⎩==答:每个排球10元,每个篮球90元.(2)设购买篮球a 个,则购买排球(100-a )个,依题意,得:90a+10(100-a )≤6100,解得:a ≤2.1.∵a 为整数,∴a 最大取2.答:最多可以买2个篮球.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式. 20.已知ABC ∆是等边三角形,D 是BC 上一点,ABD ∆绕点A 逆时针旋转到ACE ∆的位置. (1)如图,旋转中心是 ,DAE =∠ ;。
<合集试卷3套>2018年临沂市七年级下学期期末学业水平测试数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在﹣2,4,22,3.14,223,(2)0中有理数的个数是()A.5 B.4 C.3 D.2 【答案】A【解析】分析:根据有理数的定义来判断即可.详解:4=2,(2)0=1,故有理数有:﹣2,4,,3.14,223,(2)0,故选A.点睛:本题考查了零指数幂、有理数及实数,熟记有理数和无理数的概念是解答本题的关键.2.如图,由3×3组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行、每一列以及每一条对角线上的三个代数式的和均相等.则方格内打上“a”的数是..()A.6 B.7 C.8 D.9【答案】B【解析】先由条件建立二元一次方程组求出x、y的值,就可以求出每一行或每一列的数的和,就可以求出中间这列的最后一个数,再建立关于a的方程就可以求出结论.【详解】由题意建立方程组为:29921129411 y y xy y y x++-+⎧⎨++-+⎩==,解得:25xy==-⎧⎨⎩,∴每一行或每一列的数的和为:5+2×5+9=24,∴a-4×(-2)+9=24,∴a=1.故选B.【点睛】本题考查了学生是图标的能力的运用,列二元一次方程组解实际问题的运用,解答时建立方程组求出各行或各列的和是关键.3.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是( ) A .300名学生是总体 B .每名学生是个体C .50名学生是所抽取的一个样本D .这个样本容量是50 【答案】D【解析】A 、300名学生的视力情况是总体,故此选项错误; B 、每个学生的视力情况是个体,故此选项错误;C 、50名学生的视力情况是抽取的一个样本,故此选项错误;D 、这组数据的样本容量是50,故此选项正确. 故选D .4.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( ) A .MNB .M N >C .M N <D .M 与N 的大小由x 的取值而定【答案】C【解析】利用求差法、多项式乘多项式的运算法则进行计算,根据计算结果判断即可. 【详解】M-N=(x-1)(x-5)-(x-2)(x-4) =x 2-6x+5-(x 2-6x+8) =-3<0, ∴M <N , 故选C . 【点睛】本题考查的是多项式乘多项式,掌握多项式乘多项式的运算法则是解题的关键. 5.下列计算结果为6a 的是 A .82a a - B .122a a ÷C .32a a ⋅D .()32a【答案】D【解析】根据同底数幂的乘除法法则、幂的乘方法则、合并同类项法则进行计算,判断即可. 【详解】A 、a 8与a 2不能合并,A 错误; B 、a 12÷a 2=a 10,B 错误; C 、a 2•a 3=a 5,C 错误; D 、(a 2)3=a 6,D 正确; 故选D .【点睛】本题考查的是同底数幂的乘除法、幂的乘方、合并同类项,掌握它们的运算法则是解题的关键. 6.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( ) A .77.110⨯ B .60.7110-⨯C .77.110-⨯D .57110-⨯【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:数字0.00000071用科学记数法表示为7.1×10-7, 故选:C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.把式子 )A B C .D .【答案】D【解析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】10a∴-≥ 0a ∴<∴==故选D . 【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.8.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是( ) A .14道 B .13道C .12道D .ll 道【答案】A【解析】设小明答对的题数是x 道,根据“总分不会低于60分”列出不等式5x ﹣2(20﹣2﹣x )≥60,解不等式求得x 的取值范围,根据x 为整数,结合题意即可求解. 【详解】设小明答对的题数是x 道, 5x ﹣2(20﹣2﹣x )≥60, x≥13,∵x 为整数,∴x 的最小整数为14, 故选A . 【点睛】本题了一元一次不等式的应用,关键是设出相应的未知数,以得分做为不等量关系列不等式求解. 9.25的平方根是( ) A .±5 B .5 C .﹣5 D .±25 【答案】A【解析】如果一个数 x 的平方是a ,则x 是a 的平方根,根据此定义求解即可. 【详解】∵(±5)2=25, ∴25的立方根是±5, 故选A . 【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数. 10.如图线段AB 和CD 表示两面镜子,且直线AB ∥直线CD ,光线EF 经过镜子AB 反射到镜予CD ,最后反射到光线GH.光线反射时,∠1=∠2,∠3=∠4,下列结论:①直线EF 平行于直线GH ;②∠FGH 的角平分线所在的直线垂直于直线AB ;③∠BFE 的角平分线所在的直线垂直于∠4的角平分线所在的直线;④当CD 绕点G 顺时针旋转90时,直线EF 与直线GH 不一定平行,其中正确的是( )A .①②③④B .①②③C .②③D .①③【答案】B【解析】根据平行线的性质定理逐个证明,看是否正确即可.【详解】①正确,根据AB//CD ,可得23∠=∠,再根据已知可得1234∠=∠=∠=∠,进而证明EFC FGH ∠=∠,因此可得EF//GH ;②正确,根据∠3=∠4,可得∠FGH 的角平分线所在的直线垂直于直线AB ;③正确,因为①证明了14∠=∠ ,所以只要证明1∠ 的角平分线垂直于BFE ∠ 的角平分线即可; ④不正确,因为2390︒∠+∠=,所以180EFC FGH ︒∠+∠=,即EF//GH. 故正确的有①②③,因此选B. 【点睛】本题主要考查平行线的性质和定理,这是基本知识点,必须熟练掌握. 二、填空题题11. “赵爽弦图”是由四个全等的直角三角形和中间一个小正方形拼成的大正方形,小茗同学向一个如图所示的“赵爽弦图”的飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上).若飞镖板中的直角三角形的两条直角边长为1和2,则投掷飞镖一次扎在小正方形的概率是______.【答案】15【解析】根据投掷飞镖一次扎在小正方形的概率等于小正方形的面积比上大正方形的面积进行求解. 【详解】S 小正方形=(2-1)⨯ (2-1)=1;S 大正方形212+⨯ 212+=5;所以投掷飞镖一次扎在小正方形的概率为15. 【点睛】本题考查了图形面积与事件概率的关系,熟练掌握图形面积与事件概率的关系是本题解题关键.12.某次的测试均为判断题,如果认为该题的说法正确,就在答案框的题号下填“√”,否则填“×”.测试共10道题,每题10分,满分100分.图中的小明,小红,小刚三张测试卷.小明和小红两张已判了分数,则该判小刚_____分. 小明: 1 2 3 4 5 6 7 8 9 10 得分 ××√×√××√√×90小红: 1 2 3 4 5 6 7 8 9 10 得分 ×√√√×√×√√√40小刚:【答案】1【解析】仔细观察小红、小刚的答案,可发现只有第6题答案不一样,因此可以讨论6的答案,结合小明试卷及其得分,可得出答案.【详解】解:①假设第6题正确答案为×,则小明、小刚二人做正确,小红做错,那么小明与小红应该有5个题的选择答案不一样,对比刚好满足;而小红与小刚只有第6题答题不一样,所以小刚比小红多做对第6题这一题,该判小刚为1分;②假设第6题正确答案为√,则小明、小刚二人做错,小红做正确,那么小红还答对了另外3题,也即是小明与小红应该还有3个题的选择答案不一样,对比得出假设不存立;综上可得判小刚得1分.故答案为:1.【点睛】本题属于应用类问题,解答本题需要我们仔细观察三份试卷的相同之处与不同之处,注意利用假设、论证的思想.13.关于x的不等式组211x ax-≥⎧⎨-≤⎩只有4个整数解,则a的取值范围是_____.【答案】-3<a≤-2【解析】先求不等式组211x ax-≥⎧⎨-≤⎩得解集,然后根据整数解的情况,确定a的范围.【详解】解:解不等式组211x ax-≥⎧⎨-≤⎩得:a≤x≤1组4个整数解为:1,0,-1,-2,所以-3<a≤-2故答案为:-3<a≤-2【点睛】本题考查了不等式组的解法和根据整数解确定参数,其中解不等式组是解答本题的关键.14.一布袋中放有红、黄、绿三种颜色的球,它们除颜色外其他都一样,其中红球4个,绿球5个,任意摸出1个绿球的概率是13,则摸出一个黄球的概率是___________.【答案】2 5【解析】先求出球的总个数,然后列举出符合题意的各种情况的个数,再根据概率公式解答即可.【详解】总球数:5÷13=15(个),黄球数:15﹣4﹣5=6(个),任意摸出1个黄球的概率是615=25.故答案为:25.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.我市某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图,已知从左到右5个小长方形的高的比为1:3:7:6:3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有______________篇.【答案】1【解析】根据题意和频数分布直方图中的数据可以求得在这次评比中共征集到的小作文的篇数.【详解】由题意可得,这次评比中共征集到的小作文有:72÷920=1(篇)故答案为:1.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.16.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为___.【答案】1【解析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x-y或直接让两个方程相减求解.【详解】方法一:解方程组2524x yx y+=⎧⎨+=⎩,解得:21 xy=⎧⎨=⎩,∴x-y=1;方法二:两个方程相减,得. x-y=1,故答案为1.【点睛】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.17.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字3)=________,P(摸到偶数)=________ . 【答案】110 12【解析】分析:10个数字中3只有1个;10个数字中偶数有5个,根据概率的计算法则得出答案. 详解:P(摸到数字3)=110,P(摸到偶数)=51102=. 点睛:本题主要考查的是概率的计算法则,属于基础题型.明确计算法则是解决这个问题的关键. 三、解答题18.在平面直角坐标系中,直线l 1的函数关系式为y=2x+b ,直线l 2过原点且与直线l 1交于点P (-1,-5). (1)试问(-1,-5)可以看作是怎样的二元一次方程组的解? (2)设直线l 1与直线y=x 交于点A ,求△APO 的面积;(3)在x 轴上是否存在点Q ,使得△AOQ 是等腰三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(-1,-5)可以看成二元一次方程组235y x y x=-⎧⎨=⎩的解;(2)S △AOP =6;(3)存在,点Q 坐标为(2,0)或(3,0)或(2,0)或(6,0). 【解析】(1)求出直线1l 与直线2l 的解析式即可解决问题;(2)利用方程组求出点A 坐标,再求出直线1l 与y 轴的交点C 的坐标,然后根据APO POC AOC S S S ∆∆∆=+计算即可;(3)根据等腰三角形的定义,分,,OA OQ QA QO AO AQ ===三种情形,然后利用两点之间的距离公式分别求解即可.【详解】(1)∵点(1,5)P --在直线1l 上25b ∴-+=-,解得3b =-∴直线1l 的解析式为23y x =- 设直线2l 的解析式为y kx = 则有5k -=-,解得5k = ∴直线2l 的解析式为5y x =故(15)--,可以看成二元一次方程组235y x y x =-⎧⎨=⎩的解;(2)由23y x y x =-⎧⎨=⎩,解得33x y =⎧⎨=⎩(3,3)A ∴∵点(1,5)P --在直线23y x =-上,直线1l 交y 轴于(03)C -,113133622APO POC AOC S S S ∆∆∆=⨯⨯+⨯=⨯+=∴故APO ∆的面积为6; (3)(3,3)AOA ∴==设点Q 坐标为(,0)Q a由等腰三角形的定义,分以下三种情况:①当OA OQ =时,则OQ =,即12(Q Q -②当QA QO ==解得3a =,即3(3,0)Q③当AO AQ =时,则= 解得6a =或0a =(与点O 重合,舍去),即4(6,0)Q综上,满足条件的点Q 坐标为(-或0)或(3,0)或(6,0).【点睛】本题考查了一次函数的几何应用、等腰三角形的判定和性质、三角形的面积公式等知识点,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.19.如图(1)四边形ABCD 中,已知∠ABC+∠ADC =180°,AB =AD ,DA ⊥AB ,点E 在CD 的延长线上,∠BAC =∠DAE . (1)求证:△ABC ≌△ADE ; (2)求证:CA 平分∠BCD ;(3)如图(2),设AF 是△ABC 的BC 边上的高,求证:EC =2AF .【答案】(1)详见解析(2)详见解析;(3)详见解析. 【解析】(1)根据全等三角形的判定定理ASA 即可证得.(2)通过三角形全等求得AC =AE ,∠BCA =∠E ,进而根据等边对等角求得∠ACD =∠E ,从而求得∠BCA =∠E =∠ACD 即可证得.(3)过点A 作AM ⊥CE ,垂足为M ,根据角的平分线的性质求得AF =AM ,然后证得△CAE 和△ACM 是等腰直角三角形,进而证得EC =2AF .【详解】(1)证明:∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°, ∴∠ABC =∠ADE , 在△ABC 与△ADE 中,BAC DAE AB ADABC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ADE (ASA ). (2)证明:∵△ABC ≌△ADE ,∴AC=AE,∠BCA=∠E,∴∠ACD=∠E,∴∠BCA=∠E=∠ACD,即CA平分∠BCD;(3)证明:如图②,过点A作AM⊥CE,垂足为M,∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM,又∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°,∵AC=AE,∠CAE=90°,∴∠ACE=∠AEC=45°,∵AM⊥CE,∴∠ACE=∠CAM=∠MAE=∠E=45°,∴CM=AM=ME,又∵AF=AM,∴EC=2AF.【点睛】此题考查了全等三角形的判定与性质,角的平分线的判定和性质以及等腰三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.20.弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:物体的质量(kg) 0 1 2 3 4 5弹簧的长度(cm) 12 12.5 13 13.5 14 14.5(1)上表反映了哪些变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体的质量为3kg时,弹簧的长度怎样变化?(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;(5)当物体的质量为2.5kg时,根据(4)的关系式,求弹簧的长度.【答案】(1)反映了物体的质量与弹簧的长度之间的关系,物体的质量是自变量,弹簧的长度是因变量;(2)弹簧的长度由原来的12cm变为13.5cm;(3)当物体的质量逐渐增加时,弹簧的长度逐渐变长;(4)y=12+0.5x ;(5)13.25cm.【解析】试题分析:(1)因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;(2)由表可知,当物体的质量为3kg 时,弹簧的长度是13.5cm.(3)由表格中的数据可知,弹簧的长度随所挂物体的重量的增加而增加;(4)由表中的数据可知,0x =时,12y =,并且每增加1千克的重量,长度增加0.5cm ,所以0.512y x ;=+(5)令 2.5x =,代入函数解析式,即可求解.试题解析:(1)反映了物体的质量与弹簧的长度之间的关系,物体的质量是自变量,弹簧的长度是因变量; (2)弹簧的长度由原来的12cm 变为13.5cm ;(3)当物体的质量逐渐增加时,弹簧的长度逐渐变长;(4)根据上表y 与x 的关系式是: 0.512.y x =+(5)当 2.5x =时,()120.5 2.513.25cm .y =+⨯=21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠1. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(1)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(1)CD ∥AB ;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(1)AB 与CD 平行;(3)由平行线的性质和反射的性质可得∠1=∠1=∠3=∠4,利用平角的定义可得∠ABC=∠BCD ,由平行线的判定可得AB 与CD 平行.详解:(1)只要作出的光线BC 经镜面EF 反射后的反射角等于入射角即∠5=∠6即可.(1)CD ∥AB .(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠1=∠3,∵∠1=∠1,∴∠1=∠1=∠3=∠4;∵∠ABC=180°﹣1∠1,∠BCD=180°﹣1∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键. 22.在如图所示的平面直角坐标系(每格的宽度为1)中,已知点A的坐标是(4,3)--,点B的坐标是(2,0),(1)在直角坐标平面中画出线段AB;(2)B点到原点O的距离是;(3)将线段AB沿y轴的正方向平移4个单位,画出平移后的线段A1B I,并写出点A1、B1的坐标.(4)求△A1B B1的面积.【答案】(1)见解析;(2)2;(3)A1的坐标(-4,1),B1的坐标(2,4);(4)1【解析】(1)根据A、B两点的坐标画图即可;(2)根据B点坐标可直接得到答案;(3)根据平移的性质画图即可;(4)利用三角形的面积公式12×底×高进行计算即可.【详解】(1)如图所示:(2)B点到原点O的距离是2;(3)如图所示:A1的坐标(-4,1),B1的坐标(2,4);(4)△A1BB1的面积:12B1B×6=12×4×6=1.【点睛】考查了图形的平移,以及点的坐标,求三角形的面积,关键是正确画出图形.23.在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组253211a ba b+=-⎧⎨-=-⎩,C为y轴正半轴上一点,且S△ABC=1.(1)求A,B,C三点的坐标;(2)是否存在点P(t,t),使S△PAB=13S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由.【答案】(1)A(﹣3,0),B(1,0),C(0,3).(2)P(1,1)或(﹣1,﹣1).【解析】试题分析:(1)解出方程组即可得到时点A,B的坐标,利用S△ABC=1,求出点C的坐标;(2)利用S△PAB=S△ABC求出点P的坐标即可.解:(1)由方程组,解得,∴A(﹣3,0),B(1,0),∵c为y轴正半轴上一点,且S△ABC=1,∴AB•OC=1,解得:OC=3∴C(0,3).(2)存在.理由:∵P(t,t),且S△PAB=S△ABC,∴×4×|t|=×1,解得t=±1,∴P(1,1)或(﹣1,﹣1).考点:坐标与图形性质;解二元一次方程组;三角形的面积.24.如图,在所给的方格图中,完成下列各题(用直尺画图,保留作图痕迹)(1)画出格点△ABC关于直线DE对称的△A1B1C1;(2)求△ABC的面积;(3)在DE上面出点P,使PA+PC最小.【答案】(1)如图所示:△A1B1C1,即为所求;见解析;(2)△ABC的面积为2;(3)如图所示:点P即为所求.见解析.【解析】(1)直接利用关于直线对称点的性质得出对应点位置进而得出答案;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:△A1B1C1,即为所求;(2)△ABC的面积为:2×3﹣12×2×2﹣12×1×1﹣12×1×3=2;(3)如图所示:点P即为所求.【点睛】此题主要考查了轴对称变换以及最短路线求法,正确得出对应点位置是解题关键.25.若不等式组20x ax b-+⎧⎨-⎩的解集为﹣1≤x≤2,(1)求a、b的值;(2)解不等式ax+b<0,并把它的解集在下面的数轴上表示出来.【答案】(1)a=﹣2,b=2;(2)x>1,图见详解【解析】(1)先求出不等式组的解集,根据已知即可求出a 、b 的值;(2)代入后求出不等式的解集即可.【详解】解:(1)200x a x b -+⎧⎨-⎩①② ∵解不等式①得:2a x , 解不等式②得:x ≤b , ∴不等式组的解集为2a x b , ∵不等式组200x a x b -+⎧⎨-⎩的解集为﹣1≤x ≤2, ∴12a =-,b =2, 即a =﹣2,b =2;(2)把a =﹣2,b =2代入ax+b <0得:﹣2x+2<0,﹣2x <﹣2,x >1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组、解一元一次不等式和在数轴上表示不等式的解集,能求出不等式组或不等式的解集是解此题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是 ( )A .2B .9C .10D .11 【答案】B【解析】分析:本题利用三角形的三边关系得出第三边的取值范围,再找出选项中在取值范围内的数值即可.解析:第三边的取值范围为:210x << .故选B.2.若不等式组1,1x x m <⎧⎨>-⎩恰有两个整数解,则m 的取值范围是( ) A .10m -≤<B .10m -<≤C .10m -≤≤D .10m -<< 【答案】A【解析】∵不等式组11x x m <⎧⎨>-⎩有解, ∴不等式组的解集为m-1<x<1,∵不等式组11x x m <⎧⎨>-⎩恰有两个整数解, ∴-2≤m -1<-1,解得10m -≤<,故选A.3.下列运算正确的是( )A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m •4m 2=8m 2D .m 5÷m 3=m 2【答案】D【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A ,2m 2+m 2=3m 2,故此选项错误;选项B ,(mn 2)2=m 2n 4,故此选项错误;选项C ,2m •4m 2=8m 3,故此选项错误;选项D ,m 5÷m 3=m 2,正确.故选D .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键. 4.一次函数y 1=kx+b 与y 1=x+a 的图象如图所示,则下列结论中正确的个数是( )①y1随x的增大而减小;②3k+b=3+a;③当x<3时,y1<y1;④当x>3时,y1<y1.A.3 B.1 C.1 D.0【答案】B【解析】根据图像逐项分析即可.【详解】对于y1=x+a,y1随x的增大而增大,所以①错误;∵x=3时,y1=y1,∴3k+b=3+a,所以②正确;当x<3时,y1>y1;所以③错误;当x>3时,y1<y1;所以④正确.故选B.【点睛】本题主要考查了一次函数与一元一次不等式的关系,从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.根据一次函数图象的位置进行判断,从函数图象来看,就是确定直线y=kx+b是否在在x轴上(或下)方.5.不等式组5511x xx m+<+⎧⎨->⎩的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤0【答案】D【解析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:11xx m>⎧⎨>+⎩,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.6.下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男女同学的人数D.了解济宁人民对建设高铁的意见【答案】C【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 一批手机电池的使用寿命,调查适合采用抽样调查方式,不符合题意;B. 中国公民保护环境的意识,调查适合采用抽样调查方式,不符合题意;C. 你所在学校的男女同学的人数,适合采用全面调查方式,符合题意;D. 了解济宁人民对建设高铁的意见,调查适合采用抽样调查方式,不符合题意.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图,已知直线AB ∥CD ,∠C=125°,∠A=45°,那么∠E 的大小为( )A .70°B .80°C .90°D .100°【答案】B 【解析】试题分析:假设AB 与EC 交于F 点,因为AB ∥CD ,所以∠EFB =∠C ,因为∠C =125°,所以∠EFB =125°,又因为∠EFB =∠A+∠E ,∠A =45°,所以∠E =125°-45°=80°.考点:(1)、平行线的性质;(2)、三角形外角的性质8.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C'处,折痕为EF ,若∠ABE =25°,则∠EFC'的度数为( )A .122.5°B .130°C .135°D .140°【答案】A 【解析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,欲求∠EFC′的度数,需先求出∠BEF 的度数;根据折叠的性质知∠BEF =∠DEF ,而∠AEB 的度数可在Rt △ABE 中求得,由此可求出∠BEF 的度数,即可得解.【详解】解:Rt △ABE 中,∠ABE =25°,∴∠AEB =909025ABE ︒-∠=︒-︒= 65°;由折叠的性质知:∠BEF =∠DEF ;而∠BED=180°﹣∠AEB=115°,∴∠BEF=12BED∠=57.5°;∵∠EBC′=∠D=∠BC′F=∠C=90°,∴BE∥C′F,'180BEF EFC∴∠+∠=︒∴∠EFC′=180°﹣∠BEF=122.5°.故选:A.【点睛】本题主要考查折叠的性质及平行线的性质,掌握折叠的性质及平行线的性质是解题的关键.9.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.如图,将含角的直角三角板的直角顶点放在直尺的一边上,已知,则的度数是()A.B.C.D.【答案】C【解析】先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=35°,∴∠3=90°−∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选C.【点睛】此题考查平行线的性质,解题关键在于掌握平行线的性质.二、填空题题11.当x__________时,代数式53x-的值是正数.【答案】35 x>【解析】试题解析:∵代数式53x-的值是正数. ∴5x-3>0解得:35 x>12.已知三角形的三边长之比为2__________.【答案】等腰直角三角形【解析】由已知得其有两条边相等,并且符合勾股定理的逆定理,从而可判断三角形的形状.【详解】解:由题意设三边长分别为:x,x22222)x x x+=∴三角形一定为直角三角形,并且是等腰三角形.故答案为:等腰直角三角形.【点睛】本题考查了勾股定理的逆定理,三角形三边关系满足a2+b2=c2,三角形为直角三角形.13.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.【答案】1【解析】先设最多降价x 元出售该商品,则出售的价格是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.解:设最多降价x 元出售该商品,则22.5-x-15≥15×10%,解得x≤1.故该店最多降价1元出售该商品.“点睛”本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.14.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 【答案】6【解析】利用负整数指数幂和零指数幂的性质计算即可.【详解】解:原式=5+1=6,故答案为:6.【点睛】本题考查了负整数指数幂和零指数幂的性质,解题的关键是熟练掌握基本知识,属于中考常考题型. 15.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______. 【答案】 6.32.2x y =⎧⎨=⎩ 【解析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】。
<合集试卷3套>2018年临沂市七年级下学期期末经典数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列选项中,是二元一次方程的是( )A .xy +4x =7B .π+x =6C .x -y =1D .7x +3=5y +7x【答案】C【解析】A 选项:项xy 的次数是2次,故是错误的;B 选项:只有一个未知数x ,是一元一次方程,故是错误的;C 选项:x -y =1是二元一次方程,故是正确的;D 选项:化简后为5y-3=0是一元一次方程,故是错误的;故选C.【点睛】二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.2.已知等腰三角形的两边长是4和10,则它的周长是( )A .18B .24C .18或24D .14【答案】B【解析】等腰三角形两边相等,其中两边长为4和10,可能的组合是4,4,10或10,10,4, 但三角形的构造条件是两边之和大于第三边,两边之差小于第三边,所以舍去4,4,10,∴三角形的周长为10+10+4=1.故选B .【点睛】已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a < 【答案】A【解析】本题首先要解这个关于x 的方程,然后根据解是非负数,就可以得到一个关于a 的不等式,最后求出a 的取值范围.【详解】解:原方程可整理为:(2-1)x=a-1,解得:x=a-1,∵方程x 的方程2x-a=x-1的解是非负数,∴a-1≥0,故选A .点睛:本题综合考查了一元一次方程的解与解一元一次不等式.解关于x 的不等式是本题的一个难点. 4.下列图案中,是轴对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形的定义,逐一进行判断.【详解】A 、C 是中心对称图形,但不是轴对称图形;B 是轴对称图形;D 不是对称图形.故选B.【点睛】本题考查的是轴对称图形的定义.5.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多5套,且两次进价相同.若设该书店第一次购进x 套,根据题意,列方程正确的是( )A .4006005x x =- B .4006005x x =- C .4006005x x =+ D .4006005x x =+ 【答案】C 【解析】该书店第一次购进x 套,则第二次购进(x+5)套,根据“两次进价相同”列出方程即可.【详解】该书店第一次购进x 套,则第二次购进(x+5)套,依题意得:4006005x x =+. 故选C .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 6.如果方程组 216x y m x y +=⎧⎨+=⎩的解为 6x y n =⎧⎨=⎩ ,那么其中的m ,n 代表的两个数分别为 A .10,4B .4,10C .3,10D .10,3【答案】A 【解析】把6x y n =⎧⎨=⎩代入216x y m x y +=⎧⎨+=⎩中得到关于m 、n 的方程,解方程即可.61216n m n +=⎧⎨+=⎩ 解得:104m n =⎧⎨=⎩. 故选:A.【点睛】考查了方程组的解的定义,方程组的解就是能够使方程组中的方程同时成立的未知数的解. 7.如果一个三角形的三边a 、b 、c ,满足2ab bc b ac +=+,那么这个三角形一定是( ) A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形【答案】B【解析】由已知2ab bc b ac +=+推出2ab bc b ac +--=0即(a-b )(b-c )=0,即可判定三角形边的关系.【详解】解:2ab bc b ac +=+ 2ab bc b ac +--=0(a-b )(b-c )=0即:a=b 或b=c ,则三角形一定为等腰三角形;故答案为B.【点睛】本题考查了三角形形状的判定,其关键在于对等式的变形,推导出a 、b 、c 的关系.8.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°【答案】A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.9.在平面坐标系内,点A 位于第二象限,距离x 轴1个单位长度,距离y 轴4个单位长度,则点A 的坐标为( )A .(1,4)B .(﹣4,1)C .(﹣1,﹣4)D .(4,﹣1)【答案】B【解析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求出点A 的横坐标与纵坐标,然后写出即可.【详解】∵点A 位于第二象限,距离x 轴1个单位长度,距离y 轴4个单位长度,∴点A 的横坐标为-4,纵坐标为1,∴点A 的坐标为(-4,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.10.已知a b <,c 为任意实数,则下列不等式中总是成立的是( )A .22ac bc <B .c a c b -<-C .a c b c -<-D .a b c c < 【答案】C【解析】A. ∵a<b,c 是有理数,∴当c=0时,ac²<bc²不成立,故本选项错误;B. ∵a<b ,∴−a>−b ,∴c −a>c −b ,故本选项错误;C. ∵a<b ,∴a −c<b −c ,故本选项错误;D. ∵a<b,c 是有理数,∴当c=0时,不等式a c <b c不成立,故本选项错误. 故选C.二、填空题题11.在平面直角坐标系中,点()1,5P -在第______象限【答案】四【解析】根据各象限内点的坐标特征解答.【详解】根据各象限内点的坐标特征可知,第四象限内点的横坐标为正数,纵坐标为负数,则点P(1,−5)本题考查象限及点的坐标的有关性质,解题的关键是掌握象限及点的坐标的有关性质.12.在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣83),P点关于x轴的对称点为P 2(a,b),则3ab=_____【答案】﹣1.【解析】根据中心对称求出P(3,),根据轴对称求出P1(3,﹣),得到a,b,再求立方根. 【详解】∵P 点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P1(a,b),∴P1(3,﹣),∴.故答案为:-1【点睛】本题考核知识点:1、关于原点对称的点的坐标;1、立方根;3、关于x轴、y轴对称的点的坐标.13.不等式组515264x xx m-+⎧+>⎪⎨⎪<⎩有4个整数解,则m的取值范围是_______.【答案】3<m≤1【解析】通过解不等式组可得出不等式组的解为﹣1<x<m,结合不等式组有1个整数解,即可确定m的取值范围.【详解】解:5x1x5264x m-+⎧+>⎪⎨⎪<⎩①②解不等式①得:x>﹣1,∴不等式组的解为﹣1<x<m.∵不等式组有1个整数解,∴3<m≤1.故答案为3<m≤1.【点睛】本题考查一元一次不等式组的整数解,通过解不等式组结合不等式组整数解的个数,找出m的取值范围是解题关键.______(从“条形图,扇形图,折线图和直方图”中选一个)【答案】扇形统计图【解析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【详解】解:根据题意,得:直观地介绍空气各成分的百分比,最适合使用的统计图是扇形统计图.故答案为扇形统计图.【点睛】此题考查扇形统计图、折线统计图、条形统计图各自的特点.15.若a3b y与-2a x b是同类项,则y x=_____.【答案】1.【解析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,分别求出x,y的值,然后求出y x即可.【详解】∵a3b y与-2a x b是同类项,∴x=3,y=1,∴y x=13=1.,故答案为:1.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:一是所含字母相同,二是相同字母的指数也相同.16.命题“如果两个数相等,那么它们的倒数相等”的逆命题是_____.【答案】如果两个数的倒数相等,那么它们也相等.【解析】交换原命题的题设和结论即可求得原命题的逆命题.【详解】解:命题“如果两个数相等,那么它们的倒数相等”的逆命题是“如果两个数的倒数相等,那么它们也相等”.【点睛】本题考查了逆命题的概念,弄清逆命题的概念及与原命题的关系是解题的关键.17.写出一个x的值,使|x﹣1|=﹣x+1成立,你写出的x的值是_____【答案】0(答案不唯一)【解析】根据绝对值的非负性,求出x的范围,即可得出结论.【详解】∵|x-1|=-x+1且|x-1|≥0,∴x≤1,故答案为:0(答案不唯一)【点睛】此题主要考查了绝对值的非负性,掌握绝对值的非负性,求出x≤1是解本题的关键.三、解答题18.如图,在平面直角坐标系中,A(3,0),B(0,3),过点B画y轴的垂线l,点C在线段AB上,连结OC并延长交直线l于点D,过点C画CE⊥OC交直线l于点E.(1)求∠OBA的度数,并直接写出直线AB的解析式;(2)若点C的横坐标为2,求BE的长;(3)当BE=1时,求点C的坐标.【答案】(3)直线AB的解析式为:y=﹣x+3;(3)BE=3;(3)C的坐标为(3,3).【解析】(3)根据A(3,0),B(0,3)可得OA=OB=3,得出△AOB是等腰直角三角形,∠OBA=45°,进而求出直线AB的解析式;(3)作CF⊥l于F,CG⊥y轴于G,利用ASA证明Rt△OGC≌Rt△EFC(ASA),得出EF=OG=3,那么BE=3;(3)设C的坐标为(m,-m+3).分E在点B的右侧与E在点B的左侧两种情况进行讨论即可.【详解】(3)∵A(3,0),B(0,3),∴OA=OB=3.∵∠AOB=90°,∴∠OBA=45°,∴直线AB的解析式为:y=﹣x+3;(3)作CF⊥l于F,CG⊥y轴于G,∴∠OGC=∠EFC=90°.∵点C的横坐标为3,点C在y=﹣x+3上,∴C(3,3),CG=BF=3,OG=3.∵BC平分∠OBE,∴CF=CG=3.∵∠OCE=∠GCF=90°,∴∠OCG=∠ECF,∴Rt△OGC≌Rt△EFC(ASA),∴EF=OG=3,∴BE=3;(3)设C的坐标为(m,﹣m+3).当E在点B的右侧时,由(3)知EF=OG=m﹣3,∴m﹣3=﹣m+3,∴m=3,∴C的坐标为(3,3);当E在点B的左侧时,同理可得:m+3=﹣m+3,∴C 的坐标为(3,3).【点睛】此题考查一次函数,等腰直角三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线 19.利用幂的运算性质 计算:363222⨯⨯.【答案】1.【解析】根据同底数幂的运算法则,即可求解.【详解】原式=1113623222⨯⨯⨯=11123632++⨯=32⨯=6.【点睛】本题主要考查同底数幂的运算法则以及分数指数幂的性质,掌握“同底数幂相乘,底数不变,指数相加”是解题的关键.20.如图,△ABC 中,AD 是BC 上的高,AE 平分∠BAC,∠B=75°,∠C=45°,求∠DAE 与∠AEC 的度数.【答案】∠DAE=15°,∠AEC=105°.【解析】试题分析:根据△ABC 的 内角和定理得出∠BAC 的度数,根据角平分线的性质得出∠BAE 和∠EAC 的度数,根据垂直的性质得出∠DAE 和∠BAD 的度数,根据△AEC 的内角和定理得出∠AEC 的度数. 试题解析:∵∠B =75°,∠C =45°, ∴∠BAC =60°.又AE 平分∠BAC . ∴∠BAE =∠EAC =30°. 又AD ⊥BC ∴∠DAE =∠BAD =15°,∠AEC =180°-∠EAC -∠C =180°-30°-45°=105°考点:(1)三角形内角和定理;(2)角平分线的性质.321x y m +=+⎧【答案】4m >.【解析】解含有参数m 的二元一次方程组,得到关于m 的x 、y 的值,再根据x >y 的关系解不等式求出m 的取值范围即可.【详解】解:32121x y m x y m +=+⎧⎨+=-⎩①②, ②×2﹣①得:x=m ﹣3③,将③代入②得:y=﹣m+5,∴得35x m y m =-⎧⎨=-+⎩, ∵x >y ,∴m ﹣3>﹣m+5,解得m >4,∴当m >4时,x >y .22.直线MN 与直线PQ 垂直相交于点O ,点A 在射线OP 上运动(点A 不与点O 重合),点B 在射线OM 上运动(点B 不与点O 重合).(1)如图1,已知AE 、BE 分别是BAO ∠和ABO ∠的角平分线,①当60ABO ∠=时,求AEB ∠的度数;②点,A B 在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出AEB ∠的大小;(2)如图2,延长BA 至G ,已知BAO ∠、OAG ∠的角平分线与BOQ ∠的角平分线所在的直线分别相交于E 、F ,在AEF ∆中,如果有一个角是另一个角的3倍,请直接写出ABO ∠的度数.【答案】(1)∠AEB 的大小不会发生变化,∠AEB 的度数是135°;(1)60°或45°.理由见解析.【解析】(1)①根据三角形内角和定理、角分线定义即可求得∠AEB 的度数;②与①同理,只是把具体度数转化为角表示出来即可得结论;(1)根据三角形内角和定理及一个外角等于与它不相邻的两个内角和,分四种情况讨论即可.∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE12=∠ABO=30°,∠BAE12=∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=180°﹣30°-15°=135°.答:∠AEB的度数是135°.②∠AEB的大小不会发生变化.理由如下:同①,得:∠AEB=180°﹣∠ABE﹣∠BAE=180°12-∠ABO12-∠BAO=180°12-(∠ABO+∠BAO)=180°12-⨯90°=135°.答:∠AEB的大小不会发生变化,∠AEB的度数是135°.(1)∠ABO的度数为60°或45°.理由如下:如图1.∵∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,∴∠OAE+∠OAF1 2 =(∠BAO+∠GAO)=90°,即∠EAF=90°.∵AE、OE是角平分线,∴∠BAE=∠EAO,∠BOE=∠EOQ,∴∠ABO +∠BAO=∠BOQ=90°=1∠EOQ=1(∠E+∠EAO),∴∠ABO +1∠EAO=1∠E+1∠EAO,∴∠E=12∠ABO.∵∠FAE=90°,∴∠F+∠E=90°,∴∠F=90°-∠E=90°-12∠ABO.分四种情况讨论:①当∠FAE=3∠E时,∠E=90°÷3=30°,∠ABO =1∠E=60°;②当∠FAE=3∠F时,∠F=90°÷3=30°,∴90°-12∠ABO =30°,解得:∠ABO =110°>90°,故舍去;③当∠F=3∠E时,90°-12∠ABO =3×12∠ABO,解得:∠ABO =45°;④当3∠F=∠E时,3×(90°-12∠ABO)=12∠ABO,解得:∠ABO =135°>90°,故舍去.综上所述:∠ABO的度数是60°或45°.故答案为:60°或45°.【点睛】本题考查了三角形内角和定理及外角的性质、角分线定义,解决本题的关键是分类讨论.23.如图所示,在Rt ABC ∆中,AC BC <,90ACB ∠=,点D 在BC 上,CD CA =,点E 在AB 上,连接CE ,DE ,过点C 作CF CE ⊥交BA 的延长线于点F .若180CAB CDE ∠+∠=,DE 与AF 相等吗?请说明理由.【答案】DE=AF,理由见解析【解析】先证明∠DCE =∠ACF 、∠CDE =∠CAF ,再根据AAS 证明△CDE ≌△CAF ,从而得到DE =AF.【详解】∵90ACB ∠=,CF CE ⊥,∴∠DCE+∠ECA=90o ,∠ACF+∠ECA=90o ,∴∠DCE=∠ACF,∵180CAB CDE ∠+∠=,∠CAE+∠CAF=180o ,∴∠CAF=∠CDE,在△CDE 和△CAF 中,CAF CDE DCE ACF CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△CAF (AAS ),∴DE =AF.【点睛】考查了全等三角形的判定和性质,解题关键利用同角的补角相等和同角的余角相等证明∠DCE=∠ACF 、∠CAF=∠CDE.24.某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?【答案】(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【解析】(1)根据诚信的人数和所占的百分比求出抽取的总人数,用总人数乘以友善所占的百分比,即可补全统计图;(2)用360°乘以爱国所占的百分比,即可求出圆心角的度数;(3)用该校七年级的总人数乘以“友善”所占的百分比,即可得出答案.÷=(名)【详解】解:(1)本次调查共抽取的学生有36%50⨯=(名)选择“友善”的人数有5030%15∴条形统计图如图所示:÷=,(2)∵选择“爱国”主题所对应的百分比为205040%⨯︒=︒;∴选择“爱国”主题所对应的圆心角是40%360144⨯=名. (3)该校七年级共有1200名学生,估计选择以“友善”为主题的七年级学生有120030%360故答案为:(1)条形统计图如图所示,见解析;(2)选择“爱国”主题所对应的圆心角是144°;(3)估计选择以“友善”为主题的七年级学生有360名.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.为弘扬“雷锋精神”,我县开展“做雷锋精神种子.当四品八德少年”主题征文比赛,已知每篇参赛征文成绩记m 分(60100m ≤≤) ,组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.县主题征文比赛成绩频数分布表 分数段 频数 频率6070m ≤< 380.38 7080m ≤<a 0.32 8090m ≤<20 b 90100m ≤≤10 0.1 合计 1县主题征文比赛成绩频数分布直方图请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中b 的值是 ;(2)补全征文比赛成绩频数分布直方图:(3)若80分以上(含80分)的征文将被评为一等奖,请估算全县获得一等奖征文的篇数.【答案】(1)0.2;(2)详见解析;(3)300(篇)【解析】(1)依据1−0.38−0.32−0.1,即可得到c 的值;(2)求得各分数段的频数,即可补全征文比赛成绩频数分布直方图;(3)利用80分以上(含80分)的征文所占的比例,即可得到全市获得一等奖征文的篇数.【详解】(1)1−0.38−0.32−0.1=0.2,故答案为:0.2;(2)10÷0.1=100,则100×0.32=32, 补全征文比赛成绩频数分布直方图:(3)全县获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点睛】本题考查条形统计图和统计表,解题的关键是掌握读懂条形统计图和统计表中的信息.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图形不是轴对称图形的是()A.B.C.D.【答案】A【解析】解:A不是轴对称图形;B是轴对称图形;C是轴对称图形;D是轴对称图形,故选A.2.下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)2【答案】A【解析】A. 原式=(a+4b)2,正确;B. 原式=(a2+4)(a+2)(a−2),错误;C. 原式=(2a+b)2,错误;D. 原式不能分解,错误,故选A.3.用一个平面去截一个正方体,截面不可能是()A.梯形B.五边形C.六边形D.七边形【答案】D【解析】正方体总共六个面,截面最多为六边形。
【精选3份合集】2017-2018年临沂市七年级下学期期末调研数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算正确的是( )A .42=±B .2(5)5-=-C .2(7)7-=D .2(3)3-=- 【答案】C【解析】A 选项,因为4=2,所以A 中计算错误;B 选项,因为2(5)5-=,所以B 中计算错误;C 选项,因为2(7)7-=,所以C 中计算正确;D 选项,因为2(3)-中被开方数是负数,式子无意义,所以D 中计算错误;故选C.2.下列等式正确的是( )A .±2(2)2-=B .222()-=-C .382-=-D .30.010.1= 【答案】C【解析】根据平方根立方根的性质即可化简判断.【详解】A. ()22±-=±2,故错误; B.()22-=2,故错误; C.38-=-2,正确; D. 30.001=0.1,故错误, 故选C.【点睛】此题主要考查平方根立方根的性质,解题的关键是熟知平方根立方根的性质.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可以是( )A .{12x x ≥-<B .{12x x ≤-<C .{12x x >-≤D .{12x x ≥-> 【答案】A【解析】根据数轴上表示的不等式组的解集,可得答案.【详解】解;由数轴上表示的不等式组的解集,x <2,x≥-1,故选:A .【点睛】本题考查了在数轴上表示不等式的解集,注意不等式组的解集不包括2点,包括-1点.4.一个质点在第一象限及x 轴、y 轴上运动, 在第一秒钟,它从原点运动到()0,1,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .()0,9B .()9,0C .()0,8D .()8,0【答案】C 【解析】由题目中所给的质点运动的特点找出规律,即可解答.【详解】质点运动的速度是每秒运动一个单位长度,3秒时到了(1,0);8秒时到了(0,2);15秒时到了(3,0);24秒到了(0,4);35秒到了(5,0);48秒到了(0,6);63秒到了(7,0);80秒到了(0,8),其规律就是质点在y 轴上时,每增加一个坐标,上下点之间运动的时间相减所得的数为5、7、9、11、13、15、17,都为后数=前数+2..∴第80秒时质点所在位置的坐标是(0,8).【点睛】本题考查了学生的阅读理解能力,解决本题的关键是读懂题意,并总结出一定的规律,难度较大. 5.怀远县政府在创建文明城市的进程中,着力美化城市环境,改造绿化涡河北岸,建设绿地公园,计划种植树木30万棵,由于青年志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程为( )A .3030520%x x -=B .3030520%x x-= C .30305120(%)x x -=+ D .30305120(%)x x -=+ 【答案】D【解析】根据题意列出分式方程即可.【详解】解:设原计划每天植树x 万棵,可得:30305120(%)x x-=+, 故选:D .【点睛】本题考查的是分式方程的实际应用,熟练掌握分式方程是解题的关键.6.不等式组230x x >-⎧⎨-≥⎩的解集是( ) A .23x -≤≤B .2x <-或3x ≥C .23x -<<D .23x -<≤ 【答案】D【解析】分别解两个不等式,再取解集的公共部分即可. 【详解】解: 230x x >-⎧⎨-≥⎩①② 由②得:3x ≤,所以不等式组的解集是23x -<≤.故选D .【点睛】本题考查不等式组的解法,掌握解不等式组及解集的确定是解题的关键.7.下列调查方式合适的是( )A .为了了解电视机的使用寿命,采用普查的方式B .调查济南市初中学生利用网络媒体自主学习的情况,采用普查的方式C .调查某中学七年级一班学生视力情况,采用抽样调查的方式D .为了了解人们保护水资源的意识,采用抽样调查的方式【答案】D【解析】A 、为了了解电视机的使用寿命,采用抽样调查,故本选项错误;B 、调查济南市初中学生利用网络媒体自主学习的情况,采用抽样调查,故本选项错误;C 、调查某中学七年级一班学生视力情况,采用普查的方式,故本选项错误;D 、为了了解人们保护水资源的意识,采用抽样调查的方式,故本选项正确,故选D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.已知4<m ≤5,则关于x 的不等式组0420x m x -<⎧⎨-≤⎩的整数解的个数共有( ) A .2B .3C .4D .5 【答案】B【解析】可先将不等式组求出解集,再通过m 的取值范围确定不等式组的解集中的整数解的个数即可.【详解】解:不等式组整理得:2x m x <⎧⎨≥⎩,解集为2x m ≤<,∵m 54<≤,∴整数解为2,3,4,共3个,故选:B .【点睛】本题考查含参数的不等式,解题的关键是根据参数的范围来确定不等式组的解集.9.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE )=270°-12α, ∴∠P=180°-(270°-12α)=12α-90°. 故选:A .【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用. 10.对于等式2x+3y=7,用含x 的代数式来表示y ,下列式子正确的是( )A .723x y -=B .372y x -=C .732y x -=D .273x y -= 【答案】A【解析】分析:要把等式237x y +=,用含x 的代数式来表示y ,首先要移项,然后化y 的系数为1. 详解:237x y +=,372,y x ∴=-72.3x y -= 故选A.点睛:考查了二元一次方程,表示y 时,可以将式子中的x 当做已知来求解.二、填空题题11.某公司要将一批货物运往某地,打算租用某汽车运输公司的甲.乙两种货车,以前租用这两种货车的信息如下表所示;现打算租用该公司4辆甲种货车和6辆乙种货车,可一次刚好运完这批货物.如果每吨运费为50元,该公司应付运费________元.【答案】1550【解析】分析:首先根据表格中所提供的信息通过列二元一次方程组求出两种货车每次的载重吨数,再根据题中所给数据列式计算即可.详解:设每辆甲种货车一次可运载x 吨,每辆乙种货车一次可运载y 吨,根据表中信息可得:2315.55635x y x y +=⎧⎨+=⎩ ,解得:42.5x y =⎧⎨=⎩, ∴每辆甲种货车一次可运载货物4吨,每辆乙种货车一次可得运载货物2.5吨,∴4辆甲种货车和6辆乙种货车一次可运载货物:4×4+2.5×6=31(吨),∵每吨货物的运费为50元,∴该公司应付运费:50×31=1550(元).故答案为:1550.点睛:“读懂题意,根据表中所提供信息列出二元一次方程组解得两种货车每次的运载量”是解答本题的关键.12.一个两位数,十位数与个位数的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是_______.【答案】16【解析】根据已知分别设十位数是a ,个位数是b ,列出方程组即可求解.【详解】解:设这个数为10a+b ,那么十位数就是a ,个位数就是b∵十位数与个位数的和是7,这个两位数加上45后,结果恰好成为数字对调后组成的两位数,∴7, 104510?a ba b b a+=⎧⎨++=+⎩()解方程组a=6,b=1∴这个两位数是16.【点睛】本题考查了二元一次方程组的求解,属于简单题,认真审题,找到等量关系是解题关键.13.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:1.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:已知x3=10648,且x为整数∵1000=103<10648<1003=1000000,∴x一定是______位数∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是_____;∴x=______.【答案】两;2;2;22【解析】根据立方和立方根的定义逐一求解可得.【详解】已知310648x=,且x为整数,33100010106481001000000=<<=,∴x一定是两位数,10648的个位数字是8,∴x的个位数字一定是2,划去10648后面的三位648得10,338210327=<<=,∴x的十位数字一定是2,∴22x=.故答案为:两、2、2、22.【点睛】本题主要考查立方根,解题的关键是掌握立方与立方根的定义.14.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C ,连结AA ′,若∠1=20°,则∠B =_____度.【答案】1【解析】由题意先根据旋转的性质得到∠ACA′=90°,CA =CA′,∠B =∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B 的度数.【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C ,∴∠ACA′=90°,CA =CA′,∠B =∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B =1°.故答案为:1.【点睛】本题考查旋转的性质,注意掌握对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.点()11,12A 与点()11,12B -关于_________对称.(填“x 轴”或“y 轴”)【答案】y 轴【解析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x 轴,两点到y 轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y 轴对称,故答案为:y 轴.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x 轴对称;横坐标互为相反数,纵坐标相等的两点关于y 轴对称”是解题的关键.1632m -m 的取值范围是_______【答案】m≤3 2【解析】直接利用二次根式有意义的条件分析得出答案.【详解】∵式子32m有意义,∴3-2m≥0,解得:m≤32.故答案为m≤32.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.17.分解因式:﹣m2+4m﹣4═_____.【答案】﹣(m﹣2)2【解析】试题解析:原式=-(m2-4m+4)=-(m-2)2.三、解答题18.如图,已知∠1=∠2,∠MAE=45°,∠FEG=15°,∠NCE=75°。
山东省临沂市2017—2018学年度第二学期期末数学试卷含精析

2017-2018学年山东省临沂市兰陵县七年级(下)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣2.下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为()A.(﹣4,3) B.(3,4)C.(﹣3,4) D.(4,3)4.已知点P(0,a)在y轴的负半轴上,则点Q(﹣a2﹣1,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限5.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°6.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.50°B.40°C.30°D.20°7.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b8.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.9.已知a,b满足方程组,则a+b=()A.2 B.3 C.4 D.510.不等式组的解集在数轴上表示正确的是()A.B.C.D.11.单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的()A.40% B.70% C.76% D.96%12.以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解一批灯泡的使用寿命13.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70~80分的人数最多D.80分以上的学生有14名14.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是()A.11 B.8 C.7 D.5二、填空题(每小题4分,共20分)15.的相反数是.16.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=°.17.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.18.2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是场.19.若我们规定[x)表示大于x的最小整数,例如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.其中正确的是.(填写所有正确结论的序号)三、解答题(共58分)20.(1)计算:(+2)﹣3(2)解不等式组:.21.利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答问题:甲、乙两种商品的进货单价各多少元?22.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,问AD与BE平行吗?说说你的理由.23.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(比较喜欢)、C(喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为人.(2)图①中,D等级所占圆心角的度数为;(3)图2中,请在图中补全条形统计图.24.中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1)m=,n=;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?25.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元(1)求甲、乙两种机器每台各多少万元?(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?2017-2018学年山东省临沂市兰陵县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣【考点】24:立方根.【分析】直接利用立方根的定义分析求出答案.【解答】解:﹣8的立方根是:=﹣2.故选:B.2.下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数【考点】27:实数.【分析】根据实数的分类、平方根和立方根的定义进行选择即可.【解答】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选C.3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为()A.(﹣4,3) B.(3,4)C.(﹣3,4) D.(4,3)【考点】D3:坐标确定位置.【分析】直接利用已知点的坐标确定原点的位置,进而得出棋子“馬”的点的坐标.【解答】解:如图所示:由题意可得,“帅”的位置为原点位置,则棋子“馬”的点的坐标为:(4,3).故选:D.4.已知点P(0,a)在y轴的负半轴上,则点Q(﹣a2﹣1,﹣a+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据y轴负半轴上点的纵坐标是负数求出a的取值范围,再求出点Q的横坐标与纵坐标的正负情况,然后求解即可.【解答】解:∵点P(0,a)在y轴的负半轴上,∴a<0,∴﹣a2﹣1<0,﹣a+1>0,∴点Q在第二象限.故选B.5.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.54°C.66°D.56°【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠D=∠1=34°,由垂直的定义得到∠DEC=90°,根据三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选D.6.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.50°B.40°C.30°D.20°【考点】JA:平行线的性质;IJ:角平分线的定义;K8:三角形的外角性质.【分析】由AD∥BC,∠B=30°利用平行线的性质即可得出∠EAD的度数,再根据角平分线的定义即可求出∠EAC的度数,最后由三角形的外角的性质即可得出∠EAC=∠B+∠C,代入数据即可得出结论.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.7.下列不等式变形正确的是()A.由a>b,得ac>bc B.由a>b,得a﹣2<b﹣2C.由﹣>﹣1,得﹣>﹣a D.由a>b,得c﹣a<c﹣b【考点】C2:不等式的性质.【分析】分别利用不等式的基本性质判断得出即可.【解答】解:A、由a>b,得ac>bc(c>0),故此选项错误;B、由a>b,得a﹣2>b﹣2,故此选项错误;C、由﹣>﹣1,得﹣>﹣a(a>0),故此选项错误;D、由a>b,得c﹣a<c﹣b,此选项正确.故选:D.8.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①甲2小时的路程+乙2小时的路程=18千米;②甲5小时的路程﹣乙4小时的路程=18千米,根据等量关系列出方程组即可.【解答】解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意得:,故选:B.9.已知a,b满足方程组,则a+b=()A.2 B.3 C.4 D.5【考点】97:二元一次方程组的解.【分析】观察方程组系数的特点,用第一个方程加上第二个方程,即可得到a+b的值.【解答】解:在方程组中,①+②,得:2a+2b=10,两边都除以2,得:a+b=5,故选:D.10.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:,由①得,x≤1,由②得,x>﹣3,故不等式组的解集为:﹣3<x≤1.在数轴上表示为:.故选A.11.单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制出如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵及以上的人数占总人数的()A.40% B.70% C.76% D.96%【考点】V8:频数(率)分布直方图.【分析】首先求得植树7棵以上的人数,然后利用百分比的意义求解.【解答】解:植树7棵以上的人数是50﹣2﹣10=38(人),则植树7棵及以上的人数占总人数的百分比是=76%.故选C.12.以下问题,不适合用普查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解一批灯泡的使用寿命【考点】V2:全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全班同学每周体育锻炼的时间,调查范围小,适合普查,故A不符合题意;B、旅客上飞机前的安检是事关重大的调查,适合普查,故B不符合题意;C、学校招聘教师,对应聘人员面试,事关重大的调查,适合普查,故C不符合题意;D、了解一批灯泡的使用寿命,具有破坏性的调查,适合抽样调查,故D符合题意;故选:D.13.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是()A.该班有50名同学参赛B.第五组的百分比为16%C.成绩在70~80分的人数最多D.80分以上的学生有14名【考点】V8:频数(率)分布直方图.【分析】根据频数分布直方图中每一组内的频率总和等于1,可得出第五组的百分比,又因为第五组的频数是8,即可求出总人数,根据总人数即可得出80分以上的学生数,从而得出正确答案.【解答】解:第五组所占的百分比是:1﹣4%﹣12%﹣40%﹣28%=16%,故B正确;则该班有参赛学生数是:8÷16%=50(名),故A正确;从直方图可以直接看出成绩在70~80分的人数最多,故C正确;80分以上的学生有:50×(28%+16%)=22(名),故D错误;故选:D.14.东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是x千米,出租车费为15.5元,那么x的最大值是()A.11 B.8 C.7 D.5【考点】C9:一元一次不等式的应用.【分析】已知从甲地到乙地共需支付车费15.5元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【解答】解:设他乘此出租车从甲地到乙地行驶的路程是x千米,依题意:8+1.5(x﹣3)≤15.5,解得:x≤8.即:他乘此出租车从甲地到乙地行驶路程不超过8千米.故选:B.二、填空题(每小题4分,共20分)15.的相反数是﹣2.【考点】28:实数的性质.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.16.如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,∠1=20°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.【解答】解:∵∠1=20°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,故答案是:70.17.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为480人.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图.【分析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.18.2016年在东安县举办了永州市首届中学生足球比赛,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛11场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于25分,则该校足球队获胜的场次最少是8场.【考点】C9:一元一次不等式的应用.【分析】设该校足球队获胜的场次是x场,根据比赛规则和比赛结果列出不等式并解答.【解答】解:设该校足球队获胜的场次是x场,依题意得:3x+(11﹣x﹣1)≥25,3x+10﹣x≥25,2x≥15,x≥7.5.因为x是正整数,所以x最小值是8,即该校足球队获胜的场次最少是8场.故答案是:8.19.若我们规定[x)表示大于x的最小整数,例如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.5成立.其中正确的是④.(填写所有正确结论的序号)【考点】CE:一元一次不等式组的应用.【分析】根据[x)的定义分别进行判断即可.【解答】解:∵[x)表示大于x的最小整数,∴①[0)=1,故①错误;②若x为整数,则[x)﹣x=1,若x不是整数,则[x)﹣x≠0,故[x)﹣x的最小值是0错误,故②错误;③若x=1,则[x)﹣x=2﹣1=1,故③错误;④当x=0.5时,[x)﹣x=1﹣0.5=0.5成立.故④正确,故正确的个数为1,故答案为:④.三、解答题(共58分)20.(1)计算:(+2)﹣3(2)解不等式组:.【考点】79:二次根式的混合运算;CB:解一元一次不等式组.【分析】(1)根据二次根式的乘法和合并同类项可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题.【解答】解:(1)(+2)﹣3=2+2﹣3=;(2),由不等式①,得x≤4由不等式②,得x<2,∴原不等式组的解集是x<2.21.利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答问题:甲、乙两种商品的进货单价各多少元?【考点】9A:二元一次方程组的应用.【分析】分别利用甲、乙两种商品的进货单价之和是5元以及购买甲商品3件和乙商品2件共19元得出等式进而求出答案.【解答】解:设甲种商品的进货单价x元,乙种商品的进货单价y元,根据题意可得:,解得:,答:甲种商品的进货单价2元,乙种商品的进货单价3元.22.如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,问AD与BE平行吗?说说你的理由.【考点】JB:平行线的判定与性质.【分析】根据平行线的性质得出∠1=∠ACD,根据三角形外角性质得出∠3=∠E+∠CAF,∠4=∠ACD+∠CAF,求出∠2=∠E,根据平行线的判定得出即可.【解答】解:AD∥BE,理由是:∵AB∥CD,∴∠1=∠ACD,∵∠3=∠E+∠CAF,∠4=∠ACD+∠CAF,∠3=∠4,∴∠1=∠E=∠ACD,∵∠1=∠2,∴∠2=∠E,∴AD∥BE.23.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(比较喜欢)、C(喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为200人.(2)图①中,D等级所占圆心角的度数为115.2°;(3)图2中,请在图中补全条形统计图.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由B等级的人数除以占的百分比得出调查总人数;(2)由D的百分比乘以360即可得到D等级占的圆心角度数;(3)首先求出A等级人数,补全条形统计图即可.【解答】解:(1)根据题意得:46÷23%=200(人),故答案为:200;(2)D等级占的圆心角度数为32%×360°=115.2°.故答案为:115.2°;(3)A等级的人数为200﹣(46+70+64)=20(人),补全条形统计图,如图所示:.24.中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25请根据所给信息,解答下列问题:(1)m=70,n=0.2;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.【解答】解:(1)由题意可得,m=200×0.35=70,n=40÷200=0.2,故答案为:70,0.2;(2)由(1)知,m=70,补全的频数分布直方图,如右图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.25.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元(1)求甲、乙两种机器每台各多少万元?(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设甲种机器每台x万元,乙种机器每台y万元,列出方程组即可解决问题.(2)设购买甲种机器a台,乙种机器(6﹣a)台,构建不等式解决问题.(3)分别求出各种方案的费用,日产量能力即可解决问题.【解答】解:(1)设甲种机器每台x万元,乙种机器每台y万元.由题意,解得,答:甲种机器每台7万元,乙种机器每台5万元.(2)设购买甲种机器a台,乙种机器(6﹣a)台.由题意7a+5(6﹣a)≤34,解得a≤2,∵a是整数,a≥0∴a=0或1或2,∴有三种购买方案,①购买甲种机器0台,乙种机器6台,②购买甲种机器1台,乙种机器5台,③购买甲种机器2台,乙种机器4台,(3)①费用6×5=30万元,日产量能力360个,②费用7+5×5=32万元,日产量能力406个,③费用为2×7+4×5=34万元,日产量能力452个,综上所述,购买甲种机器1台,乙种机器5台满足条件.21。
[试卷合集3套]临沂市2018年七年级下学期期末综合测试数学试题
![[试卷合集3套]临沂市2018年七年级下学期期末综合测试数学试题](https://img.taocdn.com/s3/m/99a98cfb4b73f242326c5fad.png)
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点A(a+1,a-2)在第二、四象限的角平分线上,则点B(-a,1-a)在()A.第一象限B.第二象限C.第三象跟D.第四象限【答案】B【解析】根据第二、四象限点的横坐标与纵坐标互为相反数列出方程求出a的值,再根据各象限内点的坐标特征求解即可.【详解】解:∵点A(a+1,a-2)在第二、四象限的角平分线上,∴a+1=-(a-2),解得a=12.∴-a=-12,1-a=1-12=12,∴点B(-a,1-a)在第二象限.故选B.【点睛】本题考查了点的坐标,掌握第二、四象限点的横坐标与纵坐标互为相反数以及各象限内点的坐标特征是解题的关键.2.4的平方根是( )A.2 B.±2 C.16 D.±16【答案】B【解析】根据平方根的意义求解即可,正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x的平方等于a,即x2=a,那么这个数x叫做a的平方根.3.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得()A.329557230x yx y+=⎧⎨+=⎩B.239557230x yx y+=⎧⎨+=⎩C.329575230x yx y+=⎧⎨+=⎩D.239575230x yx y+=⎧⎨+=⎩【答案】B【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可. 详解:设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得:239557230x y x y +=⎧⎨+=⎩, 故选B .点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组. 4.下表中的每一对 x , y 的值都是方程3y x的一个解:①y 的值随着x 的增大越来越大; ②当0x 时,y 的值大于3; ③当3x-时,y 的值小于0.上述结论中,所有正确结论的序号是( ) A .4个 B .3个C .2个D .1个【答案】C【解析】观察表格利用一次函数与二元一次方程的关系判断即可.【详解】解:观察表格得:y 的值随着x 的增大越来越大;当x <0时,y <3;当x <-3时,y 的值小于0, 故选:C . 【点睛】此题考查了二元一次方程的解,熟练掌握运算法则是解本题的关键. 5.若a b <,则下列结论不一定成立的是 A .11a b -<- B .22a b <C .33a b ->-D .22a b <【答案】D【解析】由不等式的性质进行计算并作出正确的判断. 【详解】A 、由a <b ,可得a-1<b-1,成立; B 、由a <b ,可得2a <2b ,成立; C 、由a <b ,可得-3a >-3b ,成立;D 、当a=-5,b=1时,不等式a 2<b 2不成立,故本选项正确; 故选D . 【点睛】考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.下列事件中,发生的概率是14的是()A.从一副扑克牌中,任意抽取其中的一张,抽到红桃的概率B.一个圆盘被染成红、黄、蓝、紫四种颜色,随机转动一次,转盘停止时,指针刚好指向红色的概率C.小明开车到十字路口时,遇到红灯的概率D.一道单选题有,,,A B C D四个备用选项,从中随机选一个作答,答对的概率【答案】D【解析】根据等可能事件的概率,逐一判定选项,即可得到答案.【详解】∵一副扑克牌共有54张,红桃扑克牌有13张,∴抽到红桃的概率=13 54,∴A不符合题意,∵一个圆盘被染成红、黄、蓝、紫四种颜色,这四种颜色面积不一定相等,∴指针刚好指向红色的概率不一定等于14,∴B不符合题意,∵十字路口有红黄绿三种灯,∴小明开车到十字路口时,遇到红灯的概率=13,∴C不符合题意,∵一道单选题有, ,,A B C D四个备用选项,∴从中随机选一个作答,答对的概率=14,∴D符合题意.故选D.【点睛】本题主要考查等可能事件的概率,掌握等可能事件的概率公式是解题的关键.7.使得分式2233xx x+---的值为零时,x的值是( )A.x=4 B.x=-4 C.x=4或x=-4 D.以上都不对【答案】A【解析】根据题意列出分式方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】根据题意列得:2233xx x+---=0,去分母得:x-2-2(x-3)=0,去括号得:x-2-2x+6=0,解得:x=4,经检验x=4是分式方程的解.故选A.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.如图,能使BF//DC的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠1=∠4【答案】A【解析】同位角相等、内错角相等、同旁内角互补,则两直线平行,此题主要考查了平行的判定.【详解】A、当∠1=∠3时,根据同位角相等,两直线平行可证BF∥DC,故正确;B、因为∠4、∠2不是BF、DC被截得的同位角或内错角,不符合题意,故错误;C、因为∠3、∠2不是BF、DC被截得的同位角或内错角,不符合题意,故错误;C、因为∠1、∠4不是BF、DC被截得的同位角或内错角,不符合题意,故错误;故选A.【点睛】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.9.某商店出售下列四种形状的地砖,若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()①正三角形;②正方形;③正五边形;④正六边形.A.4种B.3种C.2种D.1种【答案】B【解析】由镶嵌的条件知,判断一种图形是否能够镶嵌,只要看一看正多边形的内角度数是否能整除360°,能整除的可以平面镶嵌,反之则不能.【详解】解:①正三角形的每个内角是60°,能整除360°,6个能组成镶嵌;②正方形的每个内角是90°,4个能组成镶嵌;③正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能镶嵌;④正六边形的每个内角是120°,能整除360°,3个能组成镶嵌;故若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有3种.故选:B.【点睛】本题主要考查了平面镶嵌,用一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.10.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元.已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.3150.2()19.8y xx y=+⎧⎨+=⎩B.3150.8()19.8y xx y=+⎧⎨+=⎩C.3150.8()19.8y xx y=-⎧⎨+=⎩D.3150.2()19.8y xx y=-⎧⎨+=⎩【答案】A【解析】根据文具盒和书包之间的关系列出方程组即可.【详解】根据题意有,315(10.8)()19.8y xx y=+⎧⎨-+=⎩即3150.2()19.8y xx y=+⎧⎨+=⎩故选:A.【点睛】本题主要考查列二元一次方程组,读懂题意,找到等量关系是解题的关键.二、填空题题11.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.【答案】:【解析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=10°,∵DF=DE,∴∠E=1°.故答案为1.【点睛】本题考查等腰三角形的性质,熟练运用等边对等角是关键.12.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满a +|b﹣3|=1.足5(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出三角形OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2114的坐标为;②若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.【答案】(1)4;(3)①3.②当AC∥ED,t的值为3秒.(3)①(﹣3,1);(1,4).②﹣1<a<1,1<b<3.【解析】试题分析:(1)、首先根据非负数的形状得出a和b的值,然后根据长方形的形状得出点B、点C 和点D的坐标,从而得出长方形的面积;(3)、将t=4时的图像画出来,然后根据三角形的面积计算法则得出答案;过点D做DF垂直x轴于F点,根据平行线的形状得出∠CAD=∠DEF,当运动时间为t时,点D (5+t,1),点F(5+t,1),E(3t,1),从而得出答案;(3)、首先根据题意先写出前面的几个点的坐标,从而得出点的坐标循环规律,从而得出所要求的点坐标;首先根据题意先写出前面的几个点的坐标,根据点所在的位置列出不等式组,从而得出a和b的取值范围.试题解析:(1)、∵+|b﹣3|=1,∴a﹣5=1,b﹣3=1,即a=5,b=3,∵四边形ABCD为长方形,∴点B(1,3),点C(5,3),点D(5,1),∴AB=3﹣1=3,BC=5﹣1=4,长方形ABCD的面积为AB×BC=3×4=4.(3)、①将t=4时,线段AC拿出来,放在图3中,各字母如图,∵点A′(5,1),点C′(9,3),∴OM=5,ON=9,A′M=1,C′N=3,MN=ON﹣OM=4,三角形OA′C′的面积=ON•C′N﹣OM•A′M﹣(A′M+C′N)•MN=﹣﹣==3;②过点D做DF垂直x轴于F点,如图3,∵AC∥ED,∴∠CAD=∠ADE(两直线平行,内错角相等),∵AD∥x轴,∴∠DEF=∠ADE(两直线平行,内错角相等),∴∠CAD=∠DEF,当运动时间为t时,点D(5+t,1),点F(5+t,1),E(3t,1),则=,解得t=3秒,故当AC∥ED,t的值为3秒;(3)、①根据题意可知:A1(3,1),A3(1,4),A3(﹣3,1),A4(1,﹣3),A5(3,1),由此发现此组数据以4个为一组进行循环,3114÷4=513…3,即A3114=A3,故答案为(﹣3,1);(1,4).②根据题意可知:A1(a,b),A3(1﹣b,a+1),A3(﹣a,3﹣b),A4(b﹣1,1﹣a),A5(a,b),由此发现此组数据以4个为一组进行循环,∵对于任意的正整数n,点A n均在x轴上方,则有,解得﹣1<a<1,1<b<3.13.为了解游客对江淮文化园、苏中七战七捷纪念馆、中洋河豚庄园和人民广场四个旅游景区的满意率情况,某实践活动小组的同学给出以下几种调查方案:方案①:在多家旅游公司随机调查100名导游;方案②:在江淮文化园景区随机调查100名游客;方案③:在人民广场景区随机调查100名游客;方案④:在上述四个景区各随机调查100名游客.在这四种调查方案中,最合理的是“方案______”(填序号).【答案】④.【解析】采取抽样调查时,应能够保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性偏差的可能性是极小的,样本对总体的代表性很强.【详解】方案①、方案②、方案③选项选择的调查对象没有代表性.方案④在上述四个景区各调查100名游客,具有代表性.故答案为:④.【点睛】点评:本题考查了抽样调查的可靠性.抽样调查是实际中经常用采用的调查方式,如果抽取的样本得当,就能很好地反映总体情况.否则,抽样调查的结果会偏离总体的情况.14.不等式325x+≥-的负整数解是______.【答案】-1,-2【解析】首先解不等式求得不等式的解集,然后确定解集中的负整数即可.【详解】解不等式3x+2⩾−5,移项,得:3x⩾−7,则x⩾7-3.故负整数解是:−1,−2.故答案是:−1,−2【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则15.已知25xy=⎧⎨=-⎩是方程3mx﹣y=﹣1的解,则m=_____.【答案】﹣1【解析】根据方程的解来求解参数,代入计算即可.【详解】解:因为25xy=⎧⎨=-⎩是方程3mx﹣y=﹣1的解所以3251m⨯+=-,即m=-1故答案为-1.【点睛】本题主要考查方程的解满足方程来求解参数,其实就是代入,解一元一次方程.16+有意义的整数x有________个.【答案】1.【解析】直接利用二次根式有意义的条件得出x的取值范围进而得出答案.+则30430xx⎧⎨-≥⎩+>,解得:−3<x≤43,故整数x有:−2,−1,0,1,共1个,故答案为:1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.17.截止5月初,受H7N9禽流感的影响,家禽养殖业遭受了巨大的冲击,最新数据显示,损失已超过400亿元,用科学记数法表示为_____元.【答案】4×1010【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】400亿=40000000000一共11位,从而400亿=40000000000=4×1010,故答案为4×1010三、解答题18.解方程组、不等式:(1)解方程组5212237x yx y+=⎧⎨+=⎩;(2)解不等式912311632x x x+---≤+.【答案】(1)21xy=⎧⎨=⎩;(2)1x≥.【解析】(1)方程组利用加减消元法求出解即可;(2)不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【详解】解:(1)5212237x yx y+=⎧⎨+=⎩①②①×3-②×2得:11x=22解得:x=2把x=2代入②得:y=1∴方程组的解为:21xy=⎧⎨=⎩;(2)去分母得,()()92126331x x x +--≤+-, 去括号,得924693x x x +-+≤+-, 移项,得496329x x x +-≤-+-, 合并同类项,得44x -≤-, 系数化为1,得1x ≥. 【点睛】此题考查了解一元一次不等式,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.19.已知:如图,AF 平分BAC ∠,BC AF ⊥,垂足为E ,点D 在AF 上,AE ED =,PB 分别与线段CF ,AF 相交于P ,M .(1)求证:AB CD =;(2)若2BAC MPC ∠=∠,请你判断F ∠与MCD ∠的数量关系,并说明理由. 【答案】(1)证明见解析 (2)答案见解析【解析】(1)由AE ED =,BC ⊥AD 易证AC =CD ,再根据角平分线及垂直得到∠ACE =∠ABE ,利用等角对等边证明AC =AB ,可得结论AB =CD ;(2)易证∠CAD =∠CDA =∠MPC ,则∠MPF =∠CDM ,然后根据AM 为BC 的中垂线,可得∠CMA =∠BMA =PMF ,可得到∠MCD =∠F . 【详解】(1)证明:∵AF 平分∠BAC , ∴∠CAD =∠BAD , ∵AE ED =, ∵BC ⊥AD ,∴BC 为AD 的中垂线, ∴AC =CD .在Rt △ACE 和Rt △ABE 中,∠CAD +∠ACE =∠BAD +∠ABE =90°, ∴∠ACE =∠ABE , ∴AC =AB , ∴AB =CD ;(2)解:∠MCD =∠F , 理由如下:∵∠BAC =2∠MPC ,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD,∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA,∴∠MPF=∠CDM,∵AC=AB,AE⊥BC,∴CE=BE,∴AM为BC的中垂线,∴CM=BM.∵EM⊥BC,∴EM平分∠CMB.∴∠CME=∠BME,∵∠BME=∠PMF,∴∠PMF=∠CME,∴∠MCD=∠F.【点睛】本题考查了等腰三角形的判定和性质、线段垂直平分线的性质以及三角形内角和定理;解题时需注意充分利用两点关于某条直线对称,对应点的连线被对称轴垂直平分,进而得到相应的线段相等和角相等.20.已知AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF∥AD,EF交AB于点G.求证:∠AGF=∠F.【答案】见解析【解析】直接利用平行线的性质得出∠AGF=∠BAD,∠CAD=∠F,再利用角平分线的定义得出答案.【详解】证明:∵EF∥AD,∴∠AGF=∠BAD,∠CAD=∠F,又∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠AGF=∠F.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.21.如图所示,铅笔图案的五个顶点的坐标分别是(0,1),(4,1),(5,1.5),(4,2),(0,2).将图案向下平移2个单位长度,画出相应的图案,并写出平移后相应五个顶点的坐标.【答案】(0,-1),(4,-1),(5,-0.5),(4,0),(0,0).【解析】本题考查的是平移变换作图和平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.根据平移作图的方法作图即可.把各顶点向下平移2个单位,顺次连接各顶点即为平移后的图案;平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.故将各顶点的横坐标不变,纵坐标减2,即为新顶点的坐标.解:如图,平移后五个顶点的相应坐标分别为:(0,-1),(4,-1),(5,-0.5),(4,0),(0,0).22.如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数.【答案】72°【解析】由平行线的性质可求得∠ABC=54°,再根据角平分线的定义可求得∠ABD=108°,再由平行线的性质可求得∠CDB=72°,根据对顶角相等即可求得∠2=72°.【详解】∵ AB//CD,∠1=54°,∴∠ABC=∠1=54°,∵ BC平分∠ABD,∴∠ABD=2∠ABC =2×54°=108°,∵ AB//CD,∴∠ABD+∠CDB=180°,∴∠CDB=180°-∠ABD=72°,∵∠2=∠CDB,∴∠2=72°.【点评】本题考查了平行线的性质,角平分线的定义,对顶角的性质,熟练掌握相关性质是解题的关键.23.如图,已知∠1=∠2,AB∥EF.求证:∠A=∠E.【答案】详见解析【解析】依据∠1=∠AHB,∠1=∠2,即可得到∠2=∠AHB,进而得出AF∥CE,再根据同角的补角相等,可得∠A=∠E.【详解】证明:∵∠1=∠AHB,∠1=∠2,∴∠2=∠AHB,∴AF∥CE,∴∠A+∠ACE=180°,又∵AB∥EF,∴∠E+∠ACE=180°,∴∠A=∠E.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.掌握平行线的性质与判定是解题关键.24.解不等式:2123x x-≤-,把解集在数轴上表示出来.【答案】x≤2【解析】先将不等式左右两边同时扩大6倍,去掉分母;然后在按照解一元一次不等式的步骤进行求解【详解】左右两边同时扩大6倍得:3x≤6-2(x-2)去括号得:3x≤6-2x+4移项得:5x ≤10解得:x ≤2数轴上表示如下:【点睛】本题考查了解不等式,需要注意,不等式两边同乘除负数时,不等号要变号25.如图1,已知MN PQ ,点A 、B 分别是直线MN 、PQ 上的两点.将射线AM 绕点A 顺时针匀速旋转,将射线BQ 绕点B 顺时针匀速旋转,旋转后的射线分别记为AM '、BQ ',已知射线AM 、射线BQ 旋转的速度之和为6度/秒.(1)射线BQ 先转动40得到射线BQ ',然后射线AM 、BQ '再同时旋转10秒,此时射线AM '与射线BQ '第一次出现平行.求射线AM 、BQ 的旋转速度;(2)若射线AM 、BQ 分别以(1)中速度同时转动t 秒,在射线AM '与射线AN 重合之前,设射线AM '与射线BQ '交于点H ,过点H 作HC PQ ⊥于点C ,设BAH α∠=,BHC β∠=,如图2所示. ①当AM BQ ''⊥时,求α、β、BAN ∠满足的数量关系;②当45BAN ∠=时,求α和β满足的数量关系.【答案】(1)射线AM 、BQ 的旋转速度分别为5度/秒、1度/秒;(2)①当AM BQ '⊥'时,BAN αβ∠=+ ;②5315αβ+=︒.【解析】(1)设射线AM 的旋转速度为x 度/秒、则BQ 的旋转速度(6)x -度/秒,根据题意列出方程求解即可;(2)①根矩AM BQ '⊥',求出90HAB ABH ∠+∠=︒,再根据MN PQ ,求出90HAN HBQ ∠+∠=︒,即可求解; ②由(1)知射线AM 、BQ 的旋转速度分别为5度/秒、1度/秒,可得5MAM t ∠'=,QBQ t ∠'=,再算()4518055135t t α︒︒︒=--=-,再求出90t β=︒-即可求解.【详解】解:(1)设射线AM 的旋转速度为x 度/秒、则BQ 的旋转速度(6)x -度/秒,依题意得:()1010640x x =⨯-+解得5x =∴61x -=答:射线AM 、BQ 的旋转速度分别为5度/秒、1度/秒.(2)①∵AM BQ '⊥'∴90AHB ∠=︒∴90HAB ABH ∠+∠=︒∵MN PQ∴180BAN ABQ ∠+∠=︒∴90HAN HBQ ∠+∠=︒∴9090BAN αβ︒︒∠-+-=∴BAN αβ∠=+,∴当AM BQ '⊥'时,BAN αβ∠=+②由(1)知射线AM 、BQ 的旋转速度分别为5度/秒、1度/秒当射线AM 、BQ 同时转动t 秒后, 5MAM t ∠'=,QBQ t ∠'=,∴1805HAN t ∠=︒-,45HAN α∠+=︒,∴()4518055135t t α︒︒︒=--=-,∵HC PQ ⊥,∴90QBQ β+∠'=︒∵QBQ t ∠'=,∴90t β=︒-,又5135t α=︒- ∴135905αβ︒︒+-=即5315αβ+=︒.【点睛】本题考查的是旋转的综合运用,熟练掌握旋转的性质和平行,一次函数是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查应作全面调查的是()A.节能灯管厂要检测一批灯管的使用寿命.B.了解居民对废电池的处理情况.C.了解现代大学生的主要娱乐方式.D.某公司对退休职工进行健康检查.【答案】D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】A、日光灯管厂要检测一批灯管的使用寿命,适合抽样调查,故A选项错误;B、了解居民对废电池的处理情况,适合抽样调查,故B选项错误;C、了解现代大学生的主要娱乐方式,适合抽样调查,故C选项错误;D、某公司对退休职工进行健康检查,适于全面调查,故D选项正确.故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.如图,已知D、E分别为△ABC的边AC、BC的中点,AF为△ABD的中线,连接EF,若四边形AFEC的面积为15,且AB=8,则△ABC中AB边上高的长为()A.3 B.6 C.9 D.无法确定【答案】B【解析】连接DE,设S△DEF=x,求得S△BDE=2x,S△CDE=2x,S△ABD=4x,S△ADF=2x,即可根据四边形AFEC 的面积为15,求出x的值,求得△ABC的面积,根据三角形面积公式即可求出高的长.【详解】连接DE,设S△DEF=x,∵D、E分别为△ABC的边AC、BC的中点,AF为△ABD的中线,∴S△BDE=2S△DEF=2x,∴S△CDE=S△BDE=2x,∴S△ABD=S△BCD=4x,∴S△ADF=2x,∴四边形AFEC的面积=2x+3x=5x=15,∴x=3,∴△ABC的面积=8x=24,△ABC中AB边上高的长为24×2÷8=1.故选:B.【点睛】本题考查了三角形的线段长度问题,掌握中线的性质、中位线的性质、三角形面积公式是解题的关键.3.不等式的2(x﹣1)<x解集在数轴上表示如下,正确的是()A.B.C.D.【答案】D【解析】根据不等式性质解不等式,再表示解集.【详解】解:去括号得,1x﹣1<x,移项、合并同类项得,x<1.在数轴上表示为:.故选:D.【点睛】考核知识点:解不等式、再数轴表示解集.解不等式是关键.44313、0.3、π、2.1234567891011121314…(自然数依次排列)38有()A.2个B.3个C.4个D.5个【答案】Bπ,2.1234567891011121314…(自然数依次排列),共3个, 故选B .5.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本3元,每支钢笔5元,求小明最多能买几支钢笔.设小明买了x 支钢笔,依题意可列不等式为( )A .3x+5(30﹣x )≤100B .3(30﹣x )+5≤100C .5(30﹣x )≤100+3xD .5x≤100﹣3(30+x ) 【答案】D【解析】设小明买了x 支钢笔,则买了(30﹣x )本笔记本,根据总价=单价×购买数量结合总价不超过100元,即可得出关于x 的一元一次不等式.【详解】设小明买了x 支钢笔,则买了(30﹣x )本笔记本,根据题意得:5x+3(30﹣x )≤100或5x≤100﹣3(30+x ).故选D .【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量间的关系,正确列出一元一次不等式是解题的关键.6.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰好有四个整数解,那么m 的取值范围是( ) A .1m ≥-B .0m <C .10m -≤<D .10m -<≤ 【答案】C【解析】可先用m 表示出不等式组的解集,再根据恰有四个整数解可得到关于m 的不等组,可求得m 的取值范围.【详解】解:在0233(2)x m x x ->⎧⎨--⎩①②中, 解不等式①可得x >m ,解不等式②可得x ≤3,由题意可知原不等式组有解,∴原不等式组的解集为m <x ≤3,∵该不等式组恰好有四个整数解,∴整数解为0,1,2,3,∴-1≤m <0,故选:C .【点睛】本题主要考查解不等式组,求得不等式组的解集是解题的关键,注意恰有四个整数解的应用. 7.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .﹣2πB .1﹣2πC .﹣πD .1﹣π【答案】B 【解析】因为圆从原点沿数轴向左滚动一周,可知AB =2π,再根据数轴的特点及π的值即可解答.【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB 之间的距离为圆的周长=2π,A 点在数轴上表示1的点的左边.∴A 点对应的数是1﹣2π.故选B .【点睛】本题考查的是数轴的特点及圆的周长公式.圆的周长公式是:L =2πr .8.在平面直角坐标系中,点()2,0A -所在的位置是( )A .第二象限B .第三象限C .x 轴负半轴D .y 轴负半轴【答案】C【解析】由于点P 的纵坐标为0,则可判断点A (-2,0)在x 轴负半轴上.【详解】解:点A (-2,0)在x 轴负半轴上.故选:C .【点睛】本题考查了点的坐标:记住各象限内的点的坐标特征和坐标轴上点的坐标特点.9.将某图形的各顶点的横坐标减去3,纵坐标保持不变,可将该图形( )A .横向向右平移3个单位B .横向向左平移3个单位C .纵向向上平移3个单位D .纵向向下平移3个单位 【答案】B【解析】利用平移的规律进行判断.【详解】解:将某图形的各顶点的横坐标减去3,纵坐标保持不变,可将该图形横向向左平移3个单位. 故选B .【点睛】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.10.已知一种植物种子的质量约为0.0000026千克,将数0.0000026用科学记数法表示为( ) A .2.6×10﹣6 B .2.6×10﹣5 C .26×10﹣8 D .0.26x10﹣7【答案】A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0021=2.1×10﹣1.故选:A .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题题11_____. 【答案】23【解析】根据是实数的性质即可化简.23==. 故答案为23. 【点睛】 此题主要考查二次根式的化简,解题的关键是熟知实数的性质.12.一个五边形有三个内角是直角,另两个内角都等于n°,则n=_____.【答案】1.【解析】多边形的内角和可以表示成(n ﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n ,列方程可求解.解:依题意有3×90+2n=(5﹣2)•180,解得n=1.故答案为1.13.某工程队承建30千米的管道铺设工程,预计工期为60天,设施工x 天时未铺设的管道长度是y 千米,则y 关于x 的关系式是_______________.【答案】300.5x y -=【解析】先求出预计每天的工作量,再根据题意即可列出关系式.【详解】∵某工程队承建30千米的管道铺设工程,预计工期为60天,∴预计每天施工0.5千米,故施工x 天时,y 关于x 的关系式是300.5x y -=故填300.5x y -=【点睛】此题主要考查函数关系式,解题的关键是根据题意找到等量关系进行列式.14.点(2,3)- 到x 轴的距离为________.【答案】1【解析】根据到x 轴的距离等于点的纵坐标的长度是解题的关键.【详解】解:点(-2,1)到x 轴的距离为|1|=1.故答案为:1.【点睛】本题考查了点的坐标,熟记到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.15.在①x=1y=1⎧⎨-⎩,, ②x=2y=3-⎧⎨-⎩,, ③x=3y=0-⎧⎨⎩, 中,①和②是方程2x 3y=5-的解;__________是方程3x+y=9-的解;不解方程组,可写出方程组2x 3y=53x+y=9-⎧⎨-⎩, 的解为__________. 【答案】(1)②和③; (2)②.【解析】分析:根据二元一次方程解的定义和二元一次方程组解的定义进行分析解答即可.详解:把①x=1y=-1⎧⎨⎩ ,②x=-2y=-3⎧⎨⎩ ,③x=-3y=0⎧⎨⎩ 分别代入方程39x y +=- 检验可得:②x=-2y=-3⎧⎨⎩ ,③x=-3y=0⎧⎨⎩是方程39x y +=-的解,∵①x=1y=-1⎧⎨⎩ ,②x=-2y=-3⎧⎨⎩ 也是方程235x y -=的解, ∴方程组23539x y x y -=⎧⎨+=-⎩的解是②. 故答案为:(1)②和③;(2)②.点睛:熟知“二元一次方程解的定义和二元一次方程组解的定义”是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩【答案】C 【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为:302001505300x y x y +=⎧⎨+=⎩. 故选C .点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键. 2.做课间操时,小明、小刚和小红三人的相对位置(如图),如果用(3,4)表示小明的位置,(1,3)表示小刚的位置,则小红的位置可表示为( )A .(0,0)B .(0,1)C .(1,0)D .(1,2)【答案】B 【解析】根据小明和小刚的位置确定坐标原点的位置,建立直角坐标系即可求解.【详解】如图,由小明和小刚的位置确定坐标原点的位置,建立直角坐标系:故小红的位置为(0,1),故选B.【点睛】此题主要考查位置的确定,解题的关键是找到坐标原点.3.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3【答案】D【解析】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 3=31-,解得x=23+1.故选D.4.已知()2,3P --到x 轴的距离是( )A .2B .3C .3-D .2- 【答案】B【解析】根据点到x 轴的距离等于纵坐标的绝对值求解即可. 【详解】()2,3P --到x 轴的距离是33y =-=故答案为:B .【点睛】本题考查了点到x 轴的距离问题,掌握点到x 轴的距离等于该点纵坐标的绝对值是解题的关键. 5.点A(2,-5)关于x 轴对称的点的坐标是( )A .(-2,-5)B .(-2,5)C .(2,5)D .(-5,2) 【答案】C【解析】根据直角坐标系中点的对称原则,关于x 轴对称,横坐标不变,纵坐标变为它的相反数.【详解】根据题意点A 关于x 轴对称,则横坐标不变,纵坐标变为相反数.所以可得A 点关于x 轴对称的点的坐标是(2,5),故选C.【点睛】本题主要考查直角坐标系中点的对称问题,这是直角坐标中的重点知识,必须熟练掌握记忆.6.下列调查中,最适合采用抽样调查的是( )A .乘客上飞机前对所有乘客的安全检查B .了解一批炮弹的杀伤半径C .为了运载火箭能成功发射,对其所有的零部件的检查D .了解七年一班同学某天上网的时间 【答案】B【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A 、乘客上飞机前对所有乘客的安全检查适合全面调查;B 、了解一批炮弹的杀伤半径适合抽样调查;C 、为了运载火箭能成功发射,对其所有的零部件的检查适合全面调查;D 、了解七年一班同学某天上网的时间适合全面调查;故选B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.7.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角 【答案】B【解析】两条线a 、b 被第三条直线c 所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角,据此作答即可.【详解】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.所以B 选项是正确的,【点睛】本题考查了同位角、内错角、同旁内角的识别,属于简单题,解题的关键是掌握同位角、内错角、同旁内角,并能区别它们.8.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②,下列解法错误的是( ) A .()23⨯-⨯-①②,消去y B .23⨯-⨯①②,消去yC .()32⨯-⨯①+②,消去xD .32⨯-⨯①②,消去x 【答案】A【解析】根据加减消元法判断即可.【详解】解:A 选项,2①×得4610x y -=,()3⨯-②得9621x y -+=-,()23⨯-⨯-①②得131231x y -=,没有消去y ,故A 错误;B 选项,2①×得4610x y -=,3⨯②得9621x y -=,23⨯-⨯①②得511x -=-,消去y ,故B 正确;C 选项,(3)⨯-①得6915x y -+=-,2⨯②得6414x y -=,()32⨯-⨯①+②得51y =-,消去x ,故C 正确;D 选项,3⨯①得6915x y -=,2⨯②得6414x y -=,32⨯-⨯①②得51y -=,消去x ,故D 正确. 故选:A【点睛】本题考查了加减消元法,灵活运用加减消元是解题的关键.9.如图,,,,则的度数是( )A .B .40°C .D .45°【答案】B【解析】根据全等三角形对应角相等,∠ACB=∠A′CB′,所以∠ACA′=∠BCB′,再根据角的和差关系代入数据计算即可.【详解】∵△ACB ≌△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB−∠A′CB=∠A′CB′−∠A′CB ,即∠ACA′=∠BCB′, ∵,∠ACB′=110°,∴∠ACA′= (110°−30°)=40°.故选B【点睛】此题考查全等三角形的性质,解题关键在于得出∠ACA′=∠BCB′.10.一个三角形三个内角的度数之比为1:4:5,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形【答案】B 【解析】按比例计算出各角的度数即可作出判断:三角形的三个角依次为180°×1145++=18°,180°×4145++=72°,180°×5145++=90°,所以这个三角形是直角角三角形.故选B .二、填空题题11.已知.在△ABC 中,∠B=3∠A ,∠C ﹣∠A=30°,则∠A 的度数为_____.【答案】30°.【解析】设∠A=x°,则∠B=3x°,∠C=x°+30°,利用三角形内角等于180°列出方程,即可解决问题.【详解】解:设∠A=x°,则∠B=3x°,∠C=x°+30°,在△ABC 中,∠A+∠B+∠C=180°,∴x+3x+x+30=180,∴x=30,即∠A=30°.故答案为:30°.【点睛】本题考查三角形内角和定理,解题的关键是学会构建方程解决问题.12﹣6y ﹣33|=0,求代数式的值:168x+2018y+1=_______.【答案】1【解析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,代入原式计算即可求出值.+|5x ﹣6y ﹣33|=1,∴34165633x y x y +⎧⎨-⎩=①,=②①×3+②×2得:19x=114,解得:x=6,把x=6代入①得:y=-12, 则原式=168×6-2118×12+1=1. 故答案为1【点睛】本题考查解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解题关键.13.若224x mxy y ++是一个完全平方式,则m =_________.【答案】±4【解析】将原式化简为:()222x mxy y ++,为完全平方公式,则根据完全平方公式xy 22x y m =±⋅⋅,从而求解出m【详解】原式=()222x mxy y ++∵这个式子是完全平方公式∴xy 22x y m =±⋅⋅解得:m=±4故答案为:±4【点睛】本题考查了完全平方公式,熟练掌握公式是解题的关键,注意容易漏掉“负解”.14.如图,直线AB ∥CD ,∠B =50°,∠C =40°,则∠E 等于_____.【答案】90°【解析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论. 【详解】解:设CD 和BE 的夹角为∠1,∵AB ∥CD ,∴∠1=∠B =50°;∵∠C =40°,∴∠E =180°﹣∠B ﹣∠1=90°.故答案为:90°.【点睛】本题考查了平行线的性质和三角形的内角和,熟练掌握知识点是解题关键.15.将点P (﹣3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,﹣1),则x+y =_____.【答案】﹣1.【解析】根据向下平移纵坐标减,向左平移横坐标减列方程求出x 、y 的值,然后相加计算即可得解.【详解】∵点P (-1,y )向下平移1个单位,向左平移2个单位后得到点Q (x ,-1),∴x=-1-2,y-1=-1,解得x=-5,y=2,所以,x+y=-5+2=-1.故答案为-1.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16.不等式2541x x ->-的最大整数解是______.【答案】3-【解析】先解不等式,再求最大整数解.【详解】25412415242x x x x x x ->-->-+-><-所以,最大整数是:-3故答案为:-3【点睛】考核知识点:考核知识点:解不等式.掌握一般步骤是关键.17.如图,在直角三角尺ACD 与BCE 中,90ACD BCE ∠=∠=︒,60A ∠=︒,45B ∠=︒.三角尺ACD 不动,将三角尺BCE 的CE 边与CA 边重合,然后绕点C 按顺时针方向任意转动一个角度.当ACE ∠(090ACE ︒<∠<︒)等于多少度时,这两块三角尺各有一条边互相垂直,写出ACE ∠所有可能的值是_______.【答案】30°,45°,75°【解析】根据CE⊥AD,CD⊥BE,AD⊥BE,分别即可求出.【详解】如图所示当CE⊥AD,∠ACE=90°-60°=30°,当CD⊥BE,所以∠E=∠ECD=45°,所以∠ACE=90°-45°=45°,当AD⊥BE,所以∠E=∠EFD=45°,又因为∠EFD=∠AFC,∠A=60°,所以∠ACE=180°-45°-60°=75°,故答案是30°,45°,75°.【点睛】本题考察了余角的定义和三角形的内角和定理,学生需要认真分析即可求解.三、解答题18.解不等式组:()()2x131xx1x2132⎧--⎪⎨---⎪⎩<<,并在数轴上表示解集.【答案】-2<x<1,见解析【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:()() 2x131xx1x2132⎧--⎪⎨---⎪⎩<①<②∵解不等式①得:x<1,解不等式②得:x>-2,∴不等式组的解集是-2<x<1,在数轴上表示为:.【点睛】本题考查解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解题的关键.19.(1)计算:(-1)2019+(-12)-2+(3.14-π)0(2)化简:(a+2)(a-2)-a(a-1)【答案】(1)4 (2)4a-【解析】(1)根据负整数指数幂、零指数幂等计算法则解答;(2)利用多项式乘多项式以及单项式乘多项式的计算法则解答.【详解】(1)解:原式=1414-++=(2)解:原式=2244?a a a a--+=-【点睛】考查了平方差公式,实数的运算,零指数幂等知识点,熟记计算法则即可20.如图,在的正方形网格中,选取14个格点,以其中三个格点为顶点画出一个△ABC,请你选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形.(2)图②中所画的三角形与△ABC组成的图形是中心对称图形.【答案】(1)详见解析;(2)详见解析.【解析】(1)先确定出对称轴,再根据轴对称图形的性质作出即可;(2)确定出对称中心,然后根据中心对称图形的性质作出即可;【详解】解:(1)如图,所画的三角形与△ABC 组成的图形是轴对称图形.(2)如图,所画的三角形与△ABC 组成的图形是中心对称图形.【点睛】考查了利用轴对称的性质,中心对称的性质,以及三角形的面积作图,熟练掌握轴对称的性质与中心对称的性质是作图的关键,要注意对称轴与对称中心的确定.21.已知:方程组2325x y a x y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组. (1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.【答案】(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【解析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a=+⎧⎨=-⎩ (2)根据题意,得 120130a a +<⎧⎨->⎩解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.如图,AD 是△ABC 的高,BE 是△ABC 的内角平分线,BE 、AD 相交于点F ,已知∠BAD=40°,求∠BFD 的度数.【答案】65°.【解析】先根据三角形内角和定理求出∠ABD 的度数,再由角平分线的性质求出∠ABF 的度数,由三角形外角的性质即可得出结论.【详解】解:∵AD ⊥BC ,∠BAD=40°,∴∠ABD=90°-40°=50°.∵BE 是△ABC 的内角平分线,∴∠ABF=12∠ABD=25°,∴∠BFD=∠BAD+∠ABF=40°+25°=65°.【点睛】本题考查三角形内角和定理及三角形外角的性质,掌握相关性质定理正确推理计算是解题关键. 23.如图,在直角坐标系中,ABC △的顶点都在网格点上,其中C 点的坐标为1,2.(1)直接写出点A 的坐标为__________;(2)求ABC △的面积;(3)将ABC △向左平移1个单位,再向上平移2个单位,画出平移后的111A B C △,并写出111A B C △三个顶点的坐标.【答案】(1)点A 的坐标为()2,1-;(2)ABC △的面积为5;(3)画出平移后的111A B C △,见解析,()11,1A 、()13,5B 、()10,4C .【解析】(1)根据点在坐标系中的位置写出点A 的坐标即可;(2)根据图形平移的性质画出△A′B′C′,根据各点在坐标系中的位置写出各点坐标即可;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)由图可知,点A 的坐标为()2,1-;(2))△ABC 的面积为:3×4-12×1×3-12×2×4-12×1×3=5; (3)如图所示,111A B C △即为所求,()11,1A 、()13,5B 、()10,4C .【点睛】本题考查平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.24.已知关于 ,x y 的二元一次方程组2123x y x y m+=⎧⎨-=⎩ (1)用含有m 的代数式表示方程组的解;(2)如果方程组的解,x y 满足0x y +>,求m 的取值范围.【答案】(1)244x m y m=+⎧⎨=-⎩;(2)8m >-【解析】(1)利用加减消元法进行求解即可;(2)由题意可得关于m 的不等式,解不等式即可.【详解】(1)2123x y x y m +=⎧⎨-=⎩①②, ①-②,得3123y m =-,解得4y m =-,将4y m =-代入②,得(4)3x m m --=,解得24x m =+,∴方程组的解可表示为244x m y m=+⎧⎨=-⎩; (2)∵0x y +>,∴2440m m ++->,解得8m >-.【点睛】本题考查了解二元一次方程组,已知二元一次方程组的解满足的条件求参数,涉及了加减消元法,解一元一次不等式等知识,正确把握相关知识以及解题方法是解题的关键.25.在图①中,由(14)(25)(35)3180∠+∠+∠+∠+∠+∠=⨯; 456180∠+∠+∠=.可以得到:123360∠+∠+∠=.由此可知: . 请由图②说明这一结论.【答案】三角形的外角和等于360. 证明见解析.【解析】(1)根据平角和三角形内角和定理可得;(2)根据平行线性质和周角定义可得.【详解】三角形的外角和等于360.证明://AD BC ,∠=∠1EAD∴∠=∠;3BADEAD BAD∠+∠+∠=,2360∴∠+∠+∠=.123360即:三角形的外角和等于360.【点睛】考核知识点:三角形外角和证明.利用平行线性质求解是关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是().①作出AD的依据是SAS;②∠ADC=60°③点D在AB的中垂线上;④S△DAC:S△ABD=1:1.A.1B.1C.3D.4【答案】C【解析】①根据作图的过程可以判定作出AD的依据;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:①根据作图的过程可知,作出AD的依据是SSS;故①错误;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠1=12∠CAB=30°,∴∠3=90°﹣∠1=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④∵如图,在直角△ACD中,∠1=30°,∴AD=1CD,∴BD=1CD,∵S△DAC=12AC•CD,S△ABD=12AC•BD,∴S△DAC:S△ABD=12AC•CD:12AC•BD =CD:BD=1:1,即S△DAC:S△ABD=1:1.故④正确.综上所述,正确的结论是:②③④,共有3个.故选C.【点睛】此题主要考查的是作图-基本作图,涉及到角平分线的作法以及垂直平分线的性质,熟练根据角平分线的性质得出∠ADC度数是解题关键.2.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%【答案】B【解析】设购进这种水果a千克,进价为b元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)b元/千克,根据题意得:购进这批水果用去ab元,但在售出时,大樱桃只剩下(1﹣10%)a千克,售货款为(1﹣10%)a(1+x)b=0.9a(1+x)b元,根据公式:利润率=(售货款-进货款)÷进货款×100%可列出不等式:0.91100%20%a x b ab ab⨯+-≥(),解得x≥13. ∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选B .3.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .【答案】C【解析】根据正方体的展开图特征逐一判断即可.【详解】A 不是正方体的展开图,故不符合题意;B 不是正方体的展开图, 故不符合题意;C 是正方体的展开图,故符合题意;D 不是正方体的展开图,故不符合题意;故选C .【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.4.把一根7米的钢管截成1米长和2米长两种规格的钢管,有几种不同的截法?( )A .3种B .4种C .5种D .6种【答案】A【解析】截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x 根,1米长的y 根,由题意得到关于x 与y 的方程,求出方程的正整数解即可得到结果.【详解】解:截下来的符合条件的钢管长度之和刚好等于总长7米时,不造成浪费,设截成2米长的钢管x 根,1米长的y 根,由题意得,2x+y=7,因为x ,y 都是正整数,所以符合条件的解为: 15x y =⎧⎨=⎩,x 23y =⎧⎨=⎩,31x y =⎧⎨=⎩, 则有3种不同的截法.故选:A .【点睛】此题考查了二元一次方程的应用,读懂题意,找出题目中的等量关系,得出x ,y 的值是解本题的关键,注意x ,y 只能取正整数.5.如图,将一块三角尺的直角顶点放在直尺的一边上,当时,的度数为( )A.B.C.D.【答案】B【解析】利用平行线的性质得到∠2=∠3,再根据直角的定义即可求出∠2的度数. 【详解】∵直尺的对边平行,∴∠2=∠3,∵∠3=90°-∠1=35°,∴∠2=∠3=35°故选B.【点睛】此题主要考查平行线的性质,解题的关键是熟知平行线的性质定理.6.下列长度的三条线段(单位:cm)能组成三角形的是()A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,4【答案】D【解析】根据三角形的三边关系直接求解.【详解】解:A、1+2<6,不能组成三角形,故本选项错误;B、2+2=4,不能组成三角形,故本选项错误;C、1+2=3,不能组成三角形,故本选项错误;D、2+3>4,能组成三角形,故本选项正确.故选:D.本题考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.在﹣2,2,3.14,223,)0中有理数的个数是( ) A .5B .4C .3D .2 【答案】A【解析】分析:根据有理数的定义来判断即可.=2, )0=1,故有理数有:﹣2,,3.14,223 ,0, 故选A.点睛:本题考查了零指数幂、有理数及实数,熟记有理数和无理数的概念是解答本题的关键.8.下列结果等于46a 的是( )A .2232a a +B .2232a a •C .()223aD .6293a a ÷ 【答案】B【解析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【详解】解:A 、3a 2+2a 2=5a 2,故此选项错误;B 、3a 2•2a 2=6a 4,故此选项正确;C 、(3a 2)2=9a 4,故此选项错误;D 、9a 6÷3a 2=3a 4,故此选项错误.故选:B .【点睛】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.9.若关于x 的方程233x k x k +-+=的解不大于1-,则k 的取值范围是( ) A .1k ≤B .1kC .1k ≥-D .1k ≤- 【答案】B【解析】本题首先要把k 当成已知数解这个关于x 的方程,求出方程的解,根据解不大于1-,可以得到一个关于k 的不等式,就可以求出k 的范围.【详解】由题意得,x=3−4k ,∵关于x 的方程233x k x k +-+=的根不大于1-, ∴3−4k ≤-1,故选B.【点睛】本题考查解一元一次方程和解一元一次不等式,解题的关键是掌握解一元一次方程和解一元一次不等式. 10.如图,直线,AB CD 被直线EF 所截,155∠=,下列条件中能判定//AB CD 的是( )A .235∠=B .245∠=C .255∠=D .2125∠=【答案】C 【解析】试题解析:A 、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误; B 、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;C 、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB ∥CD ,故本选项正确;D 、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误;故选C .二、填空题题11.某商家花费855元购进某种水果90千克,销售中有5%的水果损耗,为确保不亏本,售价至少应定为_______元/千克.【答案】1【解析】设商家把售价应该定为每千克x 元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x (1-5%),根据题意列出不等式即可.【详解】设商家把售价应该定为每千克x 元,根据题意得:x (1-5%)≥85590, 解得,x≥1,故为避免亏本,商家把售价应该至少定为每千克1元.故答案为:1.【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.12.如图,在平面直角坐标系中,()()()()1,11,11,21,2A B C D ----、、、.把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A →B →C →D →A的规律紧绕在四边ABCD 的边上,则细线另一端所在位置的点的坐标是 _________ .【答案】(0,-2)【解析】∵A(1,1),B(−1,1),C(−1,−2),D(1,−2),∴AB=1−(−1)=2,BC=1−(−2)=3,CD=1−(−1)=2,DA=1−(−2)=3,∴绕四边形ABCD 一周的细线长度为2+3+2+3=10,2016÷10=201余6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD 中间的位置,∴细线另一端所在位置的点的坐标为(0,−2),故答案为(0,-2).13.与点(2,3)P -关于x 轴对称的点的横坐标是______.【答案】2-【解析】根据关于x 轴对称的点的性质求解即可.【详解】∵某点关于x 轴对称的点的横坐标等于该点的横坐标∴与点(2,3)P -关于x 轴对称的点的横坐标为2-故答案为:2-.【点睛】本题考查了对称点的问题,掌握关于x 轴对称的点的性质是解题的关键.14.计算:3527-=______。