高考数学万能公式定理口诀全套汇编

合集下载

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。

2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。

3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。

4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。

二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。

2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。

3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。

4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。

三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。

2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。

3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。

4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。

四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。

2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。

3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。

4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。

5. 期望•期待其,乘以概率求;•如此则,累加其结果。

五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。

2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。

3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。

数学公式顺口溜高中

数学公式顺口溜高中

数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。

三角函数正弦余弦,正切余切,割和余割,联立解三角形。

数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。

排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。

函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。

立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。

微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。

以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。

- 1 -。

高三数学公式归纳大全

高三数学公式归纳大全

数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。

今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

55个绝密数学公式(万能心算口诀)

55个绝密数学公式(万能心算口诀)

55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。

1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。

高考数学答题万能公式及解题技巧

高考数学答题万能公式及解题技巧
S=4pi*r2
圆柱侧面积
S=c*h=2pi*h
圆锥侧面积
S=1/2*c*l=pi*r*l
弧长公式
l=a*r
a是圆心角的弧度数r >0
扇形面积公式
s=1/2*l*r
锥体体积公式
V=1/3*S*H
圆锥体体积公式
V=1/3*pi*r2h
斜棱柱体积
V=S'L
注:其中,S'是直截面面积,L是侧棱长
柱体体积公式
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|
-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a
-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/a
X1*X2=c/a
注:韦达定理
判别式
b2-4a=0
注:方程有相等的两实根
b2-4ac>0
注:方程有一个实根
b2-4ac<0
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理
a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理
b2=a2+c2-2accosB
注:角B是边a和边c的夹角
圆的标准方程
(x-a)2+(y-b)2=r2
注:(a,b)是圆心坐标
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)

高考数学万能公式口诀大全

高考数学万能公式口诀大全

高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

高考数学公式总结口诀

高考数学公式总结口诀

高考数学公式总结口诀导读:本文高考数学公式总结口诀,仅供参考,如果觉得很不错,欢迎点评和分享。

高考数学公式口诀(一)一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

高中数学知识点顺口溜速记口诀_高考数学高频考点

高中数学知识点顺口溜速记口诀_高考数学高频考点

高中数学知识点顺口溜速记口诀_高考数学高频考点函数学习口诀正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。

二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边,抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

正多边形诀窍歌份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。

经过分点做切线,切线相交n个点。

n个交点做顶点,外切正n边形便出现。

正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便。

正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。

圆中比例线段遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

函数与数列数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开;变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

二项式定理二项乘方知多少,万里源头通项找;展开三定项指系,组合系数杨辉角。

整除证明底变妙,二项求和特值巧;两端对称谁最大?主峰一览众山小。

立体几何多点共线两面交,多线共面一法巧;空间三垂优弦大,球面两点劣弧小。

线线关系线面找,面面成角线线表;等积转化连射影,能割善补架通桥。

方程与不等式函数方程不等根,常使参数范围生;一正二定三相等,均值定理最值成。

参数不定比大小,两式不同三法证;等与不等无绝对,变量分离方有恒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的)a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中tan(c)=ba a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2一生受用的数学公式坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。

轴线的交点是(0, 0),称为原点。

水平与垂直方向的位置,分别用x与y代表。

一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。

这条直线与y轴相交于(0,c),与x轴则相交于(–c/m, 0)。

垂直线的方程式则是x=k,x为定值。

通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)一条直线若垂直于斜率为n的直线,则其斜率为–1/n。

通过(x1, y1)与(x2, y2)两点的直线是y=(y2–y1/x2–x1)(x–x2)+y2x1≠x2若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。

三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球,以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。

三维空间平面的一般式为ax+by+cz=d。

三角学边长为a、b、c的直角三角形,其中一个夹角为θ。

它的六个三角函数分别为:正弦(sine)、余弦(cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。

sinθ=b/c cosθ=a/c tanθ=b/acscθ=c/b secθ=c/a cotθ=a/b若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。

a=cosθb=sinθ依照勾股定理,我们知道a2+b2=c2。

因此对于圆上的任何角度θ,我们都可得出下列的全等式:cos2θ+sin2θ=1三角恒等式根据前几页所述的定义,可得到下列恒等式(identity):tanθ=sinθ/cosθ,cotθ=cosθ/sinθsecθ=1/cosθ,cscθ=1/sinθ分别用c os 2θ与sin 2θ来除cos 2θ+sin 2θ=1,可得:sec 2θ–tan 2θ=1及csc 2θ–cot 2θ=1对于负角度,六个三角函数分别为:sin(–θ)=–sinθ csc(–θ)=–cscθcos(–θ)=cosθsec(–θ)=secθtan(–θ)=–tanθcot(–θ)=–cotθ当两角度相加时,运用和角公式:sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβ–sinαsinβtan(α+β)=tanα+tanβ/1–tanαtanβ若遇到两倍角或三倍角,运用倍角公式:sin2α=2sinαcosαsin3α=3sinαcos2α–sin3αcos2α=cos 2α–sin 2αcos3α=cos 3α–3sin 2αcosαtan 2α=2tanα/1–tan 2αtan3α=3tanα–tan 3α/1–3tan 2α二维图形下面是一些二维图形的周长与面积公式。

圆:半径=r直径d=2r圆周长=2πr =πd面积=πr2(π=3.1415926…….)椭圆:面积=πaba与b分别代表短轴与长轴的一半。

矩形:面积=ab周长=2a+2b平行四边形(parallelogram):面积=bh =ab sinα周长=2a+2b梯形:面积=1/2h (a+b)周长=a+b+h (secα+secβ)正n边形:面积=1/2nb2 cot (180°/n)周长=nb四边形(i):面积=1/2ab sinα四边形(ii):面积=1/2 (h1+h2) b+ah1+ch2三维图形以下是三维立体的体积与表面积(包含底部)公式。

球体:体积=4/3πr3表面积=4πr2方体:体积=abc表面积=2(ab+ac+bc)圆柱体:体积=πr2h表面积=2πrh+2πr2圆锥体:体积=1/3πr2h表面积=πr√r2+h2 +πr2三角锥体:若底面积为A,体积=1/3Ah平截头体(frustum):体积=1/3πh (a2+ab+b2) 表面积=π(a+b)c+πa2+πb2 椭球:体积=4/3πabc环面(torus):体积=1/4π2 (a+b) (b–a) 2 表面积=π2 (b2–a2)。

相关文档
最新文档