matlab工具箱的使用_Toolbox

合集下载

Matlab各工具箱功能简介(部分)

Matlab各工具箱功能简介(部分)
对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征选择、逐步回归、主成份分析、规则化和其他降维方法确定影响您的模型的主要变量或特征。该工具箱提供了受监督和不受监督机器学习算法,包括支持向量机(SVM)、促进式 (boosted) 和袋装 (bagged) 决策树、k-最近邻、k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模型。4 Curve Fitting Toolbox 曲线拟合工具箱Curve Fitting Toolbox™ 提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。5 Optimization Toolbox 优化工具箱Optimization Toolbox™ 提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、
Toolbox工具箱序号工具箱备注一、数学、统计与优化1 Symbolic Math Toolbox符号数学工具箱Symbolic Math Toolbox™提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB、Simulink和Simscape™生成代码。®®Symbolic Math Toolbox包含MuPAD语言,并已针对符号运算表达式的处理和执®行进行优化。该工具箱备有MuPAD函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD语言编写自定义的符号函数和符号库。MuPAD记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML或PDF的格式分享带注释的推导。2 Partial Differential Euqation Toolbox偏微分方程工具箱偏微分方程工具箱™提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。3 Statistics Toolbox统计学工具箱Statistics and Machine Learning Toolbox提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo仿真的随机数,以及执行假设检验。回归和分类算法用于依据数据执行推理并构建预测模型。

给Matlab添加工具箱Toolbox的方法(有截图详细讲解)

给Matlab添加工具箱Toolbox的方法(有截图详细讲解)

给Matlab添加⼯具箱Toolbox的⽅法(有截图详细讲解)
测试环境:Matlab R2012b, Windows 7.
虽然庞⼤的Matlab已经有了很多⼯具箱,但是这些Toolbox可能仍不能满⾜你的要求,常常需要⾃⼰添加Toolbox。

下⾯以添加卡尔曼滤波器⼯具箱为例,讲诉给Matlab添加⼯具箱的⽅法。

Step1:将下载的Kalman.zip解压得到KalmanAll⽂件夹,然后将该⽂件夹拷贝⾄Matlab的Toolbox⽬录,例如:D:\Program
Files\MATLAB\R2010b\toolbox。

Step2:打开Matlab,点击“File->Set Path->Add Folder”,添加刚才拷贝进⼊的KalmanAll⽂件夹。

切记如果你要添加的⽂件夹⾥⾯还有⼦⽂件夹,⼀定要点击“Add with Subfolders”,选择KalmanAll⽂件夹,添加该⽂件夹的所有⼦⽂件夹。

Step3:然后在“File->Preferences->General”⾥⾯,update Toolbox Path Cache就可以了。

最后可以测试⼀下,有没有添加成功。

在Matlab⾥⾯输⼊:which kalman_filter.m,如果可以显⽰正确的路径就OK了。

然后可以输⼊testKalman运⾏⼀个⼩例⼦。

matlab system identification toolbox使用

matlab system identification toolbox使用

matlab system identification toolbox使用1. 引言1.1 概述本文旨在介绍如何使用Matlab系统辨识工具箱(Matlab System Identification T oolbox)进行系统辨识。

系统辨识是一种通过收集并分析数据来推断未知系统的数学模型的过程。

这个工具箱为用户提供了许多功能和方法,可以帮助他们有效地进行系统辨识任务。

1.2 文章结构本文将按照以下结构展开内容:首先,在第二部分中,我们将简要介绍Matlab 系统辨识工具箱的概念和作用。

然后,在第三部分中,我们将概述常用的系统辨识方法,包括参数辨识方法、非参数辨识方法以及模型结构选择方法。

接下来,在第四部分中,我们将详细阐述使用Matlab系统辨识工具箱的步骤,包括数据准备与预处理、模型建立与训练以及评估模型性能与调整参数。

最后,在第五部分中,我们将通过实例分析与讨论的方式来加深对这些步骤的理解,并让读者更好地掌握使用该工具箱进行实际应用的技巧和思路。

1.3 目的本文的目标是向读者全面介绍Matlab系统辨识工具箱的使用方法,帮助读者了解该工具箱的潜力和功能。

通过这篇长文,读者将能够了解系统辨识的基本概念、常用的方法以及如何利用Matlab系统辨识工具箱进行实际操作。

我们希望读者能够通过学习本文提供的知识,进一步提升在系统辨识领域的能力,并成功应用于各种实际问题中。

2. Matlab系统辨识工具箱简介2.1 工具箱概述Matlab系统辨识工具箱是Matlab软件中的一部分,用于进行系统辨识与模型建立的分析。

它提供了一系列功能强大的工具和算法,用于从实验数据中估计或推断出系统的数学模型。

通过使用系统辨识工具箱,用户可以在Matlab环境下快速、方便地进行参数辨识、非参数辨识以及模型验证等任务。

这些功能使得用户能够更好地理解和分析已有的数据,并为进一步建立、优化或控制系统提供有力支持。

2.2 工具箱功能Matlab系统辨识工具箱提供了丰富多样的功能,包括以下几个方面:- 参数辨识:通过估计线性或非线性模型的参数值来描述实际系统。

MATLAB教程【9】工具箱

MATLAB教程【9】工具箱

例:用微分方程的数值解法和符号解 法解方程,并对结果进行比较。 解:1.先将方程写成一阶微分方程 令y(1)=x, y(2)=dx/dt,
dy (1) y ( 2) dt dy ( 2) 4 dt
d2x a ( a 4) 2 dt x0 2 v0 1
4.符号解法 s=dsolve('D2x=4','x(0)=2','Dx(0)=1')
• 符号微积分
• 符号微分方程
符号微分方程求解
符号微分方程求解指令:dsolve 命令格式:s=dsolve(‘f1’, ‘f2’,’g’,’x’) • f1,f2— 微分方程,可多至12个微分方程的求 解;g为初始条件 • 默认自变量为 ‘t',可任意指定自变量‘x', 'u'等 • 微分方程的各阶导数项以大写字母D表示
优化工具箱Optimization Toolbox
最优化方法专门研究如何从多个方案中科学合理地提取 最优方案的科学。广泛应用与经济规划、经济管理、生产控 制、土木工程、机械工程、运输调度等领域。
• 线型规划和二次规划 • 求函数的最大值和最小值
• 多目标优化
• 约束条件下的优化 • 非线型方程求解
方形薄膜左侧和右侧固定(u=0), 前后两端自由(u’=0) 初始条件:t=0 u(0)=atan(cos(pi/2*x)) dudt(0)=3*sin(pi*x).*exp(sin(pi/2*y))
作业: dy x 1.求微分方程的解 dx y 1 x 2
y(1) 2
2.用微分方程的数值解法和 符号解法解方程,并对结果 进行比较。 3.演示p106页的例子。 推荐书目:

方法二用MATLAB的模糊逻辑工具箱(Fuzzy toolbox)实现.

方法二用MATLAB的模糊逻辑工具箱(Fuzzy toolbox)实现.

方法二:用MATLAB的模糊逻辑工具箱(Fuzzy toolbox)实现(陈老师整理)一、模糊逻辑推理系统的总体特征模糊控制由于不依赖对象的数学模型而受到广泛的重视,计算机仿真是研究模糊控制系统的重要手段之一。

由Math Works公司推出的Matlab软件,为控制系统的计算机仿真提供了强有力的工具,特别是在Matlab4.2以后的版本中推出的模糊工具箱(Fuzzy Toolbox),为仿真模糊控制系统提供了很大的方便。

由于这样的模块都是由相关领域的著名学者开发的,所以其可信度都是很高的,仿真结果是可靠的。

在Simulink环境下对PID控制系统进行建模是非常方便的,而模糊控制系统与PID控制系统的结构基本相同,仅仅是控制器不同。

所以,对模糊控制系统的建模关键是对模糊控制器的建模。

Matlab软件提供了一个模糊推理系统(FIS)编辑器,只要在Matlab命令窗口键入Fuzzy就可进入模糊控制器编辑环境。

二、Matlab模糊逻辑工具箱仿真1.模糊推理系统编辑器(Fuzzy)模糊推理系统编辑器用于设计和显示模糊推理系统的一些基本信息,如推理系统的名称,输入、输出变量的个数与名称,模糊推理系统的类型、解模糊方法等。

其中模糊推理系统可以采用Mandani或Sugeuo两种类型,解模糊方法有最大隶属度法、重心法、加权平均等。

打开模糊推理系统编辑器,在MATLAB的命令窗(command window)内键入:fuzzy 命令,弹出模糊推理系统编辑器界面,如下图所示。

因为我们用的是两个输入,所以在Edit菜单中,选Add variable… ->input,加入新的输入input,如下图所示。

选择input(选中为红框),在界面右边文字输入处键入相应的输入名称,例如,温度输入用tmp-input, 磁能输入用 mag-input,等。

2.隶属度函数编辑器(Mfedit)该编辑器提供一个友好的人机图形交互环境,用来设计和修改模糊推理系中各语言变量对应的隶属度函数的相关参数,如隶属度函数的形状、范围、论域大小等,系统提供的隶属度函数有三角、梯形、高斯形、钟形等,也可用户自行定义。

Maple Toolbox for Matlab 工具箱的使用向导MapleToolboxforMATLAB操

Maple Toolbox for Matlab 工具箱的使用向导MapleToolboxforMATLAB操

特征细节:
交互式技术文档环境
• 完整的文档组件 ( 文本、数学、图形、动画等 ), 您可以制作专业水平的、图文并茂的技术文件 让您的文件具有可读性和交互性,同时用户可以 捕获结果中的知识。并可以利用这个技术文件。 • 直观的二维数学编辑器,让您编写出印刷水准的 数学文件。
The Maple™ Toolbox for MATLAB®
The Maple Toolbox for MATLAB includes:
Maple 10 - the most powerful and intuitive tool for solving complex mathematical problems and creating rich, executable technical documents. Maple - MATLAB Connector - a two-way link between Maple and MATLAB, enabling users to define variables in either environment and use them in the other.
jacobian - compute the Jacobian matrix symsum - symbolic sum
Polynomial Manipulation
coeffs collect exp expand factor findsym gcd horner lcm mod - extract all coefficients of a multivariate polynomial - collect coefficients - the exponential function - expand - factor a multivariate polynomial - find symbols - greatest common divisor of polynomials - horner form - least common multiple - computation over the integers modulo m

MATLAB工具箱的使用

MATLAB工具箱的使用

MATLAB工具箱的使用MATLAB®是一种强大的科学计算软件,广泛应用于各个领域的数学建模、数据分析、仿真和算法开发等工作中。

为了满足不同领域的需求,MATLAB提供了许多不同的工具箱。

这些工具箱包含了各种不同领域的函数和工具,可以帮助用户更加高效地进行数据处理、模拟和算法开发等工作。

下面将介绍几个常用的MATLAB工具箱,以及它们的使用方法:1.信号处理工具箱(Signal Processing Toolbox):这个工具箱提供了一系列处理数字信号的函数和工具。

用户可以使用这些函数和工具进行信号滤波、功率谱估计、频谱分析、时间频率分析等操作。

该工具箱还提供了许多基本信号处理算法,如滤波器设计、卷积和相关等。

例如,用户可以使用`filtfilt(`函数对信号进行零相移滤波,以去除噪声。

2.图像处理工具箱(Image Processing Toolbox):图像处理工具箱提供了一系列处理数字图像的函数和工具。

用户可以使用这些函数和工具进行图像的读取、显示、修改、增强和分析等操作。

该工具箱包含了许多常用的图像处理算法,如图像滤波、边缘检测、形态学处理和图像分割等。

例如,用户可以使用`imread(`函数读取图像,然后使用`imshow(`函数显示图像。

3.控制系统工具箱(Control System Toolbox):这个工具箱提供了一系列用于分析和设计控制系统的函数和工具。

用户可以使用这些函数和工具进行控制系统的建模、稳定性分析、根轨迹设计和频域分析等操作。

该工具箱还提供了许多常用的控制系统设计方法,如PID控制器设计和状态空间控制器设计等。

例如,用户可以使用`tf(`函数创建传递函数模型,然后使用`step(`函数绘制系统的阶跃响应。

4.优化工具箱(Optimization Toolbox):优化工具箱提供了一系列用于求解优化问题的函数和工具。

用户可以使用这些函数和工具进行线性规划、非线性规划和整数规划等操作。

libsvm安装教程matlab中使用(详细版)

libsvm安装教程matlab中使用(详细版)

libsvm安装教程(详细版)(本机matlab版本16b)第一步,把libsvm放到工具箱toolbox中。

把libsvm安装包解压,并放入matlab程序文件中toolbox中。

运行matlab程序,点击主页,找到布局旁边的设置路径,并点击设计路径选择添加并包含子文件,找到toolbox下面的libsvm添加即可,并点击保存。

第二步更新工具箱找到布局旁边的预测按钮,并点击预设按钮。

找到常规,选择更新工具箱路径缓存,并点击应用,最后点击确定。

第三步,更改libsvm文件在matlab文件行,打开如下地址:D:\B\toolbox\libsvm-3.24\matlab打开make.m文件,将make.m中的CFLAGS改为COMPFLAGS。

注:因为matlab中有自带的svm,为了防止libsvm和自带的svm发生冲突,所以将D:\B\toolbox\libsvm-3.24\matlab中将svmtrian.c和svmpredic.c前面加入lib,相应的make.m文件中也做修改第四步,安装编译器编译器采用最新版tdm64-gcc-9.2.0,安装教程很简单选择Creat,保存路径直接选择C盘即可,C:\TDM-GCC-64。

第五步,使用matlab读取C语言程序。

Matlab文件行调整到此目录下D:\B\toolbox\libsvm-3.24\matlab 并在命令行窗口输入:setenv('MW_MINGW64_LOC','C:\TDM-GCC-64')make点击回车,当命令行窗口出现:使用'MinGW64 Compiler (C)' 编译。

MEX 已成功完成。

使用'MinGW64 Compiler (C)' 编译。

MEX 已成功完成。

使用'MinGW64 Compiler (C)' 编译。

MEX 已成功完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

神经网络工具箱的使用
本章主要介绍神经网络工具箱的使用,使用nntool可以使得原本用编程来创建神经网络变得容易,而且不容易出错。

1 神经网络的创建与训练
神经网络的创建主要分为以下四步:
1)在命令窗口键入nntool命令打开神经网络工具箱。

如图1:
图 1
2)点击Import按钮两次,分别把输入向量和目标输出加入到对应的窗口([Inputs]和[Targets])中,有两种可供选择的加入对象(点击Import后可以看见),一种是把当前工作区中的某个矩阵加入,另一种是通过.mat文件读入。

如图2和图3:
图 2
图 3
3)点击[New Network]按钮,填入各参数:(以最常用的带一个隐层的3层神经网络为例说明,下面没有列出的参数表示使用默认值就可以了,例如Network Type为默认的BP神经网络);
i)Input Range——这个通过点击Get From Input下拉框选择你加入的输入向量便可自动完成,当然也可以自己手动添加。

ii) Training Function——最好使用TRAINSCG,即共轭梯度法,其好处是当训练不收敛时,它会自动停止训练,而且耗时较其他算法(TRAINLM,TRAINGD)少,也就是收敛很快(如果收敛的话),而且Train Parameters输入不多,也不用太多的技巧调整,一般指定迭代次数、结果显示频率和目标误差就可以了(详见下文)。

iii) Layer 1 Number of Neurons——隐层的神经元个数,这是需要经验慢慢尝试并调整的,大致上由输入向量的维数、样本的数量和输出层(Layer2)的神经元个数决定。

一般来说,神经元越多,输出的数值与目标值越接近,但所花费的训练时间也越长,反之,神经元越少,输出值与目标值相差越大,但训练时间会相应地减少,这是由于神经元越多其算法越复杂造成的,所以需要自己慢慢尝试,找到一个合适的中间点。

比如输入是3行5000列的0-9的随机整数矩阵,在一开始选择1000个神经元,虽然精度比较高,但是花费的训练时间较长,而且这样神经网络的结构与算法都非常复杂,不容易在实际应用中实现,尝试改为100个,再调整为50个,如果发现在50个以下时精度较差,则可最后定为50个神经元,等等。

iv)Layer 1 Transfer Function——一般用TANSIG(当然也可以LOGSIG),即表示隐层输出是[-1,1]之间的实数,与LOGSIG相比范围更大。

v) Layer 2 Number of Neurons——输出层的神经元个数,需要与输出的矩阵行数对应,比如设置为3,等等。

vi) Layer 2 Transfer Function——如果是模式识别的两类(或者多类)问题,一般用LOGSIG,即表示输出层的输出是[0,1]之间的实数;如果输出超过[0,1]则可选择PURELIN。

如图4和图5。

图 4
图 5
所有参数输入后,可以先用View按钮预览一下,如图6。

没有问题的话就可以Create了。

另外,网络创建完毕后,如果需要手动设置权重的初始值,按View按钮后有个Initialize
选项卡,在那里可以设定。

当然了,也可以不自行设定,这时候Matlab执行默认的程序进行权重的初始化(没有具体研究过,可能是随机设定)。

图 6
4)点击Train按钮,到达Training Info选项卡,在输入向量[Inputs]和目标输入向量[Targets]下拉框中选择你要训练的向量(即第二步加入的对象),如图7。

然后到达Train Parameters选项卡,填入适当的迭代次数[epochs](一般先设置一个较小的数如200,然后观察收敛结果,如果结果窗口的收敛曲线衰减较快,则表示之前的参数比较有效,因此可填入2000或更大的数目使得网络收敛,否则修改之前的参数)、结果显示频率[show](例如要每隔50次迭代显示结果窗口,则填50)和目标误差[goal](这个与第2步中的“Performance Function”有关,如果使用默认的MSE,则一般满足“goal*样本数量<0.5”就可以了),就可以开始训练了(按钮[Train Network]),如果结果收敛(训练误差不大于目标误差,即蓝色线到达黑色线位置)就OK了(例如要求精度很高,尝试填0,等等),如图8。

图 7
图 8
2 神经网络的仿真测试
神经网络的仿真测试非常简单,选定训练好的神经网络,点击View按钮,再点击Simulate 按钮,在Simulate Data中的Inputs一栏中导入需要测试的数据(需要是工作区的矩阵,所以可以事先将数据写在但单独的程序中,需要时运行程序即可),然后点击Simulate Network,测试结束后可以在Outputs中看到结果,在Errors中可以看到误差。

当然也可以不借用工具箱,直接手工编写程序来测试,相比工具箱虽然稍显麻烦,但是结果更直观。

相关文档
最新文档