初中数学人教版八年级下册《2011 平均数 2》练习
人教版数学八年级下册20.1.1《平均数》说课稿4

人教版数学八年级下册20.1.1《平均数》说课稿4一. 教材分析《平均数》是人教版数学八年级下册第20章的第一节内容,本节主要介绍平均数的定义、性质及其在实际问题中的应用。
平均数是初中数学中的一个重要概念,它在统计学、概率论以及日常生活和工作中都有广泛的应用。
本节课的内容是学生进一步学习数学的基础,也是培养学生解决实际问题能力的重要环节。
二. 学情分析八年级的学生已经掌握了整数、分数和小数的运算,具备了一定的逻辑思维能力和抽象思维能力。
但是,对于平均数的理解还比较模糊,容易将其与算术平均数混淆。
此外,学生对于平均数在实际问题中的应用还不够了解,需要通过实例来加深理解。
三. 说教学目标1.知识与技能目标:理解平均数的定义,掌握平均数的性质,能够计算简单数据的平均数。
2.过程与方法目标:通过合作交流,培养学生的团队协作能力和语言表达能力。
3.情感态度与价值观目标:培养学生运用数学知识解决实际问题的能力,提高学生对数学的兴趣。
四. 说教学重难点1.重点:平均数的定义及其性质。
2.难点:平均数在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、实例教学法等。
2.教学手段:多媒体课件、实物模型、数学软件等。
六. 说教学过程1.导入:通过一个实际问题引入平均数的概念,激发学生的兴趣。
2.新课导入:介绍平均数的定义和性质,引导学生通过合作交流来理解平均数的概念。
3.实例分析:通过几个具体的例子,让学生学会计算平均数,并理解平均数在实际问题中的应用。
4.练习与拓展:设计一些练习题,让学生巩固所学知识,并能够灵活运用。
5.总结与反思:让学生回顾本节课所学内容,总结平均数的性质和应用,反思自己在学习过程中的优点和不足。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
主要包括以下几个部分:1.平均数的定义;2.平均数的性质;3.平均数在实际问题中的应用。
八. 说教学评价教学评价主要包括两个方面:一是对学生学习效果的评价,二是对教师教学过程的评价。
人教版八年级数学下册《平均数》基础练习

《平均数》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()A.6B.7C.8D.102.(5分)一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A.4B.5C.6D.73.(5分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85B.86C.87D.884.(5分)小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案3 2.5 2.55则最省钱的方案为()A.方案1B.方案2C.方案3D.三个方案费用相同5.(5分)数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.70二、填空题(本大题共5小题,共25.0分)6.(5分)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁.则这个班级学生的平均年龄是.7.(5分)西安市某一周的日最高气温(单位:℃)分别为:35,33,36,33,32,32,37,这周的日最高气温的平均值是℃.8.(5分)如果数据3、2、x、﹣3、1的平均数是2,那么x的值是.9.(5分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本件.10.(5分)小辉期中考试语文、数学、英语三科的平均分为90分,语文得了86分,英语得了91分,他把数学成绩忘记了,他的数学成绩应该为分.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙817485丙798391(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?12.(10分)下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.13.(10分)甲、乙、丙三位同学参加“华罗庚杯数学竞赛”培训.三个培训段的考试成绩如表:现要选拨一人参赛:甲乙丙代数858570几何928083综合758590(1)若按三次平均成绩选拔,应选谁参加?(2)若三次成绩按3:3:4的比例计算,应选谁参加?(3)若三次成绩按20%,30%,50%计算,应选谁参加?14.(10分)数据x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,探讨:(1)数据x1+x2+…+x n+y1+y2+…+y n的平均数;(2)数据x1+10,x2+10,…,x n+10的平均数;(3)数据2x1+3y1,2x2+3y2,…,2x n+3y n的平均数;(4)由上面的探讨,总结出一般规律.15.(10分)一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?《平均数》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一组数据3,5,7,m,n的平均数是7,则m,n的平均数是()A.6B.7C.8D.10【分析】数据3,5,7,m,n的平均数是7,即已知这几个数的和是7×5,则可求出m+n,这样就可得到它们的平均数.【解答】解:∵数据3,5,7,m,n的平均数是7,∴3+5+7+m+n=7×5,∴m+n=35﹣3﹣5﹣7=20,∴m,n的平均数是10.故选:D.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.2.(5分)一列数4,5,6,4,4,7,x的平均数是5,则x的值为()A.4B.5C.6D.7【分析】根据平均数是计算公式即可得出结论.【解答】解:∵数据4,5,6,4,4,7,x的平均数是5,∴(4+5+6+4+4+7+x)÷7=5,解得x=5,故选:B.【点评】本题考查的是平均数的求法及运用,熟记计算公式是解本题的关键.3.(5分)某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为()分.A.85B.86C.87D.88【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:根据题意得,吴老师的综合成绩为90×60%+85×40%=88(分),故选:D.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.4.(5分)小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)甲种糖果乙种糖果混合糖果方案1235方案2325方案3 2.5 2.55则最省钱的方案为()A.方案1B.方案2C.方案3D.三个方案费用相同【分析】求出三种方案混合糖果的单价,比较后即可得出结论.【解答】解:方案1混合糖果的单价为,方案2混合糖果的单价为,方案3混合糖果的单价为=.∵a>b,∴<<,∴方案1最省钱.故选:A.【点评】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.5.(5分)数据60,70,40,30这四个数的平均数是()A.40B.50C.60D.70【分析】根据算术平均数的定义计算可得.【解答】解:这四个数的平均数是=50,故选:B.【点评】此题考查了平均数,掌握平均数的计算公式是本题的关键;平均数是指在一组数据中所有数据之和再除以数据的个数.二、填空题(本大题共5小题,共25.0分)6.(5分)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁.则这个班级学生的平均年龄是14.【分析】根据加权平均数的计算方法是求出该班所有人数的总岁数,然后除以总学生数即可.【解答】解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁;故答案为:14.【点评】此题考查了加权平均数,本题易出现的错误是求13,14,15这三个数的平均数,对平均数的理解不正确.7.(5分)西安市某一周的日最高气温(单位:℃)分别为:35,33,36,33,32,32,37,这周的日最高气温的平均值是34℃.【分析】先求出这7天总的最高温度和,再除以7天,即可得出这周的日最高气温的平均值.【解答】解:这周的日最高气温的平均值是=34(℃),故答案为:34.【点评】此题考查了平均数,熟练掌握平均数的计算公式是解题的关键,是一道基础题.8.(5分)如果数据3、2、x、﹣3、1的平均数是2,那么x的值是7.【分析】根据平均数的计算公式直接解答即可.【解答】解:∵数据3、2、x、﹣3、1的平均数是2,∴=2,解得:x=7,故答案为:7.【点评】此题主要考查了算术平均数的求法,解答此题的关键是要明确:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.9.(5分)某校生物小组7人到校外采集标本,其中2人每人采集到3件,3人每人采集到4件,2人每个采集到5件,则这个小组平均每人采集标本4件.【分析】运用加权平均数公式即可求解.【解答】解:由题意,可得这个小组平均每人采集标本:=4(件).故答案为4.【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.10.(5分)小辉期中考试语文、数学、英语三科的平均分为90分,语文得了86分,英语得了91分,他把数学成绩忘记了,他的数学成绩应该为93分.【分析】根据题意可以求得三科的总成绩,从而可以求得数学成绩.【解答】解:由题意可得,他的数学成绩为:90×3﹣(86+91)=93(分),故答案为:93.【点评】本题考查算术平均数,解答本题的关键是明确题意,求出相应的数学成绩.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙817485丙798391(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据算术平均数的定义计算可得;(2)根据加权平均数的定义计算可得.【解答】解:(1)∵==83,==80,==84,∴从高分到低分确定小组的排名顺序为:丙、甲、乙;(2)甲:91×40%+80×30%+78×30%=83.8,乙:81×40%+74×30%+85×30%=80.1,丙:79×40%+83×30%+91×30%=83.5,∴甲组成绩最高.【点评】本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.12.(10分)下列各数是10名学生的数学考试成绩:82,83,78,66,95,75,56,93,82,81先估算他们的平均成绩,然后在此基础上计算平均成绩,由此检验你的估值能力.【分析】把超过80的部分用正数表示,不足90的部分用负数来表示,然后再根据进行计算即可.【解答】解:估计这10名同学的平均成绩为80分.把他们成绩超过80的部分记作正数,不足80的部分记作负数.这10位学生的分数分别记为:+2,+3,﹣2,﹣14,+15,﹣5,﹣24,+13,+2,+1.80+(2+3﹣2﹣14+15﹣5﹣24+13+2+1)÷10=80﹣0.9=79.1.答:这10名学生的平均成绩是79.1,我估计的分值与此很接近.【点评】本题主要考查的是算术平均数,有理数的加法、正负数,引入正负数进行简便计算是解题的关键.13.(10分)甲、乙、丙三位同学参加“华罗庚杯数学竞赛”培训.三个培训段的考试成绩如表:现要选拨一人参赛:甲乙丙代数858570几何928083综合758590(1)若按三次平均成绩选拔,应选谁参加?(2)若三次成绩按3:3:4的比例计算,应选谁参加?(3)若三次成绩按20%,30%,50%计算,应选谁参加?【分析】(1)根据平均数的定义求出甲、乙、丙三位同学的平均数,进一步判定即可求解;(2)三次成绩按3:3:4的比例计算求出加权平均数后判断即可;(3)三次成绩按20%,30%,50%的比例计算求出加权平均数后判断即可.【解答】解:(1)(85+92+75)÷3=84,(85+80+85)÷3=83,(70+83+90)÷3=81,∵84>83>81,∴若按三次平均成绩选拔,应选甲参加;(2)85×+92×+75×=25.5+27.6+30=83.1,85×+80×+85×=25.5+24+34=83.570×+83×+90×=21+24.9+36=81.9∵83.5>83.1>81.9,∴若三次成绩按3:3:4的比例计算,应选乙参加;(3)85×20%+92×30%+75×50%=17+27.6+37.5=82.1,85×20%+80×30%+85×50%=17+24+42.5=83.570×20%+83×30%+90×50%=14+24.9+45=83.9∵83.9>83.5>82.1,∴若三次成绩按20%,30%,50%计算,应选丙参加.【点评】考查了加权平均数,权的表现形式,一种是比的形式,另一种是百分比的形式,权的大小直接影响结果.14.(10分)数据x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,探讨:(1)数据x1+x2+…+x n+y1+y2+…+y n的平均数;(2)数据x1+10,x2+10,…,x n+10的平均数;(3)数据2x1+3y1,2x2+3y2,…,2x n+3y n的平均数;(4)由上面的探讨,总结出一般规律.【分析】(1)由题意得出x1+x2+x3+…+x n=na,y1+y2+…+y n=nb,再依据平均数的定义计算(x1+y1+x2+y2+…+x n+y n)÷n=(na+nb)÷n可得答案;(2)根据平均数的定义知x1+10,x2+10,…,x n+10的平均数为×(x1+10+x2+10+…+x n+10),据此可得.(3)把2x l+3y1,2x2+3y2,2x3+3y3…2x n+3y n的平均数的式子用a和b表示出来即可;(4)一般规律为:mx1+ny1,mx2+ny2,…,mx n+ny n的平均数为ma+nb.【解答】解:(1)∵数据x1,x2,…x n的平均数为a,数据y1,y2,…y n的平均数为b,∴x1+x2+x3+…+x n=na,y1+y2+…+y n=nb,∴数据x1+y1,x2+y2,…x n+y n的平均数为(x1+y1+x2+y2+…+x n+y n)÷n=(na+nb)÷n=a+b.(2)数据x1+10,x2+10,…,x n+10的平均数为×(x1+10+x2+10+…+x n+10)==a+10;(3)∵x1,x2,x3,…,x n的平均数是a,数据y1,y2,y3,…,y n的平均数是b,∴(2x1+3y1+2x2+3y2+2x3+3y3+…+2x n+3y n)÷n=[2(x1+x2+x3+•+x n)+3(y1+y2+y3+…+y n)]÷n=2a+3b.(4)由以上可得mx1+ny1,mx2+ny2,…,mx n+ny n的平均数为ma+nb.【点评】本题考查了平均数的计算.本题说明了一组数据若是由两组数据的和或倍数组成,则数据的平均数是这两组数据的平均数的和或倍数.15.(10分)一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强,听、说、读、写成绩按照2:1:3:4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?【分析】(1)根据平均数的计算公式计算可得;(2)根据加权平均数的公式计算可得.【解答】解:(1)∵=×(85+78+85+73)=80.25,=×(73+80+82+83)=79.5,∴应录取甲;(2)∵==79.5,==80.4,∴此时应录取乙.【点评】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.。
新部编人教版八年级下册数学 《平均数(2)》教案

第二十章数据的分析20.1.1平均数第二课时一、教学目标1.核心素养通过进一步学习算术平均数、加权平均数的概念,加深对加权平均数的理解,初步掌握统计解决问题的基本方法,培养学生收集数据提取信息的能力,学会构建模型分析数据,解释数据蕴含的结论.2.学习目标(1)1.1.1 进一步加深对加权平均数的理解.(2)1.1.2经历探索加权平均数对数据处理的过程,体验对统计基本思想的理解过程,学会频数分布表中应用加权平均数的方法.(3)1.1.3能根据频数分布直方图计算平均数,能正确有效应用平均数知识解决问题,提高分析解决问题的能力.3.学习重点根据频数分布表求加权平均数,根据频数分布直方图计算平均数.4.学习难点理解频数、组中值得概念,根据不同特点的频数分布直方图采取相应的处理方法.二、教学设计(一)课前设计1.预习任务阅读教材P128-P130,思考:平均数的意义是什么?如何利用加权平均数的计算公式求一组数据的平均数?2.预习自测1.数据15,23,17,17,22的平均数是_____________,若4,x,5的平均数是7,则3,4,5,x,6五个数的平均数是__________。
2.利用公式x=x/+a计算105,103,101,100,114,108,110,106,98,102的平均数,其中a=___,x/=_______,x=_______。
3.一个班级有45名学生,其中14岁的有16人,15岁的有17人,16岁的有8人,17岁的有4人,那么这个班的平均龄是_________岁。
预习自测参考答案1.18.8,62.100,4.7,104.73.15(二)课堂设计1.知识回顾(1)加权平均数的意义;(2)加权平均数的计算公式2.问题探究问题探究一:加深对加权平均数的理解问题1:某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个人小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?解:(1)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是:(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分),乙组的平均成绩是:(分),丙组的平均成绩是(分),由上可得,甲组的成绩最高.问题2:阳泉同学参加周末社会实践活动,到“富乐花乡”蔬菜大棚中收集到20株西红柿秧上小西红柿的个数:32 39 45 55 60 54 60 28 56 4151 36 44 46 40 53 37 47 45 46(1)前10株西红柿秧上小西红柿个数的平均数是_____,中位数是_____,众数是_____;(2)若对这20个数按组距为8进行分组,请补全频数分布表及频数分布直方图(3)通过频数分布直方图试分析此大棚中西红柿的长势.解:(1)前10株西红柿秧上小西红柿个数的平均数是(32+39+45+55+60+54+60+28+56+41)÷10=47;把这些数据从小到大排列:28、32、39、41、45、54、55、56、60、60,最中间的数是(45+54)÷2=49.5,则中位数是49.5;60出现了2次,出现的次数最多,则众数是60;故答案为:47,49.5,60;(2)根据题意填表如下:个数分组, 28≤x<36, 36≤x<44, 44≤x<52, 52≤x<60, 60≤x<68频数, 2, 5, 7, 4, 2补图如下:故答案为:5,7,4;(3)此大棚的西红柿长势普遍较好,最少都有28个;西红柿个数最集中的株数在第三组,共7株;西红柿的个数分布合理,中间多,两端少.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.问题3:下图反映了甲、乙两班学生的体育成绩。
人教版八年级数学下《平均数》 拓展练习

《平均数》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41 度B.42 度C.45.5 度D.46 度2.(5分)某小组中有3名学生每人得84分,如果另外7名学生的平均成绩是x,那么整个组的平均成绩是()A.B.C.D.3.(5分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,94.小云这学期的体育成绩是()A.86B.88C.90D.924.(5分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分B.87分C.87.5分D.90分5.(5分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)1 1.2 1.5节水户数651520A.1B.1.1C.1.13D.1.2二、填空题(本大题共5小题,共25.0分)6.(5分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.7.(5分)将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是.8.(5分)若1,2,3,a的平均数是3,又4,5,a,b的平均数是5,则a+b=,样本0,1,2,3,4,a,b的平均数是.9.(5分)一个祥本中,各个数据的总和为2018,如果这个样本的平均数为40.36,则样本的数据为个.10.(5分)已知2、5、6和a四个数的平均数是4,又已知10、12、15、b和a 五个数的平均数是9,则b=.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?12.(10分)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?13.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:12345序号项目笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(2)求出其余四名选手的综合成绩,并以综合成绩排序确定前两名人选.14.(10分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.15.(10分)某公司对应聘者A,B,C,D进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?A B C D专业知识14181716工作经验18161416仪表形象12111414《平均数》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)A居民区的月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均用电为()A.41 度B.42 度C.45.5 度D.46 度【分析】根据加权平均数的求法可以解答本题.【解答】解:平均用电为:=45.5(度),故选:C.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的方法.2.(5分)某小组中有3名学生每人得84分,如果另外7名学生的平均成绩是x,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=10名学生的总成绩÷10,依次列式即可得.【解答】解:先求出这10个人的总成绩7x+3×84=7x+252,再除以10可求得平均值为.故选:A.【点评】此题考查了加权平均数的知识,解题的关键是求的10名学生的总成绩.3.(5分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,94.小云这学期的体育成绩是()A.86B.88C.90D.92【分析】根据加权平均数的计算公式,列出算式,再进行计算即可【解答】解:小云这学期的体育成绩是84×60%+94×40%=88(分),故选:B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.4.(5分)某市招聘老师的笔试和面试的成绩均按百分制计,并且分别按40%和60%来计算综合成绩.王老师本次招聘考试的笔试成绩为90分,面试成绩为85分,经计算他的综合成绩是()A.85分B.87分C.87.5分D.90分【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:他的综合成绩为90×40%+85×60%=87(分),故选:B.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.5.(5分)为鼓励业主珍惜每一滴水,某小区物业表扬了100个节约用水模范户,5月份节约用水的情况如下表:那么,5月份这100户平均节约用水的吨数为()吨.每户节水量(单位:吨)1 1.2 1.5节水户数651520A.1B.1.1C.1.13D.1.2【分析】平均节约用水的吨数等于所有的户节约用水的总和除以户数.【解答】解:5月份这100户平均节约用水的吨数为=1.13(吨),故选:C.【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是100分.【分析】先根据平均数公式分别求出全班38名学生的总分,去掉A、B、C、D、E五人的总分,相减得到A、B、C、D、E五人的总分,再根据实际情况得到C的成绩.【解答】解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案为:100.【点评】本题利用了平均数的概念建立方程.注意将A、B、C、D、E五人的总分看作一个整体求解.7.(5分)将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是9120.【分析】根据平均数的定义解答.新数据的和为4×30,原数据的和为300×30+4×30.【解答】解:由题意知,将30个数据分别减去300后平均数为4,则原数据的平均数为4+300=304,那么原30个数据的和即为304×30=9120.故答案为9120.【点评】本题考查了平均数的概念.平均数等于所有数据的和除以数据的个数.8.(5分)若1,2,3,a的平均数是3,又4,5,a,b的平均数是5,则a+b =11,样本0,1,2,3,4,a,b的平均数是3.【分析】利用1,2,3,a的平均数是3,可求出a;又4,5,a,b的平均数是5,可求出b,进而解决问题.【解答】解:因为1,2,3,a的平均数是3,所以(1+2+3+a)=3,a=3×4﹣1﹣2﹣3=6;又因为4,5,a,b的平均数是5,所以有(4+5+6+b)=5,b=4×5﹣4﹣5﹣6=5,故a+b=11,0,1,2,3,4,a,b的平均数是(0+1+2+3+4+11)=3.故填11;3.【点评】本题考查平均数的求法即.9.(5分)一个祥本中,各个数据的总和为2018,如果这个样本的平均数为40.36,则样本的数据为50个.【分析】根据算术平均数的定义用数据的总和除以平均数即可得出答案.【解答】解:根据题意知样本的数据个数为2018÷40.36=50,故答案为:50.【点评】本题主要考查算术平均数,样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量.10.(5分)已知2、5、6和a四个数的平均数是4,又已知10、12、15、b和a 五个数的平均数是9,则b=5.【分析】根据2、5、6和a四个数的平均数为4,即可求得4个数的和,进而得到a的值,同理可以求得b的值.【解答】解:∵2、5、6和a四个数的平均数是4,∴2+5+6+a=4×4,解得:a=3,∵10、12、15、b和a五个数的平均数是9,∴10+12+15+b+3=5×9,解得:b=5,故答案为:5.【点评】本题考查的是平均数的求法.熟记公式是解决本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组研究报告小组展示答辩甲918078乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?【分析】(1)根据算术平均数的定义列式计算可得;(2)根据加权平均数的定义列式计算可得.【解答】解:(1)甲组的平均成绩为=83(分)、乙组的平均成绩为=84(分),所以乙组第一名、甲组第二名;(2)甲组的平均成绩为=83.8(分),乙组的平均成绩为=83.5(分),所以甲组成绩最高.【点评】此题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.12.(10分)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:语文数学英语科学甲959580150乙1059090139丙10010085139(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?【分析】(1)把各科分数相加,再除以4即可;(2)按比例计算出平均分,再判断即可.【解答】解:(1)==105(分);==106(分);==106(分);答:乙、丙将被表扬;(2)==108.5(分);==107.7(分);==108.7(分);答:甲、丙将被表扬.【点评】此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.13.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前5名选手的得分如下:12345序号项目笔试成绩/分8592849084面试成绩/分9088869080根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(2)求出其余四名选手的综合成绩,并以综合成绩排序确定前两名人选.【分析】(1)先设笔试成绩和面试成绩各占的百分比是x,y,根据题意列出方程组,求出x,y的值即可;(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余四名选手的综合成绩,即可得出答案.【解答】解:(1)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(2)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),则综合成绩排序前两名人选是4号和2号.【点评】此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是灵活运用有关知识列出算式.14.(10分)一位同学进行五次投实心球的练习,每次投出的成绩如表:投实心球序次12345成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.15.(10分)某公司对应聘者A,B,C,D进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?A B C D专业知识14181716工作经验18161416仪表形象12111414【分析】根据加权平均数计算A,B,C,D四名应聘者的最后得分,看谁的分数高,分数高的就录用.【解答】解:A的最后得分:=15.0,B的最后得分:=16.7,C的最后得分:=15.8,D的最后得分:=15.8,由于B的最后得分最高,应录用B.【点评】本题考查了加权平均数的概念.在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.第11页(共11页)。
初二下学期平均数练习题

初二下学期平均数练习题在数学课上,我们学习了许多有关平均数的知识。
平均数是指一组数值的总和除以数值的个数。
通过计算平均数,我们可以更好地理解数据集的整体趋势和特征。
本文将提供一系列初二下学期的平均数练习题,帮助同学们巩固这一知识点。
1. 题目一:某班级的5位同学的考试成绩为88,92,95,90和85。
请计算他们的平均成绩。
解答:将5位同学的成绩相加得到:88 + 92 + 95 + 90 + 85 = 450然后将总成绩除以同学人数得到平均成绩:450 ÷ 5 = 90所以,这个班级的平均成绩为90。
2. 题目二:某饭店连续5天的客人数分别为80,120,90,100和110。
请计算这五天的平均客人数。
解答:将五天的客人数相加得到:80 + 120 + 90 + 100 + 110 = 500然后将总客人数除以天数得到平均客人数:500 ÷ 5 = 100所以,这五天的平均客人数为100。
3. 题目三:一家超市连续七天的销售额分别为2000元,2500元,3000元,2800元,2700元,2900元和2600元。
请计算这七天的平均销售额。
解答:将七天的销售额相加得到:2000 + 2500 + 3000 + 2800 + 2700 + 2900 + 2600 = 18500然后将总销售额除以天数得到平均销售额:18500 ÷ 7 ≈ 2642.86所以,这七天的平均销售额约为2642.86元。
4. 题目四:某学生在一次考试中的五科成绩分别为89分,92分,85分,93分和97分。
请计算他的平均分并判断是否及格(及格标准为平均分大于等于60分)。
解答:将五科成绩相加得到:89 + 92 + 85 + 93 + 97 = 456然后将总分除以科目数得到平均分:456 ÷ 5 = 91.2所以,这名学生的平均分为91.2分。
由于平均分大于等于60分,他及格了。
人教版八年级下册数学第20章20.1.1平均数习题课件

0.4≤ x<0.5 10
素质一练通 使用了节水龙头20天的日用水量频数分布表
日用 水量/m3 频数
0≤x<0.1 2
0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4
6
8
4
(1)计算未使用节水龙头20天的日平均用水量和使用了节水 龙头20天的日平均用水量;
素质一练通
解:未使用节水龙头20天的日平均用水量为 1 ×(0× 20
精彩一题 (1)竞选的最后一个程序是由本系的300名学生进行投票,三
名候选人的得票情况如图所示(没有弃权票,每名学生 只能投一人),请计算每人的得票数; 解:A:300×35%=105(票), B:300×40%=120(票), C:300×25%=75(票).
精彩一题 (2)若每票计1分,系里将笔试、面试、得票三项得分按
素质一练通 10.【2021·武汉】为了解落实国家《关于全面加强新时代
大中小学劳动教育的意见》的实施情况,某校从全体学 生中随机抽取部分学生,调查他们平均每周劳动时间 t(单位:h),按劳动时间分为四组:A组“t<5”,B组 “5≤t<7”,C组“7≤t<9”,D组“t≥9”,将收集的数据整 理后,绘制成如下两幅不完整的统计图.
新知基本功
2.【2020·湖州】数据-1,0,3,4,4的平均数是( D ) A.4 B.3 C.2.5 D.2
新知基本功
3.某次考试,5名学生的平均分是82分,除甲外,其余4名
学生的平均分是80分,那么甲的得分是( D )
A.84分
B.86分
C.88分
D.90分
新知基本功
4.【2021·安顺】今年是三年禁毒“大扫除”攻坚克难之 年.为了让学生认识毒品的危害,某校举办了禁毒知识 比赛,小红所在班级学生的平均成绩是80分,小星所在 班级学生的平均成绩是85分,在不知道小红和小星成绩 的情况下,下列说法比较合理的是( D ) A.小红的分数比小星的分数低 B.小红的分数比小星的分数高 C.小红的分数与小星的分数相同 D.小红的分数可能比小星的分数高
人教版初中数学八年级下册教案《平均数》

人教版初中数学八年级下册教案《平均数》一. 教材分析平均数是初中数学中的一个重要概念,它反映了数据集中的趋势。
在本节课中,学生将学习平均数的定义、性质和计算方法,并能运用平均数解决实际问题。
教材通过生动的实例和丰富的练习,帮助学生理解和掌握平均数的概念,培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在小学阶段已经接触过平均数的概念,但对平均数的理解和计算方法可能还不够深入。
他们对平均数有一定的认识,但缺乏对平均数性质和应用的理解。
此外,学生可能对平均数的计算公式记忆不牢,需要通过练习来巩固。
三. 教学目标1.理解平均数的定义和性质,掌握平均数的计算方法。
2.能够运用平均数解决实际问题,提高解决问题的能力。
3.培养学生的数学思维能力和团队合作能力。
四. 教学重难点1.重点:平均数的定义、性质和计算方法。
2.难点:平均数的性质和应用。
五. 教学方法1.情境教学法:通过实例引入平均数的概念,让学生在实际情境中理解和掌握平均数。
2.练习法:通过大量的练习,巩固学生对平均数的理解和计算方法。
3.小组合作学习:让学生在小组内讨论和解决问题,培养学生的团队合作能力。
六. 教学准备1.教材和教辅资料。
2.实例和练习题。
3.投影仪和黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入平均数的概念,例如:“某班有30名学生,他们的身高分别为160cm、165cm、170cm等,请计算该班学生的平均身高。
”让学生思考和讨论如何计算平均身高,引出平均数的概念。
2.呈现(15分钟)介绍平均数的定义和性质,通过实例和讲解让学生理解和掌握平均数的概念。
强调平均数的性质,例如:平均数是一组数据的集中趋势,受到极端值的影响等。
3.操练(15分钟)让学生进行大量的练习,巩固对平均数的理解和计算方法。
可以设置不同难度级别的题目,让学生根据自己的能力选择练习。
4.巩固(10分钟)通过小组合作学习,让学生在小组内讨论和解决问题。
人教版初中数学八年级下册数据的分析练习题

第 1 页 共 2 页 20.1 数据的集中趋势一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时)1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.2.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.第2课时 平均数(2)【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,.求:(1)(2)该班学生平均每天做数学作业所用的时间.20.1.2 中位数和众数三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.2.一组各不相同的数据23,27,20,18,x ,12,它的中位数是21,则x 的值是________.3.数据92,96,98,100,x 的众数是96,则其中位数和平均数分别是( )A .97,96B .96,96.4C .96,97D .98,974.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A .24,25B .23,24C .25,25D .23,252课时 中位数和众数(2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平均数》练习
一、选择——基础知识运用
1.数名射击运动员第一轮比赛成绩如下表所示;
环数78910
人数4231则他们本轮比赛的平均成绩是()
A.7.8环B.7.9环C.8.1环D.8.2环
2.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为()
A.11元/千克B.11.5元/千克C.12元/千克D.12.5元/千克
3.小明参加数学考试,前两次的平均分是85分,后三次的总分是270分,求小明这五次考试的平均分数是()
A.88 B.80 C.85 D.90
4.下表中若平均数为2,则x等于()
分数(分)01234
学生人数x5632 A.0 B.1 C.2 D.3
5.为了计算植树节时本班同学所种植的30棵树苗的平均高度,三位同学先将所有树苗的高度按由小到大的顺序排列,得到下表:
80859095100105
树苗高度
(cm)
树苗数358662然后,他们分别这样计算这30棵树苗的平均高度:
(1)×(80+85+90+95+100+105);
(2)×[80×3+85×5+90×8+(95+100)×6+105×2];
(3)×(80×3+85×5+90×8+95×6+100×6+105×2).
列式正确的是()
A .(1)
B .(1)和(2)
C .(1)和(3)
D .(2)和(3) 二、解答——知识提高运用
6.小青在九年级上学期的数学成绩如下表所示:
(1)计算该学期的平时平均成绩;
(2
)如果根据右图所示的权重计算学期的总评成绩,请计算出小青该学期的总评成绩. 7.将20袋小麦以每袋90千克为标准,超过标准的重量用正数表示,不足标准的重量用负数表示,记录如表:
这批小麦的平均质量比标准质量多还是少?多或少几克?总质量是多少克?
8.某灯泡厂为了测定本厂生产的灯泡的使用寿命(单位:时),从中抽査了400只灯泡,测得它们的使用寿命如下: 试求这400只灯泡的平均使用寿命约是多少?
9.某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评.A 、B 、C 、D 、E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评.结果如下表所示:
表1 演讲答辩得分表(单位:分)
表2 民主测评票数统计表(单位:张)
规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;
民主测评得分=“好”票数×2分+“较好”票数×1分+“一般”票数×0分;
综合得分=演讲答辩得分×(1-a)+民主测评得分×a(0.5≤a≤0.8)。
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
10.某校初三(1)班50名学生参加1分钟跳绳体育考试。
1分钟跳绳次数与频数经统计后绘制出下面的频数分布表(60~70表示为大于等于60并且小于70)和扇形统计图。
(1)求m、n的值;
(2)求该班1分钟跳绳成绩在80分以上(含80分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由。
11.从2001年2月21日零时起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3分钟为0.2元(不足3分钟的按3分钟计算),以后每分钟加收0.1元(不足1分钟的按1分钟计算),上星期天,一位学生调查了A、B、C、D、E、五位同学某天打本地网营业区内电话
的通话时间情况,原始数据如表1:
表一
表二
(1)问D同学这天的通话费是多少?
(2)设通话时间为t(分),试根据表1填写频数(落在某一时间段上的通话次数)分布表(表2)
(3)调整前执行的原电话收费标准是:每3分钟为0.2元(不足3分钟的按3分钟计算),问:这五名位同学这天的实际平均通话费,与用原电话收费标准算出的平均通话费相比,是增多了,还是减少了?若增多,多多少?若减少,少多少?
参考答案
一、选择——基础知识运用
1.【答案】C
【解析】由题意可知:该运动员的平均成绩为=8.1环。
故选C。
2.【答案】B
【解析】单价=(15×10+12×20+10×30)÷(10+20+30)=11.5;
故选B。
3.【答案】A
【解析】(85×2+270)÷5=88,
故选:A。
4.【答案】B
【解析】根据题意得:=2,
解得:x=1,
故选B。
5.【答案】D
【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.显然(1)中的计算有误,所以(2)和(3)的计算方法正确。
故选D。
二、解答——知识提高运用
6.【答案】(1)=83(分)
∴小青该学期平时的平均成绩为83分。
(2)83×10%+90×30%+87×60%=87.5(分)
∴小青该学期的总评成绩为87.5分。
7.【答案】(-1.5)×2+(-1.2)×5+0×2+1×5+1.2×2+1.5×3+1.8×1
=4.7(千克)
4.7×1000=4700(克)
90×20+4.7=1804.7 (千克)
1804.7×1000=1804700(克)
答:这批小麦的平均质量比标准质量多,多4700克,总质量是1804700克。
8.【答案】(21×550+79×650+108×750+92×850+76×950+24×1050)=798.75,所以这400只灯泡的平均使用寿命约是798.75时。
9.【答案】(1)甲的演讲答辩得分= =92(分),
甲的民主测评得分=40×2+7×1+3×0=87(分),
当a=0.6时,甲的综合得分=92×(1-0.6)+87×0.6=36.8+52.2=89(分);
答:当a=0.6时,甲的综合得分是89分;
(2)∵乙的演讲答辩得分==89(分),
乙的民主测评得分=42×2+4×1+4×0=88(分),
∴乙的综合得分为:89(1-a)+88a,甲的综合得分为:92(1-a)+87a,
当92(1-a)+87a>89(1-a)+88a时,即有a<,
又0.5≤a≤0.8,
∴0.5≤a<0.75时,甲的综合得分高;
当92(1-a)+87a<89(1-a)+88a时,即有a>,
又0.5≤a≤0.8,
∴0.75<a≤0.8时,乙的综合得分高。
答:当0.5≤a<0.75时,甲的综合得分高,0.75<a≤0.8时,乙的综合得分高。
10.【答案】(1)由扇形统计图知:
初三(1)班1分钟跳绳考试成绩为B等的学生占全部总人数的54%
∴=54%
∴m=18
∵3+9+18+12+n+2=50
∴n=6
(2)由频数分布表可知:
初三(1)班1分钟跳绳成绩在80分以上(含80分)的人数为3+9+18+12=42
∴1分钟跳绳成绩在80分以上(含80分)的人数占全班人数的百分比=84%
(3)本题答案和理由不唯一,只要该班学生1分钟跳绳平均分的估计值是85-100分之间的某一个值或某个范围,理由合理,均正确
例如:估计平均分为92分,估计方法为:取每个分数段的中间值分别是115、105、95、85、75、65、30,则该班学生1分钟跳绳的平均分为
x=92分。
11.【答案】(1)应该交电话费为0.2×3+0.1×(1+2)=0.9(元)。
(2)2,5,2,1,
(3)调整前的平均通话费=[0.2×2+0.4×(5+2+1)]÷5=0.72(元)。
新的电话收费标准的平均通话费=(0.2×2+0.3×5+0.4×2+0.5×1)÷5=0.64(元)。
∵0.72-0.64=0.08元,
∴与用原电话收费标准算出的平均通话费相比,是减少了,少0.08元。