多谐振荡器电路无稳态

合集下载

ch08-3多谐振荡器

ch08-3多谐振荡器

8.3.3. 石英晶体多谐振荡器
1.石英晶体的选频特性
有两个谐振频率。当f=fs时,为串联谐振,石英晶体的电抗X=0; 由晶体本身的特性决定: fs≈ fp≈ f0(晶体的标称频率)
当f=fp时,为并联谐振,石英晶体的电抗无穷大。
石英晶体的选频特性极好,f0十分稳定,其稳定度可达10-10~10-11。 X 感性 电路符号 0 容性
多谐振荡器应用实例 例1:多谐振荡器构成水位监控报警电路 +U CC
R1
R2 C
. .u
7 8 4 + 6 3 2 1
C
.
5
水位正常情况下,电容C 被短接,扬声器不发音;水 位下降到探测器以下时,多谐振荡器开始工作,扬声器发 出报警。
例题:下图所示是一个水位监控器。当水位下降到与探测 电极脱离接触时,扬声器发出报警声响;当探测电极浸 在水中时,扬声器不报警。
I
vI
v O1
vO
迅速使G1导通、 G2截止
vO1 =0 vO2=1 电路进入第二暂态
G1 TP D1 vI D2 TN R vO1 D3 充电 vO2 D4 TN TP G2 VDD
v O 1=0
vI
VDD VTH 0
v O =1
t
vO
VDD
C
0
t
2. 工作原理
υo1 =0, υo =1 时,电容放电, υI下降;
vI
v I2
3
VCC
R1
VCC RA R1 7 R2 D1 6 RB R3 D2
8 7
4 3 vO
8 555 1 5 0.01 F 4 3 vO
R2
6 2 C
555

无稳态多谐振荡器详解.ppt

无稳态多谐振荡器详解.ppt
當電容電壓VC大於OPA非反相輸入端之電 壓(V+)
V+=VU=VO+(sat)*R2/R1+R2(上限觸發電壓) 時, VO即迅速轉變為負飽和電壓,而此時之V+ 變為 V+=VL =VO-(sat)* R2/R1+R2(下限觸發電壓)
OPA組成無穩態多諧振盪器(4)
•由於VO為負飽和電壓,所以電容器 開始經由R向OPA之輸出端放電
T2=0.693*RB1*CB1
無穩態多諧振盪器原理說明(5-3)
無穩態多諧振盪器原理說明(5-4)
無穩態多諧振盪器原理說明(5-5)
無穩態多諧振盪器 結論(1)
當電源接上時的瞬間使電晶體Q1飽和,
Q2截止 經過T1秒之後,使電晶體Q1截止, Q2飽和
無穩態多諧振盪器 結論(2)
再經過T2秒之後,又使電晶體Q1飽和
CMOS閘組成 無穩態多諧振盪器(4-1)
CMOS閘組成 無穩態多諧振盪器(4-2)
等效電路
CMOS閘組成 無穩態多諧振盪器(5-1)
CMOS閘組成 無穩態多諧振盪器(5)
•當VC=0V,且Z點電壓為VDD,所以 由Z點向電容C充電,其路徑如圖所 示,電容電壓VC因充電而逐漸上升, 使得電阻R上的電壓VR逐漸下降,當 VR小於VT(≒1/2VDD)時,閘A的輸出 又發生轉態,故Y變為”H”,Z點變 為”L”,X點變為”L”。
多諧振盪器的結構
無穩態多諧振盪器(astable multivibrator)
單穩態多諧振盪器(monostable multivibrator) 雙穩態多諧振盪器(bistable multivibrator)
無穩態多諧振盪器
這是重 點部分

三极管多谐振荡器电路原理分析解答

三极管多谐振荡器电路原理分析解答

此电路为由两只三极管组成的多谐振荡器,通常叫做三极管无稳态多谐振荡器。

它不需要外加激励信号就便能连续地、周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成。

若要明白此电路的工作原理必须要有一定的模拟电子技术知识(涉及到三极管的),给你补充如上。

若U CE <U BE ,饱和状态若U BE ≤U on ,截止状态;若U BE >U on ,若U CE >U BE ,放大状态NPN 型ECB三极管有三个工作状态:放大、截止与饱和。

此电路中两个三极管主要工作在截止与饱和状态,并且进行不断的交替变换,形成矩形脉冲输出,从而驱动两个发光二极管交替闪烁。

大致工作原理可做如下理解分析:上电最初,两个管子的基极均处于正向偏置状态,通过33K电阻承受正向电压;两电解电容被充电。

注意:两电解电容在电路连接上是将两个三极管的集电极与对方的基极耦合连接到一起。

随着过程的进行,由于两个三极管本身特性参数的差异,会出现一个优先饱和导通的情况。

假设左侧三极管优先导通,三极管压降会迅速降低至很低,三极管的C-E之间相当于短路,左侧电容导通后其UCE开始通过它放电,这样左侧管子的集电极电压就很低,而这一电压低的特性会通过与之连接的耦合电解电容影响到右侧管子的基极电位,随之变低,从而导致右侧三极管很好的截止,其C-E之间相当于断开,其集电极电位迅速升高。

而由于电容的电压不能突变,这将导致左侧三极管的基极电位不能同步升高,而承受一个负压,这样就导致此三极管由饱和导通变为截止,C-E间相当于断开,而其集电极电压会随着左侧电容的再次充电,电压而逐渐升高,并带动着右侧三极管的基极电位升高,逐步转为饱和导通状态,其C-E间相当于短路,其集电极电压下降,对应侧电解电容放电,而这一电压低的特性会通过与之连接的耦合电解电容影响到左侧管子的基极电位,随之变低,从而导致左侧三极管更好的截止,。

这样为此振荡电路的一个振荡周期。

无稳态多谐振荡器电路工作原理

无稳态多谐振荡器电路工作原理

无稳态多谐振荡器电路工作原理
无稳态多谐振荡器电路,也被称为自激多谐振荡器或无稳态振荡器,是一种能产生持续振荡的电子电路。

它的工作原理主要基于电路中元件的非线性特性和正反馈机制。

在一个典型的无稳态多谐振荡器电路中,通常包含有放大器、电容器和电阻器等元件。

电路被设计成在没有外部输入信号的情况下,能够自行产生周期性变化的电压或电流信号。

这种自行产生的振荡是由于电路中的正反馈作用,使得电路中的信号不断被放大和反馈,从而形成持续的振荡。

具体来说,当电路中的电容器充电或放电时,会产生电压变化。

这个电压变化被放大器放大后,再通过正反馈回路反馈到电容器的另一端,从而改变电容器的充电或放电状态。

这个过程不断重复,就形成了周期性的振荡。

在无稳态多谐振荡器电路中,由于电容器的充放电过程和放大器的非线性特性,电路会产生多个不同的振荡频率。

这些频率成分在电路中相互叠加,形成了复杂的振荡波形。

因此,无稳态多谐振荡器电路产生的信号具有多个不同的频率成分,这也
是它被称为“多谐”振荡器的原因。

无稳态多谐振荡器电路具有广泛的应用,例如在通信系统中用于产生载波信号、在数字电路中用于产生时钟信号等。

此外,由于其产生的信号具有多个频率成分,还可以用于频率合成、解调等应用中。

三极管无稳态多谐振荡器电路

三极管无稳态多谐振荡器电路

课题一、三极管无稳态多谐振荡器电路一、设计课题《三极管无稳态多谐振荡器电路》二、设计要求1、不上电,灯不亮。

2、上电后,两颜色灯亮交替闪亮(一直亮)。

3、设计时请注意提高抗干扰性,以免误动作。

亮灯时间可通过RC调节。

4、为了方便检查,用黄色LED和红色LED代替电灯三、原理分析三极管无稳态多谐振荡器电路工作原理如下:此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。

如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:图3 当VCC通电瞬间图4 C2放电,C1充电回路(1)如图3当VCC接上瞬间,Q1、Q2分别由RB1、RB2获得正向偏压,同时C1、C2亦分别经RC1、RC2充电。

(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。

同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。

图5 C1放电,C2充电回路(3) Q1 ON、Q2 OFF的情形并不侍定的,当C2放电完后(T2=0.7 RB2 C2秒),C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE 极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。

Q1截止(OFF),C2经RC1及Q2B-E 极于短时间充至VCC,如图5所示。

(4)同理,C1放完电后(T=0.7 RB2 C1秒),Q1经RB1获得偏压而导通,Q2 OFF如此反覆循环下去。

如图所示波形。

周期T=T1+T2=0.7 RB1 C1+0.7 RB2 C2若RB1= RB2=RB C2=C1=C则T=1.4RBC f=如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。

EN555三种稳态

EN555三种稳态

555无稳态多谐振荡器电路图1无稳态电路图无单稳态多谐振荡器电路如图1所示,当加上电源后,电容器C1经外接电阻Ra与Rb由Vcc充电,电容器C1两端电压一直上升到2/3Vcc(第六脚之临界电压),于是触发NE555的第三脚的输出为低态。

此外,放电晶体管被驱动而导通,使得第七脚的输出将电容C1经电阻Rb放电,电容器的电压就开始下降,直到它降到触发位准1/3Vcc,正反器再次被触发,使第三脚输出回到高态,且放电晶体管截流,于是电容器C1再次经由电阻Ra及Rb充电,重复这些动作就会产生振荡。

充电路径:由Vcc出发,经由Ra及Rb至电容器C1。

放电路径:由电容器C1出发,经由Rb至NE555之第七脚。

周期T=[0.7(Ra+Rb)*C1]+[0.7*Rb*C1]三极管无稳态多谐振荡器电路此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。

如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:图3 当VCC通电瞬间图4 C2放电,C1充电回路(1)如图3当V CC接上瞬间,Q1、Q2分别由RB1、R B2获得正向偏压,同时C1、C2亦分别经R C1、R C2充电。

(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。

同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。

图5 C1放电,C2充电回路(3) Q1 ON、Q2 OFF的情形并不侍定的,当C2放电完后(T2=0.7 R B2 C2秒),C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。

无稳态多谐振荡器电路

无稳态多谐振荡器电路

无稳态多谐振荡器电路1. 引言无稳态多谐振荡器电路是一种常见的电路结构,用于产生多个频率可调谐的正弦信号。

这种电路在各种通信系统、测试仪器和音频设备中得到广泛应用。

本文将详细介绍无稳态多谐振荡器电路的原理、设计和应用。

2. 原理无稳态多谐振荡器电路通常由反馈网络和放大器组成。

反馈网络将信号从输出端口反馈到输入端口,从而产生振荡。

放大器负责放大振荡信号,使其能够输出到负载上。

在无稳态多谐振荡器电路中,反馈网络通常采用封闭反馈结构。

常见的反馈网络结构包括电感耦合、电容耦合和变压器耦合等。

这些结构都能够实现信号的正反馈,引起振荡。

在多谐振荡器电路中,振荡信号可以存在多个频率分量,这取决于反馈网络中的谐振元件。

常见的谐振元件包括电容、电感和晶体等。

通过调整这些谐振元件的参数,可以改变振荡器的频率范围。

3. 设计设计一个无稳态多谐振荡器电路需要考虑以下几个方面:3.1 反馈网络设计选择合适的反馈网络结构是设计无稳态多谐振荡器电路的首要任务。

常见的反馈网络结构包括LC谐振回路、RC谐振回路等。

根据目标频率范围和输出要求,选择合适的谐振元件和耦合方式。

3.2 放大器设计在多谐振荡器电路中,放大器负责放大振荡信号,同时保持稳定的增益和相位特性。

常见的放大器类型包括BJT放大器、MOSFET放大器和集成运放放大器等。

根据设计需求选择合适的放大器类型和工作点。

3.3 控制电路设计为了实现频率可调谐的功能,需要设计一个控制电路,调节反馈网络中的谐振元件。

常见的调节方法包括电容调谐、电感调谐和晶体调谐等。

控制电路应具有稳定的工作性能和较大的频率范围。

3.4 电源和负载设计无稳态多谐振荡器电路需要稳定的电源和合适的负载匹配。

电源应提供所需的工作电压和电流,同时具有低噪声和高稳定性。

负载应与放大器的输出特性匹配,以实现最大功率传输。

4. 应用无稳态多谐振荡器电路在各种领域都有广泛的应用,例如:4.1 通信系统多谐振荡器电路被广泛应用于通信系统中的频率生成和调制电路。

无稳态多谐振荡器电路

无稳态多谐振荡器电路

无稳态多谐振荡器电路
无稳态多谐振荡器电路是一种基于反馈原理的电路,可以产生多个频率不同的正弦波信号。

这种电路常用于音频合成器、信号发生器等领域。

该电路的基本原理是利用反馈将一部分输出信号送回到输入端口,形成一个自激振荡回路。

在该回路中,由于反馈信号存在相位差,会导致不同频率的信号在不同时间达到峰值,从而产生多个频率不同的正弦波。

该电路通常由一个放大器、一个反馈网络和一个滤波网络组成。

其中放大器负责放大输入信号和反馈信号,反馈网络将一部分输出信号送回到输入端口形成自激振荡回路,滤波网络则用于去除非期望频率的噪声。

具体来说,在无稳态多谐振荡器电路中使用了一个或多个非线性元件(如二极管)来形成反馈网络。

当输入正弦波经过放大器后被送回到反馈网络时,非线性元件会对其进行削波或截断操作,并将其变为方波或锯齿波等形式。

这些变形后的信号再经过滤波网络后输出,从而产生多个频率不同的正弦波信号。

需要注意的是,由于无稳态多谐振荡器电路存在非线性元件,因此其
输出信号可能会存在失真或畸变等问题。

为了避免这些问题,需要对
电路进行精细调节和优化设计。

总之,无稳态多谐振荡器电路是一种基于反馈原理的电路,可以产生
多个频率不同的正弦波信号。

其原理简单、实现方便,在音频合成器、信号发生器等领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无稳态多谐振荡器电路
无稳态多谐振荡器电路
555无稳态多谐振荡器电路
图1无稳态电路
无单稳态多谐振荡器电路如图1所示,当加上电源后,电容器C1经外接电阻Ra与Rb由Vcc充电,电容器C1两端电压一直上升到2/3Vcc(第六脚之临界电压),于是触发NE555的第三脚的输出为低态。

此外,放电电晶体被驱动而导通,使得第七脚的输出将电容C1经电阻Rb放电,电容器的电压就开始下降,直到它降到触发位准1/3Vcc,正反器再次被触发,使第三脚输出回到高态,且放电晶体管截流,于是电容器C1再次经由电阻Ra及Rb充电,重复这些动作就会产生振荡。

充电路径:由Vcc出发,经由Ra及Rb至电容器C1。

放电路径:由电容器C1出发,经由Rb至NE555之第七脚。

周期T=[0.7(Ra+Rb)*C1]+[0.7*Rb*C1]
三极管无稳态多谐振荡器电路
此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。

如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:
图3 当VCC通电瞬间
图4 C2放电,C1充电回路
(1)如图3当V CC接上瞬间,Q1、Q2分别由RB1、R B2获得正向偏压,同时C1、C2亦分别经R C1、R C2充电。

(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止。

同时C1经Rc2及Q1的BE 极于短时间内完成充电至VCC,如图4所示。

图5 C1放电,C2充电回路
(3) Q1 ON、Q2 OFF的情形并不是固定的,当C2放电完后(T2=0.7 R B2 C2秒),C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V 时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。

Q1截止(OFF),C2经RC1及Q2B-E极于短时间充至VCC,如图5所示。

(4)同理,C1放完电后(T=0.7 R B2 C1秒),Q1经R B1获得偏压而导通,Q2 OFF
如此反覆循环下去。

如图所示波形。

周期T=T1+T2=0.7 R B1 C1+0.7 R B2 C2
若R B1= R B2=R B C2=C1=C
则T=1.4R B C f=
如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。

也就是说,两个三极管中,一个饱和,另一个截止,而且不断交换。

这种电路没有一个稳定的状态,叫做无稳态电路,无稳态电路的用途也很广,如汽车的转弯灯等。

相关文档
最新文档