第八单元测试及参考答案
人教版数学四年级上册第八单元综合测试题(附答案)

第⑧单元测试卷时间:90分钟满分:100分一、填空。
1.一张饼有()面,如果烙一面需要2分钟,烙一张饼需要()分钟。
2.冬冬、玲玲和佳佳三个同学排队接水喝,冬冬接水用了1分钟,在这时玲玲和佳佳各等待了()分钟,她们两一共等待了()分钟。
3.小秋给客人烧水沏茶,洗水壶用1分钟,烧开水用15分钟,洗茶壶用1分钟,洗茶杯用1分钟,拿茶叶用2分钟。
为了使客人早点儿喝上茶,最合理的安排顺序是(),()分钟就可以沏好茶了。
4.煮一个鸡蛋需要8分钟,一只锅一次可以煮10个鸡蛋,那么煮10个鸡蛋至少需要()分钟。
二、判断。
(对的打“√”,错的打“×”)小强、小刚和小红同时到王老师办公室问数学题。
小强需要问7分钟,小刚需要5分钟,小红需要4分钟,要使三人等候的时间总和最少,怎样安排他们问题的顺序。
1.小强先问,然后是小刚,最后是小红。
()2.小刚先问,然后是小红,最后是小强。
()3.小强先问,然后是小红,最后是小刚。
()4.小刚先问,然后是小强,最后是小红。
()5.小红先问,然后是小刚,最后是小强。
()6.小红先问,然后是小强,最后是小刚。
()三、选择。
(把正确答案的序号填在括号里。
)1.(1)一个理发店,同时来了四位顾客,按他们所要理的发型,甲需要15分钟,乙需要25分钟,丙需要18分钟,丁需要40分钟。
理发师应该按()顺序安排,才能使这四个人理发及等候所用的时间最少。
A.丁、乙、丙、甲B.甲、乙、丙、丁C.甲、丙、乙、丁(2)上题中,理发时间的总和是()。
A.98分钟B.63分钟C.141分钟2.李红、王丰和赵月三人同时去医务室治病。
李红打针共需4分钟,其中药溶解需2分钟,王丰开药需2分钟,赵月按摩需25分钟。
于大夫合理地安排了他们三人的治疗顺序,使他们的治疗时间总和最少,最少的治疗时间总和为()。
A.31分钟B.28分钟C.29分钟3.红红早晨起来刷牙、洗脸要4分钟,读书要10分钟,烧开水要12分钟,冲牛奶要1分钟,吃早饭要5分钟,要使红红能尽快地去上学,她的安排最合理的顺序是()。
人教版数学二年级上册《第八单元测试题》含答案

人教版数学二年级上学期第八单元测试一、单选题(共8题;共16分)1.明明有3件不同的衬衣,2条颜色不一样的裙子,一共有( )种穿法.A. 5B. 6C. 32.有3张卡片,上面分别写着2,3,7这三个数字,东东和芳芳各抽一张,如果两人卡片上的数字的积是奇数,芳芳赢;若是偶数,东东赢.这个游戏规则( ).A. 公平B. 不公平C. 无法确定3.在下面的图中,从A到B有( )种不同走法.(只向上,向右)A. 20B. 25C. 30D. 354.有16支球队采用单循环赛制,一共要赛( )A. 16场B. 240场C. 120场D. 136场5.联欢会上,墙上挂着两串礼物:A、B、C、D、E(如图),每次从某一串的最下端摘下一个礼物,这样摘了五次可将五件礼物全部摘下,那么共有几种不同的摘法( )A. 20种B. 10种C. 6种D. 5种6.由0、1、2、3可以组成个四位数的数字不重复密码号.( )A. 24B. 64C. 128D. 2127.小玲和小巧玩猜数游戏,每人每次出1到5中的一个数字.如果两人出的数字相加,和是奇数就算小玲赢,和是偶数就算小巧赢,那么小玲赢的可能性( ).A. 比小巧小B. 比小巧大C. 与小巧一样大D. 无法确定8.有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )A. 21B. 25C. 29D. 58二、填空题(共8题;共8分)9.小明、小强、小文、小刚、小亮5名同学中选出2人代表学校参加乒乓球比赛,共有________种不同的组队方案.10.学校组织秋季运动会,为活跃会场气氛,某班级欲购买两种不同颜色的彩纸制作成彩带,若商店有红、黄、蓝、绿四种颜色的彩纸,则共有________种不同的购买方案.11.从班内3名男生和4名女生中选出2人参加羽毛球混合双打比赛,共有________种组队方案.12.16支球队进行单循环比赛,需要进行________场;若采用淘汰赛,决出冠军要进行________场比赛;若在决出四强前采用淘汰制,决出四强后采用单循环赛制,共要进行________场比赛.13.30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至少要试________次.14.奥运会男篮比赛共有12支球队参加,第一阶段把12支球队分成两个小组采用小组单循环赛(1)第一阶段共赛________场.(2)每个小组的前四名各进入下一轮,第二阶段采用淘汰制,第二轮共赛________场.(3)一共要赛________场能决出冠、亚、季军.15.从北京经南京到上海,其中北京到南京有三种不同的线路火车,从南京到上海有四种不同的线路火车.那么我们可以有________条线路从北京到上海.16.区教育局要举行第十届教职工排球赛,这届比赛共有32支球队参加,平均分成4个小组,在小组内采用单循环制,小组前2名共8支球队再进行淘汰赛,一共要进行________场比赛.三、解答题(共10题;共51分)17.小丽有2件上衣,3条裤子,又买了2顶帽子.现在有多少种搭配方法?18.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?19.画一画,填一填.20.某小学即将开运动会,一共有十项比赛,每位同学可以任报两项,那么要有多少人报名参加运动会,才能保证有两名或两名以上的同学报名参加的比赛项目相同?21.甲、乙、丙、丁、戊、己、庚、辛八个人站队,要求:甲不能站在队伍最靠左的三个位置,乙不能站在队伍最靠右的三个位置,丙不能站在队伍两端,问一共有多少种站法?22.某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是 ,那么确保打开保险柜至少要试几次?23.,,三种图形有多少不同的排法?把这几种排法写出来.24.四名同学参加区里围棋比赛,每两名选手都要比赛一局,规则规定胜一局得分,平一局得分,负一局得分.如果每个人最后得的总分都不相同,且第一名不是全胜,那么最多有几局平局?25.用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?26.用红、橙、黄、绿、蓝5种颜色给下面长方格子涂颜色,一个格子里涂一种颜色,一种颜色只可以使用一次,有几种不同的涂法?请把你设计的方案用图示法表示出来.答案与解析一、单选题1.【答案】 B【解析】【解答】解:衬衣①、裙子①,衬衣①、裙子②;衬衣②、裙子①;衬衣②、裙子②;衬衣③、裙子①;衬衣③、裙子②.共6种穿法.故答案为:B.【分析】每件衬衣都会有2条裙子与之搭配,共有3件衬衣,这样列举出所有穿法即可.2.【答案】 B【解析】【解答】解:积有:2×3=6,2×7=12,3×7=21,3×2=6,7×2=14,7×3=21,奇数有2个,偶数有4个,这个游戏规则不公平.故答案为:B.【分析】如果积是奇数、偶数的个数相同,这个游戏规则就公平.由此判断出所有的积即可判断是否公平.3.【答案】 A【解析】【解答】A先向右走有10种,A先向上有10种,共10+10=20(种)故答案为:A【分析】弄清楚行走的规则,先判断出向右走的路线有10种,向上走的路线也有10种,这样计算出总的种数即可.4.【答案】 C【解析】【解答】解:16×(16-1)÷2=16×15÷2=120(场)故答案为:120.【分析】每支球队在进行单循环比赛时,都要与其他球队进行一次比赛,所以用16乘15求出比赛的场次,因为有一半重复的场次,所以再除以2即可.5.【答案】 B【解析】【解答】解:(1)从A开始摘,A﹣B﹣C﹣D﹣E,A﹣B﹣D﹣C﹣E,A﹣B﹣D﹣E﹣C,A﹣D﹣B﹣C﹣E,A﹣D﹣B﹣E﹣C,A﹣D﹣E﹣B﹣C,共6种方法,(2)从D开始摘,D﹣E﹣A﹣B﹣C,D﹣A﹣E﹣B﹣C,D﹣A﹣B﹣E﹣C,D﹣A﹣B﹣C﹣E,共4种方法,共有:6+4=10(个),故选:B.【分析】根据题意,每次从某一串的最下端摘下一个礼物,摘了五次可将五件礼物全部摘下,那就从A开始摘,看看有几种方法,再从D开始摘,看看有几种方法,那问题即可解决.6.【答案】A【解析】【解答】4×3×2×1=24(个)故答案为:A【分析】0可以作为第一个数,所以左起第一位有4种选择,第二位有3种选择,第三位有2种选择,第四位只有一种选择,运用乘法原理计算数字总数.7.【答案】 A【解析】【解答】解:1+1=2,1+2=3,1+3=4,1+4=5,1+5=6,2+1=3,2+2=4,2+3=5,2+4=6,2+5=7,3+1=4,3+2=5,3+3=6,3+4=7,3+5=8,4+ 1=5,4+2=6,4+3=7,4+4=8,4+5=9,4+6=10,5+1=6,5+2=7,5+3=8,5+4=9,5+5=10;和是奇数的12个,和是偶数的13个,所以小玲赢的可能性比小巧小.故答案为:A.【分析】运用排列组合的方法把所有的和都列举出来,然后数出和的奇数和偶数各有几个,哪种数多,相对应的谁赢的可能性就大.8.【答案】 C【解析】【解答】解:方法一:因为在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数的和有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,所以A、B、D是不可能的,方法二:2、5、8被3除,余数都是2,同余.所以取出7张卡片求和,余数变成了14.因为减去14,剩下的数可以被3整除(7张2的情况,和为14,减去14为0).或者14被3除,余数是2,即7张卡片求和,被3除,余数为2,只有29复合题意.故答案为:C.【分析】根据题意知道在写着数字2、5、8的卡片各10张中任意抽出7张,可以组成的数有14、17、20、23、26、29、32、35、38、41、44、47、50、53、56,由此即可做出选择.二、填空题9.【答案】 10【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】根据从5名学生中选出2人代表学校参加比赛,当小明与其他4人进行组队时,则有4种不同的组队方法,所以用5乘4求出的组队方案中一半重复的,所以再除以2即可.10.【答案】6【解析】【解答】解:2×3=6(种)故答案为:6.【分析】根据固定排头法,每种颜色的彩纸排头时,剩下的两种颜色的彩纸都有两种不同的排列方法,所以直接用2乘3即可求出不同的购买方案.11.【答案】 12【解析】【解答】解:3×4=12(种);故答案为:12.【分析】3名男生和4名女生选出一对乒乓球混合双打选手,则每一名男生都可和四名不同的女生搭配,根据乘法原理可知,共有3×4=12种不同的组队方案.12.【答案】120;15;18【解析】【解答】单循环赛:16×(16-1)÷2=16×15=120(场)淘汰塞:8+4+2+1=15(场)决出四强赛:8+4+6=18(场)故答案为:120,15,18.【分析】在进行单循环赛时,则每个球队都要与其他球队进行比赛,所以每个球队要进行15场比赛,这样就会有一半重复的,所以再除以2即可,在进行淘汰赛时,分别求出两队两队比赛的场次,然后再相加,在决出四强后再采用淘汰赛时,先求出16支球队决出四强前的比赛的场次,再求出四强后淘汰赛的场次,然后相加即可.13.【答案】435【解析】【解答】29+28+27+26+25+…+1=(29+1)×29÷2=30×29÷2=435(次)故答案为:435【分析】从最坏的情况考虑,第一把钥匙一直试到第29把还没有配上,那么最后一把锁就不用试了,一定是第30把的钥匙;按照这样的规律,第二把需要试28次……,直到最后一把试1次就可以了,把这些次数相加,根据数列求和的知识计算即可.14.【答案】 (1)30.(2)7.(3)37.【解析】【解析】解:1.6×5÷2=15(场)15×2=30(场)2.8-1=7(场)3.30+7=37(场)故答案为:30,7,37.【分析】1.把12支球队分成两小组时,每组有6个球队,用6乘5除以2即可求出每组单循环赛的场次,乘2即可求出第一阶段比赛的场次;2.每组进行前4名的球队有4支,两组共有8支,所以用8减1即可求出淘汰赛的场次;3.要求一共要赛多少场时,则直接用第一阶段的场次加上第二阶段的场次即可.15.【答案】 12【解析】【解答】3×4=12(种)故答案为:12.【分析】从北京到南京的每条线路去上海时都有4种不同走法,所以用3乘4即可求出从北京到上海的路线走法.16.【答案】119【解析】【解答】解:32÷4=8(支)8×(8-1)÷2=28(场)28×4=112(场)8-1=7(场)112+7=119(场)故答案为:119.【分析】用32除以4求出每个小组球队的支数,根据排列组合的方法求出单循环赛的场次;每个小组取前2名时,4个小组则取了8个小队,所以用8乘8减1的差除以2即可求出淘汰赛的场次,然后再相加即可.三、解答题17.【答案】解:2×3×2=12(种)答:现在有12种搭配你方法.【解析】【分析】每件上衣都会有3条裤子与之搭配,每条裤子会有2顶帽子与之搭配,运用乘法原理计算搭配的总种类即可.18.【答案】解:(种)答:共可以表示60种不同的信号.【解析】【分析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置,现在是要从五个不同的元素中取三个,排在三个位置的问题.19.【答案】【解析】20.【答案】解:十项比赛,每位同学可以任报两项,那么有45种不同的报名方法.由鸽巢原理知有45+1=46(人)报名时满足题意.【解析】【分析】9+8+7+6+5+4+3+2+1=45(种),10项比赛共有45种不同的组合,假如每个组合都有1人报名,共有45人报名,那么再有1人报名,不管是报哪个组合,都会保证有两名或两名以上的同学报名参加的比赛项目相同.21.【答案】解:按甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置分四种情况讨论:如果甲在队伍最靠右的位置、乙在队伍最靠左的位置,那么丙还有6种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲在队伍最靠右的位置,而乙不在队伍最靠左的位置,那么乙还有4种站法,丙还有5种站法,剩下的五个人进行全排列,站法总数有: (种)如果甲不在队伍最靠右的位置,而乙在队伍最靠左的位置,分析完全类似于上一种,因此同样有2400种站法如果甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置,那么先对甲、乙整体定位,甲、乙的位置选取一共有 (种)方法.丙还有4种站法,剩下的五个人进行全排列,站法总数有: (种)所以总站法种数为 (种)【解析】【分析】甲在不在队伍最靠右的位置、乙在不在队伍最靠左的位置有四种情况:第一种:甲在队伍最靠右的位置、乙在队伍最靠左的位置;第二种:甲在队伍最靠右的位置,而乙不在队伍最靠左的位置;第三种:甲不在队伍最靠右的位置,而乙在队伍最靠左的位置;第四种:甲不在队伍最靠右的位置,乙也不在队伍最靠左的位置.最后把每一种站法加起来即可.22.【答案】解:四个非数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑的位置就可以了, 可以任意选择个位置中的一个,其余位置放 ,共有种选择;第二种中,先考虑放 ,有种选择,再考虑的位置,可以有种选择,剩下的位置放 ,共有 (种)选择同样的方法,可以得出第三、四、五种都各有种选择.最后一种,与第一种的情形相似, 的位置有种选择,其余位置放 ,共有种选择.综上所述,由加法原理,一共可以组成 (个)不同的四位数,即确保能打开保险柜至少要试次.【解析】【分析】先把和是9的4个非0的数字组合写出来,然后把每种组合的排列方法加起来即可.23.【答案】解:有六种不同的排法:,,,,,,,, ,,,,【解析】24.【答案】解:四人共赛局,总分为(分),因为总分各不相同,分配得:或.平局最多的应该是、、、的情况.总分是奇数的必有一局平局,当得分是分、分的同学分别与得分是分、分的同学打平后,得分是分、分的同学就还剩下分、分,互相打平就正好.所以平局最多是局.答:最多有3局平局.【解析】【分析】单循环比赛四队比赛总局数:3+2+1=6(局),每局比赛无论胜平负,得分总和都是2分,这样计算出总分是12分.然后把12分进行分配,根据每个人最后得分都不相同推理出最多有几局平局即可.25.【答案】解:如果买0张8元饭票,还剩100元,可以购买4元饭票的张数为0~25张,其余的钱全部购买2元饭票,共有26种买法;如果买l张8元饭票,还剩92元,可购4元饭票0~23张,其余的钱全部购买2元饭票,共有24种不同方法;如果买2张8元饭票,还剩84元,可购4元饭票0~21张,其余的钱全部购买2元饭票,共有22种不同方法;……如果买12张8元饭票,还剩4元饭票,可购4元饭票0~1张,其余的钱全部购买2元饭票,共有2种方法.总结规律,发现各类情况的方法数组成了一个公差为2,项数是13的等差数列.利用分类计数原理及等差数列求和公式求出所有方法:26+24+22+…+2=(26+2)×13÷2=182(种).答:共有182种不同的买法.【解析】【分析】100元里面最多有12个8元,饭票中8元的面值最大,所以第一次买8元,从买0张8元开始,依次买到12张8元,然后分别计算出购买4元和2元的饭票的张数,最后把每一次中的买法加起来即可.26.【答案】解:共10,如图【解析】【解答】解:5×(5-1)÷2=10(种)故答案为:10.【分析】每种颜色与其他4种颜色组合时,都有4种不同的组合方法,所以用5乘4再去掉重复的组合方法即可.。
五年级语文上册第八单元测试题及试卷答案

五年级语文上册第八单元测试题及试卷答案五年级语文上册第八单元测试题及试卷答案第八单元检测题姓名一、读拼音写汉字。
wán diǎn xiédàn药()庆()()定()生zhān dǎnɡbīn wěi()仰()员外()()员二、给以下多音字组词。
shuài()nán()cháo()率难朝lǜ()nàn()zhāo()三、把搭配的词语用线连起来。
欣赏样品一首飞船朗朗的炮声检阅顶峰一道台灯隆隆的风声攀登音乐一盏新诗呜呜的笑声展现军队一艘水纹呼呼的哭声四、把以下词语补充完整。
万水千()四面八()排山倒()五颜六()夜以继()端端正()情不()禁原封不()五、选词填空。
诚恳老实诚信真挚一、咱们要做一个()的小孩。
二、人与人之间要讲()。
3、中英两国领导人的会谈是在()友好的气氛中进行的。
4、毛主席告知警卫员,跟群众说话的态度要()。
六、给下面的加点字选择正确的说明。
举:A、提出;B、推选;C、全;D、往上托;往上伸。
举世闻名()选举()举例说明()举目远眺()七、将以下词语按必然的顺序排列。
(1)楷书甲骨文小篆金文隶书(2)鲸生物虎鲸哺乳动物八、按要求写句子。
(1)毛主席在群众一阵又一阵的掌声中宣读中央人民政府的公告。
缩句:__________________________(2)朝鲜战场上咱们有多少优秀儿女献出了生命,他们的父母莫非就不悲痛吗?改成陈述句:_________________________________________________ ________(3)广场上暴发出一阵掌声。
改成夸张句:___________________________________________九、修改病句。
(1)认真地端详着教师,觉察他老多了。
(2)记者又到学校采访了许多王教师的事迹。
(3)教授宣读并指导了我的毕业论文。
(4)那天晚上,全校师生在操场上开了一天的庆贺会。
部编版语文六年级上册 第八单元测试题(含答案)

人教部编版语文六年级上册第八单元测试卷(90分钟 100分)一、请将下面的句子认真、规范抄写在下面。
(5分)其实地上本没有路,走的人多了,也便成了路。
——鲁迅《故乡》二、选择正确的答案(12分)(一)选择加点字的正确读音,用“”标出。
供.品(ɡōnɡɡònɡ)正.月(zhēnɡ zhènɡ)脖颈.(jǐnɡ jìnɡ)空.地(kōnɡ kònɡ)畜.牲(xù chù)水浒传. (chuàn zhuàn) (二)选择正确答案。
1.下面字词书写有误的一组是()A.家景郑重讲究盼望B.厨房项圈经厉潮汛C.预告昏沉解散退缩D.浮动祭器凌乱烟雾2.选词填空句子:在夏季,温度会升高,晴空无云,烈日炎炎。
A.陡然B.居然C.突然D.忽然3.题目是文章的眼睛,下列与其他题目拟题方法不同的一项是( )A.《开国大典》B.《桥》C.《“诺曼底号”遇难记》D.《草船借箭》4.有一副评价鲁迅先生的对联,上联是“怒将匕首投豺狼”下联应该是(A.俯首甘为孺子牛B.一代高文树新帜C.甘为人民作马牛D.打倒外国势力狂5.柳公权楷书代表作是()A. 《多宝塔碑》B.《玄秘塔碑》C.《洛神赋》D.《九成宫醴泉铭》6.下面表述错误的是()A.《少年闰土》刻画出了一个健壮机敏,聪明能干,有丰富知识的农村少年的形象.B.《好的故事》表达了作者对美好事物的追求和对理想的憧憬。
C.《我的伯父鲁迅先生》说明鲁迅先生是一个爱憎分明、为别人想得多为自己想得少的人,表达了作者对鲁迅先生敬爱的感情。
我那时并不知道这所谓刺猬是怎么一件东西——便是现在也不知道——只是无端地觉得状如小狗而很凶猛。
我素不知道天下有这许多新鲜事□海边有如许五色的贝壳□西瓜有这样危险的经历□我先前单知道它在水果店里出卖罢了□啊!闰土的心里有无穷无尽的希奇的事,都是我往常的朋友所不知道的。
他们不知道一些事,闰土在海边时、他们都和我一样只看见院子里高墙上的四角的天空。
Unit 8单元测试卷+参考答案+听力材料

第八单元话题测试卷(考试时间:100分钟,满分:120分)第一部分听力(20分)Ⅰ. 听句子,选择正确答语。
每个句子读一遍。
(5分)( )1. A. It’s very nice of you.B. There are many sports shoes.C. It’s on the second floor.( )2. A. I paid 80 yuan. B. It’s 80 yuan. C. They are 80 yuan. ( )3. A. Uniforms. B. Slippers. C. Sports shoes. ( )4. A. One girl. B. Two girls. C. The second one. ( )5. A. 54. B. 55. C. 56.Ⅱ. 听对话及问题,选择正确答案。
每段对话及问题读两遍。
(5分)( )6. A. A dress. B. A cheongsam. C. A coat.( )7. A. This afternoon. B. Tomorrow morning. C. Tomorrow afternoon. ( )8. A. Leather shoes. B. Sports shoes. C. Boots.( )9. A. Natural materials. B. Silk. C. Cotton.( )10. A. At 7:30. B. At 8:00. C. At 8:30.Ⅲ. 听两段对话,选择正确答案。
每段对话读两遍。
(5分)听第一段对话,完成第11,12小题。
( )11. The woman want to ____.A. have something to eatB. drink some coffeeC. buy some clothes ( )12. The woman can take ____ bus to get there.A. No. 3B. No. 13C. No. 30听第二段对话,完成第13-15小题。
部编版语文五年级上册《第八单元综合检测卷》含答案

人教部编版语文五年级上学期第八单元测试(时间:60分钟满分:100分)一、看拼音,写词语。
(6分)二、比一比,再组词。
(6分){刊()到(){津()律(){此()些(){耻()职(){诵()涌(){篇()遍()三、下面句子中加点词语运用有误的一项是()(3分)A.这篇文章毫无新意,读起来索然无味....。
B.我如饥似渴....地吃起来。
C.他从小就在外闯荡,所以对于人情世故....很是练达。
D.我忍不住拿起一本《三国演义》,一知半解....地读了下去,居然越看越明白。
四、下面搭配有误的一项是()(3分)A.《水浒传》——施耐庵B.《西游记》——吴承恩C.《三国演义》——许仲琳D.《红楼梦》——曹雪芹五、选词填空。
(5分)如果……就……只有……才……与其……不如……宁可……也不……不论……都……1.刘胡兰()牺牲自己的生命,()说出自己的同志。
2.()上课不认真听讲,()无法把学习成绩提高上去。
3.天才来自勤奋,()刻苦学习,持之以恒,()能攀登科学技术的高峰。
4.()发生什么,我()会跟你在一起。
5.()坐在这里说空话,()踏踏实实地去做实事。
六、仿写句子。
(6分)1.书,被人们称为人类文明的“长生果”。
2.像蜂蝶飞过花丛,像泉水流经山谷,我每忆及少年时代,就禁不住涌起愉悦之情。
七、填空。
(10分)1.《忆读书》一文作者是,原名,现代作家、儿童文学家,有诗集和等。
2.代曾说过:“读书有三到,谓心到、眼到、口到。
”3.,,是知也。
八、课内阅读我最棒。
(12分)我的“长生果”…………莎士比亚说:“书籍是全世界的营养品。
”像我这样对阅读如饥似渴的少年,它的功用更是不言而喻。
醉心阅读使我得到了报偿。
从小学三年级开始,我的作文便常常居全班之冠。
阅读也大大扩展了我的想象力,在家对着一面花纹驳杂的石墙,我会待上半天,构想种种神话传说。
记得有一次,作文的题目是“秋天来了”。
老师读了一段范文之后,当大多数同学千篇一律地开始写“秋天来了,树叶黄了,一片一片地飘到了地上”时,我心里忽然掠过了不安分的一念:大家都这样写多没意思!我要用自己的眼睛去看秋天,用自己的感受去写秋天。
人教版数学六年级上册《第八单元综合测试》含答案

人教版数学六年级上学期第八单元测试一.选择题(共8小题)1.5÷7的商用循环小数表示,这个小数的小数点后面第150位数字是()A.1 B.2 C.5 D.72.如图,按这样的规律第7个图形有()个点.A.21 B.25 C.28 D.293.一组有规律的数:1.1,1.2,1.3,1.4,1.5,□,1.7……框里的数是()A.0.5 B.1.5 C.0.6 D.1.64.同学们你们知道吗,在阿拉伯数字传入中国之前,我们的祖先也发明了记录数字的符号(如图),他们用横纵相间的方式来表示一个数.如:表示的是28.那:表示的是()A.211 B.226 C.271 D.2765.某种细胞开始有2个,一小时后分裂成4个并死去1个,二小时分裂成6个并死去1个,三小时后分裂成10个并死去1个,按此规律,五小时后细胞存活的个数是()A.31 B.33 C.35 D.376.9,18,27,(),45.A.66 B.36 C.557.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆…依此规律,第10个图形中小圆的个数为()A.136 B.114 C.112 D.1068.11÷9=1.222…,21÷9=2.333…,31÷9=3.444…,则算式61÷9的商是()A.4.555…B.5.666…C.6.777…D.7.888…二.填空题(共8小题)9.甲、乙两人在楼梯上玩石头剪子布的游戏,每次必须分出胜负.约定:每次胜者上5个台阶,负者下3个台阶.甲、乙二人同时在第50个台阶上开始玩,玩了25次后,甲的位置比乙高40个台阶.那么,甲胜了次.10.找规律.(1)2,12,22,,,.(2)95,75,55,,.11.观察算式37×3=111,37×6=222,那么37×9=,37×21=.12.找出下列算式的规律,并根据规律把算式填写完整.1×8+1=912×8+2=98123×8+3=9871234×8+4=9876……×8+9=13.玩一个搭积木游戏,每一阶段增多的积木的个数相同,所搭起来的积木的形状如图所示.要搭第n个阶段的积木的形状,一共需要积木个.现有积木数量171个,小红用上全部积木可以搭成第阶段的立体图形.14.观察如图,每个图形中间是白色小正方形,周围是灰色小正方形.照这样画下去,第10个图形中有个白色小正方形,个灰色小正方形.15.现有一堆建筑需要清运,它第一次运走总量的.第二次运走余下的,第三次运走余下的,第四次运走余下的,第五次运走余下的,依次规律继续运下去,当运走49次后,余下废料是总量的.16.在,,,,,,……第10个数为.三.判断题(共5小题)17.根据几个乘法算式找出的得数的规律,适用于所有具有同一特征算式的结果..(判断对错) 18.如图,第五个点阵中点的个数是17个.(判断对错)19.将化成小数以后,小数点后第2008位上的数字是7..(判断对错)20.下面一组有规律排列的数:60、75、90、105、120,则1415不是这组数中的数..(判断对错) 21.若一列数为:2,4,6,8,10,……96,98,100,则这列数的和是2550.(判断对错)四.应用题(共5小题)22.如图,小朋友们玩多米诺骨牌的游戏,假设每一张牌倒下去所用的时间是0.2秒,并且每一张骨牌倒下后会碰倒它后边的两张骨牌,那么照这样下去,1秒钟内所倒下的骨牌数是多少?23.小华把一些珠子放在桌子上的15个盒子中,已知盒子中的珠子数按盒子从左往右的顺序成一个等差数列,任一盒子中不止两颗珠子,并且从左数第8个盒子中有24颗珠子.请问:这15个盒子中一共有多少颗珠子24.先计算前三题,再根据发现的规律直接写出其他算式的结果.1+3═=221+3+5═=321+3+5+7═=…1+3+5+7+…+15═=1+3+5+7+…+2017==25.用6根同样长的小棒可以摆成一个正六边形(如图①),再接着摆下去(如图②、③、④),图⑧一共需要多少根小棒?26.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?五.操作题(共2小题)27.根据下面几幅图的规律,接着怎么画?28.先找规律,再认真画规律.答案与解析一.选择题(共8小题)1.【分析】把5÷7=0.,这个小数的循环节是714285,有6位数,150÷6=25(个,所以小数部分的第150位数字是25的最后一个数字是5,据此解答.【解答】解:5÷7=0.,循环节是714285六个数字;150÷6=25(个),所以第150位数字是第25个循环节的最后一个数字,是5.故选:C.【点评】解题的关键是找出循环节及循环节的数字,用150除以循环节的位数得出是第几个循环节,没有余数就是循环节的最后一个数字,有余数的,余数是几就是循环节的第几个数字.2.【分析】认真观察图示,第1个图形点数是1,第2个图形点数是5,第3个图形点数是9,发现:相邻两个图形的点数相差是4,据此求出即可.【解答】解:第1个图形点数是1,第2个图形点数是5,第3个图形点数是9,则:第4个图形点数是:9+4=13,第5个图形点数是:13+4=17,第6个图形点数是:17+4=21,第7个图形点数是:21+4=25.故选:B.【点评】认真观察图画,得出点数的规律是解题关键.3.【分析】根据已知的6个数可得排列规律:从第1项开始每次递增0.1;据此解答.【解答】解:1.5+0.1=1.6故选:D.【点评】数列中的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.4.【分析】根据纵式与横式表示数的规律,百位上两竖表示2;十位上一竖下面两横,表示7;个位一横下面一竖表示6.所以表示276.【解答】解:表示276.故选:D.【点评】本题主要考查数与形结合的规律,关键根据所给图形发现规律,并运用规律做题.5.【分析】由题意可知,1个活细胞一小时后分裂成2个.1小时后3个活的、2小时后5个活的、3小时后9个活的……3、5、9……可看作项数为1、2、3……首项为3差分别为1、4、8……的数列.5﹣3=2=21、9﹣5=4=22、17﹣9=8=23……由此可以推出:第n项为2n+1.【解答】解:由分析所总结的规律:25+1=32+1=33(个)答:五小时后细胞存活的个数是33个.故选:B.【点评】解答此题的关键是根据小时数(可看作项数),与分成成的活细胞(可看作项)之间的关系找出规律,然后根据规律可求出任何小时(整数)后活细胞的个数.6.【分析】18﹣9=9,27﹣18=9,推测规律为:后一个数等于前一个数加9,以此计算,得出结果后,验证得数和其后面的数是否符合规律.【解答】解:由分析可知:第四项为27+9=3645﹣36=9所以,找到的规律是正确的.故选:B.【点评】本题主要考查了数列中的规律,需要学生具有较好的数感和推理能力.7.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第4个图形中小圆的个数为24;则知第n个图形中小圆的个数为n(n+1)+4;由此把n =10代入计算即可.【解答】解:10×11+4=110+4=114(个)答:第10个图形中小圆的个数为114个.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,得出通项公式,从而解决问题.8.【分析】观察已知的三个算式,可以发现,商的整数部分等于被除数的十位数字,小数循环部分的循环节是被除数十位上数字加1,以此作答.【解答】解:由分析可知:61÷9的商,整数部分为6,小数循环节为6+1=7,所以,61÷9=6.7777……故选:C.【点评】本题主要考查了“式”的规律,需要学生具有较好的数感.二.填空题(共8小题)9.【分析】根据题意,每次二人相差3+5=8(个)台阶,甲比乙高40个台阶,说明甲比乙多赢40÷8=5(次),其余次数二人输赢一样多.据此解答即可.【解答】解:[25+40÷(5+3)]÷2=[25+40÷8]÷2=[25+5]÷2=30÷2=15(次)答:甲胜了15次.故答案为:15.【点评】本题主要考查算术中的规律,关键根据题意找出二人每次胜负的台阶差.10.【分析】(1)根据每次增加10求解;(2)根据每次减少20求解.【解答】解:(1)2,12,22,32,42,52.(2)95,75,55,35,15.故答案为:32,42,52;35,15.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.11.【分析】根据积的变化规律:一个因数不变,另一个因数扩大或缩小多少倍(0除外),积也会随着扩大或缩小相同的倍数,据此解答即可得到答案.【解答】解:因为37×3=111所以37×9=333,37×21=37×3×7=777,故答案为:333,777.【点评】此题主要考查的是积的变化规律的灵活应用,关键是根据已知算式找到规律.12.【分析】从以上几题可以看出,用自然数从一位数开始,按从小到大自然数的顺序组成不同位数的数乘以8再加前面数的个位数,发现几位与8相乘结果还是几位,只是数从高位从大到小按自然数顺序排列,根据此规律就可填出得数.【解答】解:1×8+1=912×8+2=98123×8+3=9871234×8+4=9876……123456789×8+9=987654321故答案为:123456789,987654321.【点评】解答本题的关键是根据已知数据找出规律,然后利用规律解题.13.【分析】根据所给图示发现:这组积木的排列规律:第1个阶段积木个数:3×1=3(个);第2个阶段积木个数:3×2=6(个);第3个阶段积木个数:3×3=9(个)……第n个阶段积木个数为:3×n=3n(个).据此解答.【解答】解:第1个阶段积木个数:3×1=3(个)第2个阶段积木个数:3×2=6(个)第3个阶段积木个数:3×3=9(个)……第n个阶段积木个数为:3×n=3n(个)3n=171n=57答:要搭第n个阶段的积木的形状,一共需要积木3n个.现有积木数量171个,小红用上全部积木可以搭成第57阶段的立体图形.故答案为:3n;57.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.14.【分析】根据所给图示可知:这组图形的排列规律:第一个图形白色小正方形的个数为1个,灰色小正方形的个数为6+2=8(个);第二个图形白色小正方形的个数为:2个,灰色小正方形的个数为:6+2+2=10(个);……第n个图形的白色小正方形的个数为n个,灰色小正方形的个数为(6+2n)个.据此解答.【解答】解:第一个图形白色小正方形的个数为1个,灰色小正方形的个数为6+2=8(个)第二个图形白色小正方形的个数为:2个,灰色小正方形的个数为:6+2+2=10(个)……第n个图形的白色小正方形的个数为n个,灰色小正方形的个数为(6+2n)个所以第10个图形白色小正方形的个数为:10个灰色小正方形的个数为:6+2×10=26(个)答:第10个图形中有10个白色小正方形,26个灰色小正方形.故答案为:10;26.【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.15.【分析】由题意,可得规律:它第一次运走总量的;第二次运走余下的,即总量的(1﹣)×=;第三次运走余下的,即总量的:()×=;……第n次运走总量的:;第49次运走总量的:,则最后剩下:1﹣()=1﹣=据此解答.【解答】解:它第一次运走总量的;第二次运走余下的,即总量的(1﹣)×=;第三次运走余下的,即总量的:()×=;……第n次运走总量的:;……第49次运走总量的:,则最后剩下:1﹣()=1﹣=答:当运走49次后,余下废料是总量的.故答案为:【点评】本题主要考查算术中的规律,关键运用分数的意义做题.16.【分析】观察各式的分母,3=1×3,9=3×3,12=4×3,18=6×3,推测分母为3的连续倍数,根据此规律,将化为,化为,再观察各式的分子,1、3、5、7、9、11,为连续奇数,以此推断第十个数.【解答】解:由分析可知,第十个的数分母为10×3=30,分子为2×10﹣1=19,所以,第10个数为.故答案为:.【点评】本题主要考查了数列中的规律,先观察出分母的规律,然后改写部分项,再找出分子的规律,是本题解题的关键.三.判断题(共5小题)17.【分析】根据几个乘法算式找出的得数的规律,适用于所有具有同一特征算式的结果.如1×9=9、12×9=108、123×9=1107…如果第一个因数是1、12、123、1234…第二个因数都是9,其积所有数位的数字之和等于9,个位分别是9、8、7、6…十位都是0,其余数位上都是1.【解答】解:如1×9=912×9=108123×9=1107…根据几个乘法算式找出的得数的规律,适用于所有具有同一特征算式的结果,这种说法正确.故答案为:√.【点评】只要几个乘法算式变化有一定的规律,其积也有一定规律.根据找出的规律可以写出符合这一规律所有算式的积.18.【分析】根据图示,发现这组图形的规律:第一个点阵中点的个数:1个;第二个点阵中点的个数:1+4=5(个);第三个点阵中点的个数:1+4+4=9(个);……第n个点阵中点的个数:1+4(n﹣1)=(4n﹣3)(个).据此判断即可.【解答】解:第一个点阵中点的个数:1个第二个点阵中点的个数:1+4=5(个)第三个点阵中点的个数:1+4+4=9(个)……第n个点阵中点的个数:1+4(n﹣1)=(4n﹣3)(个)……第五个点阵中点的个数:4×5﹣3=20﹣3=17(个)答:第五个点阵中点的个数是17个.所以原说法正确.故答案为:√.【点评】本题主要考查数与形结合的规律,关键根据图示发现这组图形的规律,并运用规律做题.19.【分析】把分数化成小数,就会发现小数点后的数字是有规律的:=0.142857142857…,一直重复142857,所以小数点后的数字周期为6,2008÷6=334…4,每个周期第四个数为8,所以小数点后第2008位上的数字是8.【解答】解:=1÷7=0.142857142857…,一直重复142857,所以小数点后的数字周期为6.2008÷6=334…4,故小数点后第2008位上的数字是8.故答案为:×.【点评】考查了小数与分数的互化,算术中的规律,本题的关键是得到转化为小数,找出数字循环周期为6.20.【分析】这组数每次递增15,所以用1415减去60,看能否被15整除即,如果能整除就是,否则不是;据此解答.【解答】解:75﹣60=15,90﹣75=15,…,所以这组数每次递增15,(1415﹣60)÷15≈90.33,所以,1415不是这组数中的数.故答案为:√.【点评】此题考查了数列的规律,关键是求出每次递增的数.21.【分析】求2,4,6,8,10,……96,98,100的和即为求:2+4+6+8+10+…+100=?n=50,根据等差数列的求和公式完成计算.【解答】解:2+4+6+8+10+…+100===2550所以原题计算正确.故答案为:√.【点评】根据等差数列求和公式进行计算,找出等差数列的公差,首项,尾项和项数是计算的关键.四.应用题(共5小题)22.【分析】1÷0.2=5,即1秒里面有5个0.2秒.第一张倒下后过0.2秒(1个0.2秒)会倒下2张、再过0.2秒(2个0.2秒)后会倒下4张、再过0.2秒(3个0.2秒)后会倒下8张、再过0.2秒(4个0.2秒)会倒下16张、再过0.2秒(5个0.2秒)会倒下32张.1、2、4、8、16、32.是公比为2的等比递增数列.最后把这些张数相加.【解答】解:1÷0.2=5,即1秒里面有5个0.2秒倒下第1张后第1个0.2秒后会倒下2张第2个0.2秒后会倒下4张第3个0.2秒后会倒下8张第4个0.2秒后会倒下16张第5个0.2秒后会倒下32张1+2+4+8+16+32=1+2+(4+16)+(8+32)=1+2+20+40=63(张)答:1秒钟内所倒下的骨牌数是63张.【点评】这个数列项数是有限的,可以求出每次倒下的张数,然后再把倒下的总张数相加.如果项数较多要找规律解答.用小学知识只能这样解答.23.【分析】15个盒子中的珠子从左到右是一个项数为15的等差数列,其中第8个盒子中的珠子数为中间项,根据等差数列的意义,与中间项相邻的左、右两项之和等于中间项,与中间项相隔1项的左、右两项之和也等于中间项……因此,这15项之和就是等于中间项乘中间项数.【解答】解:24×15=360(颗)答:这15个盒子中一共有360颗珠子.【点评】解答此题的关键是明白:与中间项相邻的左、右两项之和等于中间项,与中间项相隔1项的左、右两项之和也等于中间项……24.【分析】1+3═4=221+3+5═9=321+3+5+7═16=42…规律:[(首数+尾数)÷2]2=和;据此解答即可.【解答】解:1+3═4=221+3+5═9=321+3+5+7═16=42…1+3+5+7+…+15═64=821+3+5+7+…+2017=1016064=10082故答案为:4,22,9,32,16,42,64,82,1016064,10082.【点评】解答此题的关键是观察所给出的算式,找出算式之间数与数的关系,得出规律,再根据规律解决问题.25.【分析】摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要16根小棒,可以写成:5×3+1;…由此可以推理得出一般规律解答问题.【解答】解:根据题干分析可得:摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要小棒:5×3+1=16;摆n个需要小棒:5×n+1=5n+1;当n=8时,5n+1=5×8+1=41;答:图⑧一共需要41根小棒.【点评】根据题干中已知的图形的排列特点及其数量关系,推理得出一般的结论进行解答,是此类问题的关键.26.【分析】根据图示,发现其规律为:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n 个图形中三角形个数:(n﹣1)×4+1=(4n﹣3)(个),计算n的值即可.【解答】解:第一个图形中三角形个数:1个;第二个图形中三角形个数:1×4+1=5(个);第三个图形中三角形个数:2×4+1=9(个);第四个图形中三角形个数:3×4+1=13(个);第n个图形中三角形个数:(n﹣1)×4+1=(4n﹣3)(个)4n﹣3=8057,n=2015.答:n是第2015个图形.【点评】本题主要考查数与形结合的规律,关键根据所给图示发现图示排列的规律,并运用规律做题.五.操作题(共2小题)27.【分析】根据图形,第一个图:2个,第二个图:4个;第三个图:6个……所以,这组图形的规律是:图形的个数是连续的偶数个.据此作图即可.【解答】解:如图:【点评】本题考查了图形的变化类问题,主要培养学生的观察能力和总结能力.28.【分析】(1)3﹣1=2,6﹣3=3,10﹣6=4,相邻两个数的差依次是2,3,4,……,依次增加1;(2)观察图中的星星的个数,分别是1、2、3、4……依次增加1;(3)观察图中图形的个数,分别是10,8,6,4,……,依次减少2;由此求解.【解答】解:1.2.3.【点评】关键是根据已知的数得出前后图形、数之间的变化关系的规律,然后再利用这个变化规律再回到问题中去解决问题.。
人教版数学六年级上册第八单元测试题(含答案)

人教版数学六年级上册第八单元测试及答案一.选择题(共8小题)1.4÷11的商用循环小数表示,则小数点后面第20位数字是()A.0B.3C.7D.62.有一列数按如下方式排列:2,4,6,8,10……x,□……那么方框里应填()A.x+2B.2x C.y3.按规律填数:1、、、、、…,第11个数是()A.B.C.D.4.用小棒按下面的规律摆三角形,摆n个三角形用()根小棒.A.2n+1B.2(n﹣1)C.3+2n5.用同样长的小棒摆出如下的图形.照这样继续摆,摆第6个图形用了()根小棒.A.20B.25C.246.2×9=18,22×99=2178,222×999=221778,2222×9999=22217778,222222×999999=()A.2222177778B.222221777778C.22222217777778D.22222221777777787.将一些小圆球如图摆放,第6幅图有()个小圆球.A.30B.42C.568.4÷7的商的小数部分第30位上的数字是()A.8B.4C.2二.填空题(共8小题)9.先观察算式,找出规律再填数.21×9=189321×9=28894321×9=38889×9=488889×9=.×9=.10.小亮像下面这样摆三角形,摆1个用3根小棒,摆2个用5根小棒……根据这样的条件把下表填写完整.摆1个摆2个摆3个摆4个……摆8个摆个25根3根5根根根……根11.用小棒按照如图方式摆图形:摆n个八边形需要根小棒.12.通过计算发现规律.6543﹣2345=9876﹣5678=7654﹣3456=按找到的规律,再写两个算式.13.10.1÷11商的小数部分第100位上的数字是.14.(1)算一算,找规律.6+6+6=18﹣6﹣6﹣6=7+7+7=21﹣7﹣7﹣7=10+10+10=30﹣10﹣10﹣10=(2)根据自己发现的规律再写出两组这样的算式.15.找规律填数.①608、、610、.②1689、1699、、、.16.找规律,填一填.(1)15,10,13,8,11,,,4.(2)1,2,5,10,,,37.(3),,,,,,,…三.判断题(共5小题)17.如图,如果一个小三角形的边长为1cm,第五个图形的周长是15cm..(判断对错)18.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332.(判断对错)19.下面一组有规律排列的数:60、75、90、105、120,则1415不是这组数中的数..(判断对错)20.在数列“,,,,,,…”中,第10个数是.(判断对错)21.1除以111的商的小数部分第15位数字是0.(判断对错)四.应用题(共5小题)22.小明在学习分数除注时做了下面的3道计算题,小明发现:“一个数(0除外)除以一个分数,所得的商一定大于它本身”.①如果让你继续研究分数除法,你还想研究什么问题,请在下面写出来.②请对你提出的问题进行研究,看看能得出什么结论?23.有一列数:,,,,,,,…它的前2015个数的和是多少?24.10月1日小时姐姐带领大家去旅游,来到一块形状是等边三角形的果园,它的边长是54米,三边及内部都植满了石榴树;每颗树之间均相距6米,各个顶点上都植有一颗;小时姐姐给同学们分工,每两位同学摘一颗,正好分完.聪明的你知道小时姐姐共带了多少名同学吗?25.按下面的方式摆桌子和椅子,一张桌子可以坐4人,两张桌子可以坐6人……(1)照这种方式摆下去,10张桌子可以坐多少人?(2)n张桌子可以坐多少人?(3)坐60人需要多少张桌子?26.1、4、7、10、13、…这个数列中,有6个连续数字的和是159,那么这6个数中最小的是几?答案与解析一.选择题(共8小题)1.【分析】把4÷11的商用循环小数表示出来,看看循环节有几位小数,然后用20除以循环节的位数即可判断.【解答】解:4÷11=0.,循环节是36两个数字;20÷2=10,所以20位上的数是6;故选:D.【点评】此题考查学生循环节的概念,以及分析判断能力.2.【分析】2,4,6,8,10,后一个数比前一个数多2,所以□里面的前一个数加上2即可求解.【解答】解:□里面的前一个数是x,则□里面应填:x+2.故选:A.【点评】关键是根据已知的数得出前后数之间的变化关系的规律,然后再利用这个变化规律再回到问题中去解决问题;注意用字母表示数的方法.3.【分析】由题意得:分子是连续的奇数,分母是从1开始连续自然数的平方,由此得出第n个数为.【解答】解:2×11﹣1=21112=121.所以第11个数是.故选:A.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律,解决问题.4.【分析】摆一个三角形需3根小棒;摆二个三角形需5根小棒;摆三个三角形时需要7根小棒;摆四个三角形时需要9根小棒;…第一个三角形需要3根小棒,以后每增加1个三角形就需要增加2根小棒;当有n个三角形时小棒的数量就是3+2(n﹣1)=2n+1,据此即可解答问题.【解答】解:根据题干分析可得,当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1(根)答:摆n个三角形需要2n+1根小棒.故选:A.【点评】解决本题关键是找出小棒的数量随三角形的数量变化的规律,写出通项公式,进而求解.5.【分析】图1用5根小棒摆成,图2用9根小棒摆成,图3用13根小棒摆成,仔细观察发现,每增加一个五六边形其小棒根数增加4根,所以可得第n个图形需要小棒5+4(n﹣1)=4n+1根,据此即可解答问题.【解答】解:由图可知:图形1的小棒根数为5;图形2的小棒根数为9;图形3的小棒根数为13;…由该搭建方式可得出规律:图形标号每增加1,小棒的个数增加4,所以可以得出规律:第n个图形需要小棒5+4(n﹣1)=4n+1根,当n=6时,需要小棒:4×6+1=25(根)答:摆第6个图形用了25根小棒.故选:B.【点评】本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.6.【分析】通过分析2×9=18;22×99=2178;222×999=221778;2222×9999=22217778 可知:乘数每多几个2和9,它们的乘积中1的前面就多几个2,8前面就多几个7,据此解答即可.【解答】解:根据分析可得222222×999999=222221777778故选:B.【点评】“式”的规律:关键是根据已知的式子或数得出前后算式或前后数之间的变化关系和规律,然后再利用这个变化规律再回到问题中去解决问题.7.【分析】从第一个图形开始分析小圆圈的个数:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…第n个图形有n(n+1)个小圆球,利用规律解决问题.【解答】解:观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:B.【点评】此题主要考查了图形的规律,通过归纳与总结结合图形得出图形个数之间的规律是解决问题的关键.8.【分析】首先把4÷7化成小数,看它的循环节是几位数,再根据“周期”问题,用30除以循环节的位数,如果能整除,则是循环节的末位上的数字,如果不能整除,余数是几计算循环节的第几位上的数字.由此解答.【解答】解:4÷7=0.7142,循环节是6位数,30÷6=5,所以商的小数部分第30位上的数是8;故选:A.【点评】此题主要考查除法商化成小数的方法,以及根据“周期问题”判断循环小数的某一位上数字是几的方法.二.填空题(共8小题)9.【分析】通过观察可知算式的特点:第一个因数左边数位上的数字依次比右边数位上的数字多1,第二个因数为9;积最高位比第一个因数最高位上的数字小1,中间8的个数=等号右边的数最高位上的数字﹣1,个位为9,依次写出3道题.【解答】解:根据规律可知:21×9=189321×9=28894321×9=3888954321×9=488889654321×9=5888889.7654321×9=68888889.故答案为:54321,654321,5888889,7654321,68888889.【点评】考查了“式”的规律,本题要求学生通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.10.【分析】根据图示可知:摆1个三角形需要小棒:3根;摆2个三角形需要小棒:3+2=5(根);摆3个三角形需要小棒:3+2=2=7(根)……摆n个三角形需要小棒:3+2(n﹣1)=(2n+1)根.据此解答.【解答】解:摆1个三角形需要小棒:3根摆2个三角形需要小棒:3+2=5(根)摆3个三角形需要小棒:3+2=2=7(根)……摆n个三角形需要小棒:3+2(n﹣1)=(2n+1)根根据规律,填表如下:摆1个摆2个摆3个摆4个……摆8个摆12个3根5根7根9根……17根25根故答案为:7;9;17;12.【点评】本题主要考查数与形结合的规律,关键根据图示发现这组图形的规律,并运用规律做题.11.【分析】根据图示可知,这组图形的规律:摆1个八边形需要小棒:8根;摆2个八边形需要小棒:8+7=15(根);摆3个八边形需要小棒:8+7+7=22(根);……摆n个八边形需要小棒根数:8+7(n﹣1)=(7n+1)根.据此解答.【解答】解:摆1个八边形需要小棒:8根摆2个八边形需要小棒:8+7=15(根)摆3个八边形需要小棒:8+7+7=22(根)……摆n个八边形需要小棒根数:8+7(n﹣1)=(7n+1)根故答案为:(7n+1).【点评】本题主要考查数与形结合的规律,关键根据图示发现规律,并运用规律做题.12.【分析】通过计算可以得出:被减数从低位到高位各数位上的数字依次加1,减数从高位到低位各数位数字依次减1,且被减数的最高位上的数字比减数的最高位数字大4.【解答】解:6543﹣2345=41989876﹣5678=41987654﹣3456=4198另外两个算式:8765﹣4567=41985432﹣1234=4198故答案为:4198,4198,4198.【点评】仔细观察被减数和减数的特征以及差的规律,是解答此类题的关键.13.【分析】计算10.1除以11可知等于0.9181818…可以看出双数位上永远是1,第100位是双位数,据此解答即可.【解答】解:10.1÷11=0.9181818…观察可知双数位上永远是1,第100位是双位数,所以10.1÷11商的小数部分第100位上的数字是1.故答案为:1【点评】此题主要考查了根据“周期问题”判断循环小数的某一位上数字是几的方法.14.【分析】通过计算,观察这几组算式发现共同的规律:三个一样的加数,用它们的和再减去这三个加数等于0.【解答】解:算一算,找规律.6+6+6=1818﹣6﹣6﹣6=07+7+7=2121﹣7﹣7﹣7=010+10+10=3030﹣10﹣10﹣10=0故答案为:18,0;21,0;30,0.【点评】解答此题的关键是观察所给出的算式,找出算式之间数与数的关系,得出规律,再根据规律解决问题.15.【分析】①观察608和610两个数,中间应该是609,发现规律是后一个数比前一个数大1,据此解答即可;②观察1689和1699两个数,发现1689+10=1699,规律是前一个数加10等于后一个数,据此解答即可.【解答】解:①608+1=609610+1=611②1699+10=17091709+10=17191719+10=1729故答案为:609,611;1709,1719,1729.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.16.【分析】(1)15﹣2=13,13﹣2=11,10﹣2=8,发现规律,奇数项依次减2是连续奇数,偶数项依次减2是连续偶数,据此解答即可;(2)1,1×1+1=2,2×2+1=5,3×3+1=10,发现规律第n个数是(n﹣1)×(n﹣1)+1,可得第5个数是4×4+1=17,第6个数是5×5+1=26,据此解答即可;(3)观察前4个数,分子:1+1=2,2+1=3,3+1=4,分母:5+2=7,7+2=9,9+2=11,发现规律,分子依次加1,分母依次加2,4+1=5,5+1=6,6+1=7;11+2=13,13+2=15,15+2=17.据此解答即可.【解答】解:根据分析可知:(1)11﹣5=66+3=9(2)4×4+1=175×5+1=26(3)4+1=55+1=66+1=711+2=1313+2=1515+2=17故答案为:6,9;17,26;,,.【点评】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.三.判断题(共5小题)17.【分析】依题意可知:当n=1时,周长=边长×3;当n=2时,周长=边长×4;当n=3时,周长=边长×5;当n=4时,周长=边长×6;…;当有n个三角形时,图形周长=边长×(n+2).【解答】解:根据题干分析可得:当有n个三角形时,图形周长=边长×(n+2),当n=5时,图形周长是:1×(5+2)=7(cm),答:第五个图形的周长是7cm.故答案为:×.【点评】此题考查的知识点是图形数字的变化类问题,关键是观察分析得出三角形个数与图形周长的关系为边长×(n+2)=周长.18.【分析】根据观察知:第2个因数都是4,其结果最高位都是1、最低位都是2、中间都是3,3的个数比第一个因数中3的个数少1,据此解答.【解答】解:33×4=132,333×4=1332,3333×4=13332,可知:33333×4=133332.故答案为:√.【点评】找出算式中各个因数的变化规律是解题的关键.19.【分析】这组数每次递增15,所以用1415减去60,看能否被15整除即,如果能整除就是,否则不是;据此解答.【解答】解:75﹣60=15,90﹣75=15,…,所以这组数每次递增15,(1415﹣60)÷15≈90.33,所以,1415不是这组数中的数.故答案为:√.【点评】此题考查了数列的规律,关键是求出每次递增的数.20.【分析】这组数据的分子从左到右分别是1、3、5、7…,即是从1开始相邻的奇数;分母分别是1、4、9、16…,即分别是1、2、3、4…各数的平方.因此,第10数的分子是19,分母是102,即100.也就是第10个数是.【解答】解:这个数列中从左到右分别是1、3、5、7、9、11、13、15、17、19…分母是102=100因此,在数列“,,,,,,…”中,第10个数是.故答案为:√.【点评】解答此题的关键是找规律,可分子、分母分别找,找到规律,根据规律解答就比较容易了.21.【分析】先求出1除以111的商,看它的循环节是几位数,再根据“周期”问题,用15除以循环节的位数,如果能整除,则是循环节的末位上的数字,如果不能整除,余数是几,计算循环节的第几位上的数字.由此解答.【解答】解:1÷111=0.009009…,循环节是009,三位,15÷3=5,所以商的小数部分第15位数字是9.故答案为:×.【点评】此题主要考查算术中的规律,以及根据“周期问题”判断循环小数的某一位上数字是几的方法.四.应用题(共5小题)22.【分析】①观察给出的算式中除数都是真分数,都小于1,所以得到的商都是大于被除数;所以可以找一些除数是大于1的分数,再进行计算;②根据①的计算结果,得出结论.【解答】解:①问题:除数大于1时,被除数与商的大小关系是怎么样的?6÷=6×=44<6;3.6÷=3.6×=2.72.7<3.6;÷=×=<.②根据①可得:一个数(0除外)除以一个大于1的数,商小于这个数.【点评】两个不为0的数相除,当除数大于1时,商小于被除数;当除数等于1时,商等于被除数;当除数小于1时,商大于被除数.23.【分析】此题属典型的高斯求和问题,先找出这一串数字的变化规律,再利用高斯求和的知识求得答案.【解答】解:以1为分母的数有1个,相加和S1=1,以2为分母的数有2个,相加和S2=+=,以3为分母的数有3个,相加和S3=++=2,…以n为分母的数有n个,相加和S n=++…+==,求前2015个数的和,先确定第2015个数分母是什么,即求满足1+2+3+4…+m=≥2015的最小整数n,易得n=63,62×63÷2=1953,分母为63的数有2015﹣1953=62个,即、、、…、,则前2015个数的和是:S=S1+S2+…S62++++…+=(1+2+3+…62)÷2+(1+2+3+…+62)÷63=(1+62)×62÷2÷2+(1+62)×62÷2÷63=976.5+31=1007.5答:它的前2015个数的和是1007.5.【点评】考查了数列中的规律,此题关键是总结出S n=,据此即可求得结果.24.【分析】由题意可知,最外层每边是54÷6=9(棵),每边不包括三角形顶点外9﹣2=7(棵),最外层一共载7×3+3=24(棵).第二层是边长为30米的等边三角形,用同样的方法即可求出一共有多少棵.再算出第三层、第四层(一共四层)棵数,进而计算出总棵数,用总棵数乘2就是小时姐姐共带的同学数.【解答】解:如图最外层:7×3+3=24(棵)第二层:4×3+3=15(棵)第三层:2×3+3=9(棵)第四层:1棵(24+15+9+1)×2=49×2=98(名)答:小时姐姐共带了98名同学.【点评】解答此题的关键,也是难点,是求出石榴树的总棵数.25.【分析】观察摆放的桌子,不难发现:在1张桌子坐4人的基础上,多1张桌子,多2人.由此规律即可解决问题.【解答】解:(1)n=1时,可坐4人,可以写成2×1+2;n=2时,可坐6人,可以写成2×2+2;n=3时,可坐8人,可以写成2×3+2;…;所以当n=10时,可坐2×10+2=22(人)答:10张桌子可以坐22人;(2)根据(1)发现规律:n张桌子可坐(2n+2)人.答:n张桌子可以坐(2n+2)人;(3)2n+2=60n=29(张),答:坐60人需要29张桌子.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.26.【分析】据题意可知,这个数列是公差为3的等差数列,由此可设这6个数中最小的数为x,则后边5个数与第一个数的差分别为3,6,…15,又因为有6个连续数的和是159,据此可得等量关系式:x+(x+3)+…+(x+15)=159,解此方程即得这6个数中最小的是多少.【解答】解:设这6个数中最小的数为x,据题意可得方程:x+(x+3)+…+(x+15)=1596x+(3+6+…+15)=1596x+45=1596x=114x=19答:这6个数中最小的是19.【点评】根据数列的排列规律及已知条件列出等量关系式是完成本题的关键.。