物联网数据融合技术1
物联网中的多维度数据融合技术研究

物联网中的多维度数据融合技术研究随着物联网应用场景的不断扩大和应用范围的不断拓展,物联网的数据规模和数据维度也在不断地增加。
如何有效地对这些数据进行处理、分析和利用成了当今社会发展所面临的重要挑战。
数据融合技术,尤其是多维度数据融合技术,成为物联网应用中的核心技术之一。
一、多维度数据融合技术的定义及研究意义多维数据融合技术是指对来自不同来源和不同维度的数据进行整合、处理和分析的一种技术方法。
在物联网中,多维数据涵盖了传感器数据、视频数据、语音数据、位置数据、环境数据、行为数据等多种类型的数据。
多维数据融合技术的目的是从这些不同类型和不同来源的数据中提取出更多、更精确、更有价值的信息,以实现更好的应用。
多维数据融合技术的研究具有重要的现实意义。
首先,物联网中的数据来源比较分散和复杂,在不同维度上的数据信息更是不同,要实现对这些数据的有效利用,必须采用多维度数据融合技术。
其次,多维度数据融合技术可以实现对不同类型和不同来源的数据进行跨越性的处理和分析,从而达到更好的应用效果。
最后,数据融合技术是物联网技术体系中的关键技术之一,也是物联网应用发展的必然方向。
二、多维度数据融合技术的关键技术和方法多维度数据融合技术包括多种技术和方法,如数据聚合、数据匹配、数据映射、数据挖掘、数据分析等。
其中有些技术是智能算法和机器学习技术,如神经网络、遗传算法、支持向量机等;还有一些是统计学方法、模型算法、图论算法等。
数据聚合是多维度数据融合技术中的一个重要环节。
数据聚合是指将从不同源头的数据进行合并、归一化处理,提取出有效信息并进行压缩。
常用的聚合方法有平均值聚合、加权平均聚合、极值聚合等。
数据匹配是指将来自不同来源的数据进行匹配,使得它们在同样的维度上进行比较。
常用的匹配方法有基于主键的匹配、基于相似度匹配、基于规则匹配等。
数据映射是指将来自不同来源的数据进行转化,使得它们具有相同的维度。
而数据挖掘是指从数据中寻找有价值的信息,在大规模数据中找到所需要的隐含的知识和规律性信息。
物联网中的多传感器融合技术

物联网中的多传感器融合技术近年来,随着信息技术的快速发展,物联网(IoT)逐渐成为人们瞩目的热门领域之一。
在物联网系统中,传感器被用来采集各种实时数据,使得物联网可以实现对各种物体的监测、远程控制和自动化处理等功能。
在多传感器的情形下,如何在统一平台上处理来自不同传感器的数据成为了一个挑战性的问题。
为解决这个问题,多传感器融合技术被广泛应用于物联网系统。
本文将介绍多传感器融合技术在物联网系统中的应用以及其实现原理。
一、多传感器融合技术的应用传感器是物联网中非常重要的组成部分,它可以感知环境中的各种信息,包括气象信息、环境污染信息、灯光亮度信息、声音信息等。
然而,当多个传感器被应用于同一系统时,这些传感器采集的数据可能存在不一致或重叠的情况,从而导致数据的冲突和误差。
为了解决这个问题,多传感器融合技术被广泛应用于IoT 系统中。
传感器融合技术可以将来自多个传感器的数据进行集成,形成一个可靠和准确的数据源。
这样,IoT系统可以利用这些数据集中的信息,提高系统的性能和可靠性。
例如,在气象预报系统中,如果可以利用多个传感器采集的数据进行融合,预测结果将更加准确。
另外,在智能家居系统中,当多个传感器被应用于同一个房间时,将这些传感器数据进行融合,可以使家居系统根据用户的实时需求来调整房间的温度、湿度和照度等属性,实现更加人性化的智能控制。
二、多传感器融合技术的实现原理多传感器融合技术的实现需要涉及到多领域知识,包括信号处理、数据融合、机器学习等。
在多传感器融合技术中,主要有两种数据融合方法:基于模型的方法和基于数据的方法。
基于模型的方法:基于模型的方法是根据物理模型对数据进行预测或补偿,减小融合数据的误差。
这种方法涉及到多种数学模型,如卡尔曼滤波、粒子滤波、贝叶斯网络、模型推理等等。
这些模型都是基于传感器输出的数据进行的,因此需要较强的数学背景和计算机实现能力。
基于数据的方法:基于数据的方法是将传感器采集到的原始数据进行处理,用数学方法实现传感器数据的融合。
物联网信息融合技术及存在的问题_百度文库_20171106_191444

物联网信息融合技术 信息融合是指在一定准则下利用计算机技术对多源信息分析和综合以实现不同应用的分类任务而进行的处理过程。根据信息提取水平,将物联网中信息融合技术划分为4个层次,主要包括:低等水平融合、中等水平融合、高等水平融合和多级融合。Nakamura分类方法中多级融合技术是前三种融合技术的综合,故本文认为将数据融合技术划分为3个层次较为合理。对于物联网,数据级融合主要是消除输入数据中的噪声,而特征级融合和决策级融合则侧重于获取与实际应用相关的有价值信息。 (一) 数据级融合技术 数据级融合主要是指在原始数据采集后的融合。该融合的特点是必须在同质信息前提下的融合,不同质信息则不能在此阶段融合。在数据级融合阶段常用的方法多为加权平均法、特征匹配法法和金字塔算法等传统方法。 加权平均法是最简单的融合算法,直接对传感器所获得信息进行线性的加权平均。Mechitov et al.(2003)提出通过对传感器的位置进行加权平均,估计出目标运动轨迹上的各点坐标位置。崔逊学等(2011)则根据计算几何理论,提出基于三圆交集计算二值传感器网络目标的位置。加权平均法具有实现简单、快速的优点,能够有效地抑制噪声,但是其融合结果的对比度相对较低,且无法通过增大权重的方式反映某些信息所具有的突出作用。 特征匹配法就是利用通过特征的匹配关系建立图像间的配准映射变换,最常用的方法是ICP算法。Besl&Mck
物联网数据融合技术浅析

知识文库 第11期22物联网数据融合技术浅析刘召华大数据时代的到来,要求我们需要使用更加有效的数据处理方式,但实际应用中获得大量数据相当一部分是冗余和无效的,这些数据在网络中传输和处理会极大降低效率,数据融合技术是比较理想的解决办法。
物联网与互联网结合起来形成了一个巨大信息网络系统,在这个系统中,有大量感知数据,需要选取适当的融合模式、处理算法进行综合分析,才能提高数据质量,获得最佳决策和完成评估,这些工作的完成需要使用数据融合技术。
一、物联网数据融合“数据融合”是20世纪70年代美国国防部针对多传感器系统而提出,经过40多年发展,现已被应用在多源影像复合、智能仪器系统、无人驾驶飞机、图像分析与理解、自动目标识别等多个领域。
数据融合是利用现代计算机技术对时序获得的若干感知数据,在一定准则下加以分析、综合,以完成所需决策和评估任务而进行的数据处理过程。
数据融合的目标数据是全空间的,即包括所有确定的和模糊的、全空间的和子空间的、同步的和异步的,数字的和非数字的,是复杂多维多源的;数据融合是内部特征,是系统动态过程中的一种数据综合加工处理;数据融合是数据的互补,即表达方式互补、结构互补、功能互补、不同层次互补,只有互补数据融合才能使系统发生质的变化。
数据融合的实质是针对多维数据进行关联或综合分析,选取适当的融合模式和处理算法,用以提高数据质量,为数据处理奠定基础。
二、数据融合原理、步骤和分类数据融合可以是物联网多个传感器的信息融合,也可以是多个传感器信息和人机界面观测事实信息融合。
原理是先将多个不同类型传感器获取数据收集;对传感器输出数据进行特征提取的变换,提取代表观测数据的特征矢量Y i;对特征矢量Y i利用聚类算法、神经网络等模式识别处理完成各传感器关于目标的说明;将各传感器关于目标的说明数据按同一目标进行关联;利用融合算法将每一个目标传感器数据进行合成,得到该目标的一致性解释与描述。
例如故障诊断系统中,从获取数据中提取征兆信息,在推理机作用下,将征兆与知识库中的知识匹配,做出故障诊断决策,继而提供给用户使用。
多网融合技术在物联网通信中的应用案例分析

多网融合技术在物联网通信中的应用案例分析随着物联网技术的快速发展,越来越多的设备和物体可以通过互联网进行通信和交互。
而物联网通信的核心是如何有效地传输数据,并保证数据的实时性和安全性。
多网融合技术作为一种解决方案,为物联网通信提供了可靠的支持。
本文将分析多网融合技术在物联网通信中的应用案例。
首先,多网融合技术可以提高物联网通信的可靠性。
物联网通信中的设备通常会通过多种网络进行连接,如Wi-Fi、蜂窝网络和LPWAN网络等。
不同的网络在不同的环境下具有不同的稳定性和传输速度。
通过多网融合技术,可以同时利用多种网络进行数据传输,当某一网络发生故障或信号不稳定时,可以自动切换到其他网络,确保数据的传输不中断。
例如,在智能家居系统中,通过多网融合技术,可以将设备连接到家庭Wi-Fi网络和蜂窝网络,当家庭Wi-Fi网络信号不稳定时,可以自动切换到蜂窝网络,保证设备的正常连接和数据传输。
其次,多网融合技术可以提高物联网通信的覆盖范围。
不同的网络在不同的地理区域或环境下具有不同的覆盖范围。
通过多网融合技术,可以同时利用多种网络进行数据传输,扩大了物联网通信的覆盖范围。
例如,在农业领域,农民可以利用多网融合技术将传感器设备连接到蜂窝网络、卫星网络和LPWAN网络,实现对农田的实时监测和管理。
这样,即使在偏远的农村地区或山区,也能实现物联网通信的覆盖。
此外,多网融合技术可以提高物联网通信的灵活性。
不同的网络在不同的场景下具有不同的适用性和优势。
通过多网融合技术,可以根据不同的应用需求选择合适的网络进行数据传输,提高了物联网通信的灵活性。
例如,在智能交通系统中,可以利用多网融合技术将车载设备连接到车载Wi-Fi网络、蜂窝网络和V2X(车辆到车辆/路边基础设施通信)网络,根据不同的场景选择合适的网络进行数据传输,实现车辆之间和车辆与基础设施之间的实时通信和交互。
最后,多网融合技术可以提高物联网通信的安全性。
物联网通信中传输的数据通常包含敏感信息,如个人隐私和商业机密等。
物联网中的数据融合与分析技术研究

物联网中的数据融合与分析技术研究随着物联网的快速发展,人们对于数据的需求日益增长,数据融合与分析技术也变得日益重要。
然而,要想真正实现数据的融合与分析,并从其中获得有意义的信息,需要采用最新的技术手段和方法。
一、物联网中的数据融合技术在物联网中,大量的传感器设备会不断地产生大量的数据。
这些数据可能来自不同的传感器设备,有着不同的格式和语义,而物联网中的数据融合技术可以将这些异构数据整合起来。
因此,数据融合技术是物联网中至关重要的一项技术。
数据融合技术通常被分为两种类型:横向数据融合和纵向数据融合。
横向数据融合是指来自不同源的数据的融合,而纵向数据融合是指来自同一源的数据的融合。
数据融合技术通常涉及到信息特征的提取、数据的转换和数据的整合等方面。
在物联网中,数据融合技术可以帮助用户根据自身需求,将来自不同源的数据融合成一个整体,为后续的数据分析提供数据基础。
二、物联网中的数据分析技术数据分析技术是物联网中的另一项核心技术。
通过数据分析技术,可以对物联网中的数据进行挖掘和分析,从中发现有意义的信息和规律。
数据分析技术包括:数据挖掘、机器学习、深度学习和神经网络等方面。
数据分析技术可以对物联网中的数据进行筛选、分类、聚类、预测等处理,在此基础上制定相应的业务策略。
三、物联网中的数据融合与分析技术研究物联网中的数据融合与分析技术研究是未来物联网发展的方向之一,也是企业在物联网领域取得成功的重要因素。
最新的技术研究,通常会结合云计算和大数据等最新技术手段,以应对物联网中大量数据的快速增长,帮助用户更准确地分析和决策。
目前,物联网中的数据融合与分析技术研究越来越多地关注于以下几个方面:1. 数据融合和分析的自动化随着物联网的快速发展,数据量也在快速增长中。
数据融合和分析技术需要保证在这种情况下仍能保持准确性和可靠性。
因此,自动化已经成为一个重要的研究方向。
2. 个性化和实时性的变化在物联网中,数据的来源可能会不断改变,因此数据的分析和融合也必须具有灵活性和个性化。
物联网数据融合技术

物联网数据融合技术在当今数字化的时代,物联网(Internet of Things,简称 IoT)正以前所未有的速度发展,将各种设备和物体连接到互联网,实现智能化的交互和控制。
而在物联网的庞大体系中,数据融合技术扮演着至关重要的角色。
它就像是一位智慧的工匠,将来自不同源头、形态各异的数据精心雕琢、整合,为我们呈现出一幅完整而有价值的信息画卷。
那么,什么是物联网数据融合技术呢?简单来说,它是一种将来自多个物联网设备和传感器的分散、异构数据进行综合处理和整合的技术手段。
这些数据可能具有不同的格式、精度、采集频率和语义,通过数据融合技术,可以消除数据之间的冗余和矛盾,提取出有用的信息,为决策和应用提供可靠的支持。
想象一下,一个智能工厂中,有成百上千个传感器在监测生产线上的温度、压力、湿度、机器运行状态等各种参数。
这些传感器产生的数据如果孤立地看待,可能只是一些零散的数字,难以从中洞察生产过程中的问题和优化的方向。
但通过数据融合技术,将这些数据整合起来进行分析,就能够发现潜在的规律和趋势,比如某个设备的温度异常升高可能预示着即将发生故障,从而及时采取维修措施,避免生产中断。
物联网数据融合技术主要包括数据预处理、数据融合算法和融合结果的评估与应用三个环节。
数据预处理是数据融合的第一步,就像是对原材料进行初步加工。
在这个阶段,需要对采集到的数据进行清洗、去噪、转换和归一化等操作。
清洗数据可以去除那些明显错误或缺失的数据;去噪则是消除由于环境干扰等因素导致的数据波动;转换是将数据转换为统一的格式和单位,便于后续处理;归一化则是将数据映射到一个特定的范围,以消除量纲的影响。
通过这些预处理操作,可以提高数据的质量和可用性,为后续的融合算法打下良好的基础。
数据融合算法是整个技术的核心部分,它决定了如何将预处理后的数据进行整合和融合。
常见的数据融合算法包括加权平均法、卡尔曼滤波法、贝叶斯估计法等。
加权平均法是根据不同数据源的可靠性和重要性赋予相应的权重,然后进行加权平均得到融合结果;卡尔曼滤波法则适用于对动态系统的状态估计,通过不断预测和修正来融合数据;贝叶斯估计法则基于概率理论,通过先验知识和观测数据来更新后验概率分布,从而实现数据融合。
物联网感知数据融合与处理技术研究综述

物联网感知数据融合与处理技术研究综述随着物联网技术的迅猛发展,相应的感知设备不断增加,感知数据的规模和种类也在快速增长,并成为物联网应用的基础。
然而,由于感知设备分布广泛、数据类型多样化以及数据之间存在相关性等问题,如何高效地融合和处理这些感知数据成为了一个重要的研究方向。
本文将就物联网感知数据融合与处理技术进行综述,包括数据融合的概念、方法和应用领域,感知数据处理的基本技术和主要算法等方面的内容。
一、数据融合的概念和方法数据融合是指将来自不同传感器的感知数据进行集成和整合,以获取更全面、准确和可靠的信息。
数据融合通常包括数据预处理、特征提取、特征融合和决策制定等步骤。
数据预处理阶段主要对原始数据进行去噪、滤波、归一化等处理,以消除数据中存在的噪声和异常值。
特征提取是将数据转换为更具有信息量和可解释性的特征表示,常用的方法包括统计特征提取、频域特征提取和时-频域特征提取等。
特征融合则是将来自不同传感器的特征融合为一个统一的特征向量,常用的方法有加权平均法、主成分分析法和小波变换法等。
最后,决策制定阶段利用融合后的特征向量进行分类、回归或聚类等任务,以实现对感知数据的综合分析和理解。
数据融合方法多种多样,常用的有基于权重的融合方法、基于模型的融合方法和基于神经网络的融合方法等。
基于权重的融合方法通过赋予不同传感器的数据不同的权重,将其线性或非线性组合融合成新的数据集。
例如,加权平均法和成对比较法等。
基于模型的融合方法则是将感知数据视为随机过程,并采用概率模型和统计模型等对感知数据进行建模和分析,以得到更精确的结果。
常用的方法有卡尔曼滤波、粒子滤波和贝叶斯网络等。
基于神经网络的融合方法则是应用神经网络模型对感知数据进行学习和训练,以得到具有非线性关系的融合结果。
例如,人工神经网络和深度学习网络等。
二、感知数据处理的基本技术和主要算法感知数据处理是指对从感知设备中采集到的原始数据进行处理和分析,以挖掘数据中所包含的有用信息和知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在基于信息融合的故障诊断系统中可以加入自学习模块, 故障决策经自学习模块反馈给知识库,并对相应的置信度因 子进行修改,更新知识库。同时,自学习模块能根据知识库 中的知识和用户对系统提问的动态应答进行推理,以获得新 知识、总结新经验,不断扩充知识库,实现专家系统的自学 习功能。
一般来说,遥感影像的数据融合分为预处理和数据融合 两步。
9.1.2 物联网中的数据融合
数据融合是针对多传感器系统而提出的。在多传感器系 统中,由于信息表现形式的多样性、数据量的巨大性、数据 关系的复杂性以及要求数据处理的实时性、准确性和可靠性, 都已大大超出了人脑的信息综合处理能力,在这种情况下, 多传感器数据融合技术应运而生。
多传感器数据融合(Multi-Sensor Data Fusion,MSDF), 简称数据融合,也被称为多传感器信息融合(Multi-Sensor Information Fusion,MSIF)。它由美国国防部在20世纪70年 代最先提出,之后英、法、日、俄等国也做了大量的研究。 近40年来数据融合技术得到了巨大的发展,同时伴随着电子 技术、信号检测与处理技术、计算机技术、网络通信技术以 及控制技术的飞速发展,数据融合已被应用在多个领域,在 现代科学技术中的地位也日渐突出。
(1) 数据对准。 (2) 数据相关。 (3) 数据识别,即估计目标的类别和类型。 (4) 感知数据的不确定性。 (5) 不完整、不一致和虚假数据。 (6) 数据库。 (7) 性能评估。
3.物联网数据融合的意义和作用 物联网是利用射频识别(RFID)装置、各种传感器、全球 定位系统(GPS)、激光扫描器等各种不同装置、嵌入式软硬 件系统,以及现代网络及无线通信、分布式数据处理等诸多 技术,能够协作地实时监测、感知、采集网络分布区域内的 各种环境或监测对象的信息,实现包括物与物、人与物之间 的互相连接,并且与互联网结合起来而形成的一个巨大的信 息网络系统。
相对于单源遥感影像数据,多源遥感影像数据所提供的 信息具有以下特点:
(1) 冗余性:指多源遥感影像数据对环境或目标的表示、 描述或解译结果相同。
(2) 互补性:指信息来自不同的自由度且相互独立。 (3) 合作性:不同传感器在观测和处理信息时对其他信 息有依赖关系。
(4) 信息分层的结构特性:数据融合所处理的多源遥感 信息可以在不同的信息层次上出现,这些信息抽象层次包括 像素层、特征层和决策层,分层结构和并行处理机制还可保 证系统的实时性。
1.数据融合的定义 数据融合的定义简洁地表述为:数据融合是利用计算机 技术对时序获得的若干感知数据,在一定准则下加以分析、 综合,以完成所需决策和评估任务而进行的数据处理过程。 数据融合有三层含义: (1) 数据的全空间,即数据包括确定的和模糊的、全空 间的和子空间的、同步的和异步的、数字的和非数字的,它 是复杂的、多维多源的,覆盖全频段。
图9.1 数据融合示意图
数据融合的实质是针对多维数据进行关联或综合分析, 进而选取适当的融合模式和处理算法,用以提高数据的质量, 为知识提取奠定基础。
2.数据融合研究的主要内容 数据融合是针对一个网络感知系统中使用多个和多类感 知节点(如多传感器)展开的一种数据处理方法,研究的内容 主要包含以下几个方面。
2) 物联网数据融合技术要求 与以往的多传感器数据融合有所不同,物联网具有它自 己独特的融合技术要求: (1) 稳定性。 (2) 数据关联。 (3) 能量约束。
(4) 协议的可扩展性。
9.2 数据融合的原理
9.2.1 数据融合的基本原理
1.数据融合的原理 数据融合中心对来自多个传感器的信息进行融合,也可 以将来自多个传感器的信息和人机界面的观测事实进行信息 融合(这种融合通常是决策级融合),提取征兆信息,在推理 机作用下,将征兆与知识库中的知识匹配,做出故障诊断决 策,提供给用户。
1) 预处理 预处理主要包括遥感影像的几何纠正、大气订正、辐射 校正及空间配准。 (1) 几何纠正、大气订正及辐射校正的目的在于去除透 视收缩、叠掩、阴影等地形因素以及卫星扰动、天气变化、 大气散射等随机因素对成像结果一致性的影响。 (2) 影像空间配准的目的在于消除由不同传感器得到的
9.1 数据融合概述
9.1.1 数据融合简介
数据融合(Data Fusion)一词最早出现在20世纪70年代, 并于20世纪80年代发展成一项专门技术。数据融合技术最早 被应用于军事领域,1973年美国研究机构就在国防部的资助 下,开展了声呐信号解释系统的研究。
现在数据融合的主要应用领域有多源影像复合、机器人 和智能仪器系统、战场和无人驾驶飞机、图像分析与理解、 目标检测与跟踪、自动目标识别、工业控制、海洋监视和管 理等。在遥感中,数据融合属于一种属性融合,它是将同一 地区的多源遥感影像数据加以智能化合成,产生比单一信息 源更精确、更完全、更可靠的估计和判断等。
ห้องสมุดไป่ตู้
这个巨大的信息网络系统是一个物联网系统,在这个物 联网系统中,有大量感知数据需要选取适当的融合模式、处 理算法进行综合分析,才能提高数据的质量,获得最佳决策 和完成评估任务。这就是物联网数据融合的意义和作用。
4.物联网数据融合所要解决的关键问题和要求 1) 物联网数据融合所要解决的关键问题 物联网数据融合所要解决的关键问题有以下几个: (1) 数据融合节点的选择。融合节点的选择与网络层的 路由协议有密切关系,需要依靠路由协议建立路由回路数据, 并且使用路由结构中的某些节点作为数据融合的节点。 (2) 数据融合时机。 (3) 数据融合算法。
(2) 数据的融合不同于组合,组合指的是外部特性,融 合指的是内部特性,它是系统动态过程中的一种数据综合加 工处理。
(3) 数据的互补过程,数据表达方式的互补、结构上的 互补、功能上的互补、不同层次的互补,是数据融合的核心, 只有互补数据的融合才可以使系统发生质的飞跃。数据融合
示意图如图9.1所示。
多源遥感影像的实质是在统一地理坐标系中将对同一目 标检测的多幅遥感图像数据采用一定的算法,生成一幅新的、 更能有效表示该目标的图像信息。
多源遥感影像的目的是将单一传感器的多波段信息或不 同类别传感器所提供的信息加以综合,消除多传感器信息之 间可能存在的冗余和矛盾,加以互补,改善遥感信息提取的
及时性和可靠性,提高数据的使用效率。