北师大版七年级数学下册《平行线的性质》同步练习

合集下载

北师大版数学七年级下册2.3《平行线的性质》精选练习(含答案)

北师大版数学七年级下册2.3《平行线的性质》精选练习(含答案)

北师大版数学七年级下册2.3《平行线的性质》精选练习一、选择题1.如图△ABC中,∠A=63°,点D、E、F分别是BC、AB、AC上的点,且DE∥AC,DF∥AB,则∠EDF的大小为( )A.37°B.57°C.63°D.27°2.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于( )A.60°B.50°C.45°D.40°3.如图,已知a∥b,∠1=50°,则∠2=( )A.40°B.50°C.120°D.130°4.如图,已知AB∥CD,∠2=130°,则∠1的度数是( )A.40°B.50°C.60°D.70°5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为( )A.37° B.43° C.53° D.54°6.如图,直线11∥12,∠1=30°,则∠2+∠3=( )A.150° B.180° C.210° D.240°7.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°8.如图,已知直线a∥b,∠1=60°,则∠2的度数是( )A.45°B.55°C.60°D.120°9.如图,AB∥CD,∠1=70°,FG平分∠EFD,则∠2的度数是( )A.30°B.35°C.40°D.70°10.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.60°D.70°11.如图,已知AB∥CD,∠A=70°,则∠1的度数是()A.70°B.100°C.110°D.130°12.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°二、填空题13.如图,已知直线a∥b,∠1=85°,则∠2=_____.14.两个角的两边分别平行,且其中一个角比另一个角的2倍少15°,则这两个角为_____.15.如图AB∥CD,CB∥DE,∠B=50°,则∠D= °.16.如图,AD∥CE,∠ABC=100°,则∠2﹣∠1的度数是.17.如图,AB∥CD,若∠1=60°,则∠2= .18.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三、解答题19.如图,已知在△ABC中,AD平分∠EAC且AD∥BC,那么∠B=∠C吗?请说明理由.20.如图,AD平分∠BAC,DE∥AC,DF∥AB,图中∠1与∠2有什么关系?为什么?21.如图,已知DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,DO和AB有怎样的位置关系?为什么?22.如图,已知∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.23.如图,已知∠BAP+∠APD=180°,∠1 =∠2.求证:∠E =∠F.24.如图,已知AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.参考答案1.答案为:C2.答案为:D3.答案为:D4.答案为:B;5.答案为:C6.答案为:C.7.答案为:D.8.答案为:C.9.B10.D11.C12.A13.答案为:85°14.答案为:65°,115°或15°,15°15.答案为:130.16.答案为:80°.17.答案为:60°.18.答案为:α+β﹣γ=90°.19.解:∠B=∠C.理由如下:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∵AD平分∠EAC,∴∠EAD=∠DAC.∴∠B=∠C.20.解:∠1=∠2.理由如下:∵DE∥AC,DF∥AB,∴∠1=∠DAF,∠2=∠DAE,又∵AD平分∠BAC,∴∠DAF=∠DAE,∴∠1=∠2.21.解:DO⊥AB.理由如下:∵DE⊥AO于E,BO⊥AO于O,∴DE∥BO,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴CF∥OD,∵FC⊥AB,∴OD⊥AB.22.(1)∵∠A=∠ADE,∴AC∥DE.∴∠EDC+∠C=180°.又∵∠EDC=3∠C,∴4∠C=180°.即∠C=45°.(2)证明:∵AC∥DE,∴∠E=∠ABE.又∵∠C=∠E,∴∠C=∠ABE.∴BE∥CD.23.证明:∵∠BAP+∠APD=180°,∴AB∥CD.∴∠BAP =∠APC.又∵∠1 =∠2,∴∠BAP-∠1 =∠APC-∠2.即∠EAP =∠APF.∴AE∥FP.∴∠E =∠F.24.证明:∵ AC∥DE(已知),∴∠1=∠5(两直线平行,内错角相等).同理∠5=∠3.∴∠1=∠3(等量代换).∵ DC∥EF(已知),∴∠2=∠4(两直线平行,同位角相等).∵ CD平分∠ACB,∴∠1=∠2(角平分线定义),∴∠3=∠4(等量代换),∴ EF平分∠BED(角平分线定义).。

北师大版七年级数学下册第五章平行线的性质同步测试题

北师大版七年级数学下册第五章平行线的性质同步测试题

平行线的性质同步测试题(满分120分;时间:120分钟)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!题号一二三总分得分一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列语句中,是命题的是()A.两个锐角的和大于直角B.在线段AB上任取一点C.作∠A的平分线AMD.两点确定一条直线吗2. 如图,将一块含有30∘的直角三角板的顶点放在直尺的一边上,若∠1=48∘,那么∠2的度数是()A.48∘B.78∘C.92∘D.102∘3. 如图,∠A的一边AB为平面镜,另一边AC上有一点D,从D点射出一束光线经AB上一点E反射,反射光线EF恰好与AC平行,已知∠AED=∠BEF,∠EDC=70∘,则∠A的度数是()A.30∘B.35∘C.40∘D.45∘4. 如图所示,a // b,直线a与直线b之间的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段CD的长度5. 下列命题正确的是()A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角,内错角,同旁内角D.同位角相等,两直线平行6. 如图,AB // CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个7. 直线a上有一点A,直线b上有一点B,且a // b.点P在直线a,b之间,若PA=3,PB=4,则直线a、b之间的距离()A.等于7B.小于7C.不小于7D.不大于78. 下列命题错误的是()A.有一个角是60∘的等腰三角形是等边三角形B.有两个角等于60∘的三角形是等边三角形C.三个角都相等的三角形是等边三角形D.两个角相等的等腰三角形是等边三角形9. 如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40∘.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60∘B.80∘C.100∘D.120∘10. 下列说法正确的有()①不相交的两条直线是平行线;②同旁内角相等,两直线平行;③若线段AB与CD没有交点,则AB // CD;④a // b,b // c,则a与c不相交.A.1个B.2个C.3个D.4个二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 已知l1 // l2 // l3,l1与l2之间的距离为3cm,l2与l3之间的距离为4cm,则l1与l3之间的距离为________.12. 如图,若AB // CD,∠1=40度,则∠2=________度.13. 如图,AB // CD,直线MN分别与AB、CD交于点E、F,FG是∠NFD的平分线,若∠MEB =80∘,则∠GFD的度数为________.14. 如图,AB // CD,则∠1+∠2+∠3+...+∠2n=________度.15. 将一副直角三角板ABC和EDF如图放置(其中∠A=60∘,∠F=45∘).使点E落在AC边上,且ED // BC,则∠CEF的度数为________.16. 用一个平底锅煎饼,每次只能放两张饼,煎熟一张饼需要2分钟(正、反面各需一分钟),问煎熟3张饼至少要________分钟.17. 如图:AB // CD,AD // BC,AD=5,BE=8,△DCE的面积为6,则四边形ABCD的面积为________.18. 如图所示,点O为∠ABC内部一点,OD//BC交射线BA于点D,射线OE与射线BC相交所成的锐角为60∘,则∠DOE=_______.19. 如图,把一张长方形纸片沿AB折叠,已知∠1=75∘,则∠2=________20. 如图,直线a // b,A,C是直线a上的两点,B,D是直线b上的两点,AB⊥b,若要使AB=CD,可添加一个条件________.三、解答题(本题共计6 小题,每题10 分,共计60分,)21. 如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF // DO.22. 如图,若∠1=∠2,则AB // CD,这个命题是真命题吗?若不是,请你添加一个条件,使它成为真命题,并说明理由.23. 如图,在梯形ABCD中AD // BC,点M为腰AB上的一点,MN // BC交DC于点N,MN 与AD是否平行?请说明理由,分别测量出点MN到BC的距离,两者有何关系.24. 如图,四边形ABCD中,AB // DC,AE,DF分别是∠BAD,∠ADC的平分线,AE,DF交于点O.求证:AE⊥DF.25. 如图,P在∠BAC内部,(1)过P分别作AB,AC的平行线交AC,AB于D,E两点,(2)若∠A=40∘,求∠DPE的大小.26. 如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115∘,求∠ACB的度数.。

2022-2023学年北师大版七年级数学下册2

2022-2023学年北师大版七年级数学下册2

2.3平行线的性质课后同步练习班级:________ 姓名:________一、单选题(共 10 小题)1、如图,已知AB //DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .42°B .43°C .44°D .45°2、如图,AB CD ∥,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =52°,则∠EGF 等于( )A .26°B .64°C .52°D .128°3、如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4、如图,AB ∥CE ,∠B =60°,DM 平分∠BDC ,DM ⊥DN ,则∠NDE ( )A .30°B .40°C .50°D .60°5、如图,AB CD ∥,AE 平分∠CAB 交CD 于点E ,若∠C =50°,则∠AED =( )A .65°B .115°C .125°D .130°6、如图,直线l 1 ∥ l 2 ,CD ⊥AB 于点D ,∠1=50°,则∠BCD 的度数为( )A .40°B .45°C .50°D .30°7、如图,//CD AB ,BC 平分ACD ∠,CF 平分ACG ∠,50BAC ∠=︒,12∠=∠,则下列结论:①CB CF ⊥,②165∠=︒,③24ACE ∠=∠,④324∠=∠.其中正确的是( )A .①②③B .①②④C .②③④D .①②③④8、已知直线a ∥b ,将一块含30°角的直角三角板(∠BAC =30°)按如图所示方式放置,并且顶点A ,C 分别落在直线a ,b 上,若∠1=22°,则∠2的度数是( )A.38°B.45°C.58°D.60°AB CD EF CG AF,那么图中与∠AFE相等的角的个数是()9、如图,////,//A.4 B.5 C.6 D.710、如图,已知AB∥CD,∠A=54°,∠E=18°,则∠C的度数是()A.36°B.34°C.32°D.30°二、填空题(共 8 小题)1、如图,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,CD与AB在直线EF异侧.若∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和6度/秒的速度同时顺时针转动,设时间为t秒,在射线CD转动一周的时间内,当时间t的值为____时,CD与AB平行.2、如图,AB ∥CD,AD 平分∠BAC,且∠C=80°,则∠D 的度数为____.3、如图,已知AD ∥BC ,∠C=38°,∠EAC=88°,则∠B=________4、如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3=_____°.5、如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=_____.6、如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,138E ∠=︒,BFD ∠=___________°.7、如图,直线MN 分别与直线AB ,CD 相交于点E ,F ,EG 平分∠BEF ,交直线CD 于点G ,若∠MFD =∠BEF =62°,射线GP ⊥EG 于点G ,则∠PGF 的度数为__度.8、如图,64BCA ∠=︒,CE 平分ACB ∠,CD 平分ECB ∠,//DF BC 交CE 于点F ,则CDF ∠的度数为_________°.三、解答题(共 6 小题)1、如图,已知//AB CD ,∠B=∠D ,AE 交BC 的延长线于点E .(1)求证://AD BE ;(2)若∠1=∠2=60°,∠BAC=2∠EAC ,求∠DCE 的度数.2、三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,①求∠BEC的度数;②如图2,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.3、如图,已知AB∥CD.(1)判断∠FAB与∠C的大小关系,请说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.4、问题情境我们知道,“两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补”,所以在某些探究性问题中通过“构造平行线”可以起到转化的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG中,DE∥GF.问题初探(1)如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N,求∠EMC的度数.分析:过点C作CH∥GF.则有CH∥DE,从而得∠CAF=∠HCA,∠EMC=∠MCH,从而可以求得∠EMC 的度数.由分析得,请你直接写出:∠CAF的度数为______,∠EMC的度数为______.类比再探(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想写∠CAF与∠EMC的数量关系,并说明理由.(3)请你总结(1),(2)解决问题的思路,在图(3)中探究∠BAG与∠BMD的数量关系?并说明理由.5、如图,已知AB∥CD,问∠BED、∠D、∠ABE的关系.6、如图,已知AC∥FE,∠1+∠2=180°(1)求证:∠FAB=∠BDC;(2)若AC平分∠FAD,EF⊥BE于点E,∠FAD=80°,求∠BCD的度数.第11页/ 共11页。

2021-2022学年北师大版七年级数学下册《2-3平行线的性质》同步达标测试题(附答案)

2021-2022学年北师大版七年级数学下册《2-3平行线的性质》同步达标测试题(附答案)

2021-2022学年北师大版七年级数学下册《2-3平行线的性质》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°,则∠2的度数为()A.55°B.60°C.65°D.75°2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°3.如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是()A.α+β=180°B.α+β=90°C.β=3αD.α﹣β=90°4.如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60°B.80°C.75°D.70°5.如图,直线AB∥CD,AE⊥CE于点E,若∠EAB=120°,则∠ECD的度数是()A.120°B.100°C.150°D.160°6.如图,b∥c,a⊥b,∠1=130°,则∠2等于()A.30°B.40°C.50°D.60°7.如图,一条公路修到湖边时,需拐弯绕湖而过,若第一次拐角∠A=130°,第二次拐角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C为()A.170°B.160°C.150°D.140°8.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二.填空题(共7小题,满分35分)9.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.10.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.11.如图,将一副三角板如图叠放,且EF∥BC,则∠BFD=度.12.为增强学生体质,某学校将“抖空竹”引人阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已AB∥CD,∠EAB=80°,∠ECD =110°.则∠E的度数是.13.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.14.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.15.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=度.三.解答题(共5小题,满分45分)16.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.17.如图,已知AB∥CD,连接BC.点E,F是直线AB上不重合的两点,G是CD上一点,连接ED交BC于点N,连接FG交BC于点M.若∠ENC+∠CMG=180°.(1)求证:∠2=∠3;(2)若∠A=∠1+60°,∠ACB=50°,求∠B的度数.18.已知一个角的两边与另一个角的两边分别平行,结合下图,试探索这两个角之间的关系,并说明你的结论.(1)如图1,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:;(2)如图2,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:.(3)由(1)(2)你得出的结论是:如果,那么.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角度数的分别是19.(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE=130°,求∠C 的度数;(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE与∠C的数量关系,并说明理由.20.如图,直线AB∥CD.(1)如图①,若∠ABE=40°,∠BEC=140°,∠ECD=°(填空)(2)如图①,试探究∠ABE,∠BEC,∠ECD的关系,并说明理由;(3)如图②,若CF平分∠ECD,且满足CF∥BE,试探究∠ECD,∠ABE的数量关系,并说明理由.参考答案一.选择题(共8小题,满分40分)1.解:如图,∵∠1=25°,∴∠3=65°,∵直尺的两边互相平行,∴∠2=65°.故选:C.2.解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故选:C.3.解:过C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠1=∠β,∠α=180°﹣∠2,∴∠α﹣∠β=180°﹣∠2﹣∠1=180°﹣∠BCD=90°,故选:D.4.解:∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选:D.5.解:延长AE,与DC的延长线交于点F,∵AB∥CD,∴∠A+∠AFC=180°,∵∠EAB=120°,∴∠AFC=60°,∵AE⊥CE,∴∠AEC=90°,而∠AEC=∠AFC+∠ECF,∴∠ECF=∠AEC﹣∠F=30°,∴∠ECD=180°﹣30°=150°,故选:C.6.解:∵b∥c,a⊥b,∴a⊥c,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选:B.7.解:如图,过点B作BD∥AE,由已知可得:AE∥CF,∴AE∥BD∥CF,∴∠ABD=∠A=130°,∠DBC+∠C=180°,∴∠DBC=∠ABC﹣∠ABD=150°﹣130°=20°,∴∠C=180°﹣∠DBC=180°﹣20°=160°.故选:B.8.解:如图,过A作AB∥a,∵a∥b,∴AB∥b,∴∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,∴∠BAD=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.二.填空题(共7小题,满分35分)9.解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°,故答案为:80.10.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.11.解:由题意得,∠ABC=45°,∠DFE=30°,∵EF∥BC,∴∠BFE=∠ABC=45°,∴∠BFD=45°﹣30°=15°.故答案为:15.12.解:如图所示:延长DC交AE于点F,∵AB∥CD,∠EAB=80°,∠ECD=110°,∴∠EAB=∠EFC=80°,∴∠E=110°﹣80°=30°.故答案为:30°.13.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.14.解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.15.解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.三.解答题(共5小题,满分45分)16.解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°17.(1)证明:∵∠CMG=∠FMN,又∵∠ENC+∠CMG=180°,∴∠ENC+∠FMN=180°,∵ED∥FG,∴∠2=∠D(两直线平行,同位角相等),又∵AB∥CD(已知),∴∠3=∠D(两直线平行,内错角相等),∴∠2=∠3 (等量代换);(2)解:∵AB∥CD,∴∠1=∠B,在△ABC中,∠A+∠B+∠ACB=180°,又∵∠A=∠1+60°且∠ACB=50°,∴∠1+60°+∠1+50°=180°,∴∠1=35°,∴∠B=∠1=35°.18.解:(1)∠1=∠2,理由:∵AB∥EF∴∠3=∠2,∵BC∥DE∴∠3=∠1∴∠1=∠2.故答案为:∠1=∠2,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.(2)∠1+∠2=180°,理由:∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°.故答案为:∠1+∠2=180°,如果一个角的两边与另一个角的两边分别平行,那么这两个角互补.(3)由(1)(2)我们得到:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(4)设另一个角为x°,根据以上结论得:2x﹣30=x或2x﹣30+x=180°,解得:x=30,或x=70,故答案为:30°、30°或110°,70°.19.解:(1)如图①,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE=50°,∵∠CEF=90°,∴∠2=90°﹣∠1=40°,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2=40°;(2)∠ABE﹣∠C=60°,理由:如图②,过E作EK∥AB,则∠ABE+∠1=180°,∴∠1=180°﹣∠ABE,∵AB∥CD,EK∥AB,∴EK∥CD,∴∠C=∠2,∵∠CEF=∠1+∠2=120°,即180°﹣∠ABE+∠C=120°,∴∠ABE﹣∠C=180°﹣120°=60°.20.解:(1)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠ABE=∠BEF,∠FEC+∠ECD=180°,∵∠ABE=40°,∠BEC=140°,∴∠FEC=100°,∴∠ECD=180°﹣100°=80°;(2)如图①,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠ABE=∠BEF,∠FEC+∠ECD=180°,∴∠BEC=180°﹣∠ECD+∠ABE;(3)如图②延长BE和DC相交于点G,∵AB∥CD,∴∠ABE=∠G,∵BE∥CF,∴∠GEC=∠ECF,∵∠ECD=∠GEC+∠G,∴∠ECD=∠ECF+∠ABE,∵CF平分∠ECD,∴∠ECF=∠DCF,∴∠ECD=∠ECD+∠ABE,∴∠ABE=∠ECD.故答案为:80.。

2020-2021学年北师大版七年级下册数学2.3平行线的性质 同步练习

2020-2021学年北师大版七年级下册数学2.3平行线的性质 同步练习

2.3平行线的性质 同步练习一、单选题1.如图,AB AE ⊥于点A ,//AB CD ,42CAE ∠=︒,则ACD ∠=( )A .112°B .122°C .132°D .142° 2.如图,若直线12//l l ,则下列各式成立的是( )A .12∠=∠B .45∠=∠C .25180+=︒∠∠D .13180∠+∠=︒3.如图,已知//AB CD ,102ABE ∠=︒,则C ∠等于( )A .68︒B .78︒C .88︒D .102︒ 4.如图,已知//a b ,把三角尺的直角顶点放在直线a 上.若140∠=︒,则2∠的度数为( )A .130°B .140°C .145°D .150°5.如图,将一块带有 60° 角的直角三角板放置在一组平行线上,若∠1=35°,则 ∠2 的度数应该是( )A .60°B .35°C .30°D .25°6.如图,直线AB ∠CD ,且AC ∠AD ,∠ACD =58°,则∠BAD 的度数为( )A .29°B .30°C .32°D .58°7.如图,已知直线AB∠CD ,且直线EF 分别交AB 、CD 于M 、N 两点,NH 是∠MND 的角平分线.若∠AMN=56°,则∠MNH 的度数是( )A .28°B .30°C .34°D .56°8.如图,已知AB ∠CD ,∠A =120°,∠C =130°,那么∠APC 的度数是( )A .100°B .110°C .120°D .130° 9.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒ 10.如图,//AB CD ,EC 分别交,AB CD 于点,F C ,链接DF ,点G 是线段CD 上的点,连接FG ,若13∠=∠,24∠∠=,则结论∠ C D ∠=∠,∠FG CD ⊥,∠EC FD ⊥,正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠∠二、填空题 11.如图,直线//a b ,若111524'∠=︒,则2∠=________.12.如图所示,EF∠AB ,∠1=26°,则当AB∠CD 时,∠2=_____°.13.如图,已知40A F ∠=∠=︒,70C D ∠=∠=︒,则CED ∠=____________度14.如图所示,EF AB ⊥,∠1=25°,则当//AB CD 时,2∠=____°.15.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∠CD ,AF 平分BAE ∠,则AEG ∠=_____________三、解答题16.如图所示,已知//AB CD ,直线EF 分别交AB 、CD 于E 、F 两点,FG 平分EFD ∠,交AB 于点G .若∠1=52°,求BGF ∠的度数.17.如图,已知有四条直线:直线a ,直线b ,直线m ,直线n .若直线b m ⊥,直线a m ⊥.(1)判断直线a 与直线b 的位置关系,并说明理由; (2)说明直线1∠与2∠的数量关系,并说明理由; (3)若165∠=度,求出5∠的度数.18.如图,//AB CD ,12∠=∠,34∠=∠, 65B ︒∠=,求:BAD ∠的度数.请完成下面的推理和计算过程,并在括号内写明依据.∠//AB CD (已知)∠4∠=∠ ∠ ( ∠ )∠34∠=∠(已知)∠3∠=∠ ∠∠12∠=∠(已知)∠12CAF CAF ∠+∠=∠+∠∠BAE ∠=∠ ∠∠3∠=∠ ∠∠//AD BE ( ∠ )∠B ∠+∠ ∠ 180︒=∠65B ︒∠=∠BAD ∠= ∠° .参考答案1.C 2.D 3.B 4.A 5.D 6.C 7.A 8.B 9.B 10.B 11.6436'︒12.11613.11014.11515.30°16.116°.17.(1)平行;(2)∠1=∠2;(3)115°18.∠BAF ∠ ∠两直线平行,同位角相等 ∠BAF ∠ ∠CAD ∠ ∠CAD ∠ ∠内错角相等,两直线平行 ∠BAD ∠ ∠115°.。

北师大版七年级数学下册2.3《平行线的性质(第1课时)》习题含答案

北师大版七年级数学下册2.3《平行线的性质(第1课时)》习题含答案

第二章相交线与平行线2.3 平行线的性质(1)同步习题含答案一、填空题1.如图,已知AB∥CD,∠1=70°,则∠2=______,∠3=______,∠4=______.2.如图,a∥b,c∥d,∠1=60°,则∠2= ,∠3= ,∠4= .3.如图,AB∥CD,∠DCE=80°,则∠AEC的度数为.(第1题图)(第2题图)(第3题图)4.如图,如果AB‖PC,∠P=35°,那么∠PAB= ;如果AP‖BD,那么∠P=∠;如果AB‖CD,那么∠ABC+ ∠C = ;如果AD‖BC,∠2=18°,∠5=40°,那么∠ABC= .5.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,则∠2的度数为.6.已知CD‖AB,∠1=120°,∠2=80°,则∠E的度数为.7.已知AB‖CD‖EF,∠A=105°,∠ACE=45°,求∠E的度数为.8.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______.(第7题图)(第8题图)9.如图,AB∥CD∥EF,若∠A=45°,∠AFC=25°,则∠C=.10.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是.(第9题图)(第10题图)二、解答题11.如图,已知AG‖CF,AB‖CD,∠A=40°,求∠C的度数.(第11题图)12.如图,是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.已知梯形的两底AD‖BC,请你求出另外两个角的度数.(第12题图)13.如图,AB‖CD,∠EAB=45°,则∠FDC的度数是多少?(第13题图)14.如图所示,小张从家(图中A处)出发,向南偏东40°的方向走到学校(图中B 处),再从学校出发,向北偏西75°的方向走到小明家(图中C处),试问∠ABC 为多少度?(第14题图)15.如图,直线AC∥BD,AO、BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间有什么数量关系?线段AO与BO有什么位置关系?(第15题图)16.如图,已知∠A=∠F,∠C=∠D,求证:BD‖CE.(第16题图)第二章相交线与平行线2.3 平行线的性质(1)同步习题答案1.70°70°110°2.60°60°120°3.80°4.145° 3 180°58°5.100°6.40°7.30°8.120°9.20°10.50°11.解:∵AG‖CF,∠A=40°(已知),∴∠FEB=40°(两直线平行,同位角相等).∵AB‖CD(已知),∴∠C=∠FEB=40°(两直线平行,同位角相等).12.解:∵AD‖BC(已知)∴∠A+∠B=180°.∠C+∠D=180°(两直线平行,同旁内角互补).∵∠A=115°,∴∠B=180°-115°=65°.∵∠D=110°, ∴∠C=180°-110°=70°.∴∠B=65°,∠C=70°.13.解:∵∠EAB=45°∴∠BAD=135°(补角定义).∵AB‖CD(已知),∴∠ADC=∠BAD=135°(两直线平行,同位角相等).∴∠CDF=180°-∠ADC=180°-135°=45°(补角定义). ∴∠CDF=45°.14.解:∵AE‖BD(已知)∴∠DBA=∠EA B(两直线平行,内错角相等).∵∠EAB=40°,∴∠DBA=40°.∵∠DBC=75°,∴∠ABC=∠DBC-∠DBA=75°-40°=35°.∴∠ABC=35°.15. 证明:∴∠BAO +∠ABO =90°,AO ⊥BO理由如下;∵AC ‖BD (已知),∴∠CAB +∠ABD =180°(两直线平行。

2020-2021学年北师大版七年级下册数学 2.3平行线的性质 同步习题 (含解析)

2020-2021学年北师大版七年级下册数学 2.3平行线的性质 同步习题 (含解析)

2.3平行线的性质同步习题一.选择题1.如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=150°,则∠A为()A.110°B.120°C.135°D.150°2.如图,若AD∥BC,则下列结论正确的是()A.∠1=∠3B.∠2=∠4C.∠1=∠2D.∠2=∠33.下列各图形中均有直线m∥n,则能使结论∠A=∠1﹣∠2成立的是()A.B.C.D.4.如图,AB∥CD,∠A=30°,∠F=40°,则∠C=()A.65°B.70°C.75°D.80°5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.如图,直线MN∥PQ,点A是MN上一点,∠MAC的角平分线交PQ于点B,若∠1=20°,∠2=116°,则∠3的大小为()A.136°B.138°C.146°D.148°7.如图,CE是∠ACD的平分线,CD∥AB,DE⊥CE,若∠DEB=32°,则∠A的度数为()A.62°B.64°C.68°D.70°8.如图,a∥b,∠ABD的平分线交直线a于点C,CE⊥直线c于点E,∠1=24°,则∠2的大小为()A.114°B.142°C.147°D.156°9.如图,直线a∥b,∠1=70°,∠3=50°,则∠2=()A.80°B.70°C.60°D.50°10.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE=∠BAE,∠DBF=∠ABF,则∠ADB的度数是()A.45°B.50°C.60°D.无法确定二.填空题11.如图,a∥b,直角三角板直角顶点在直线b上.已知∠1=50°,则∠2的度数为度.12.如图,一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是.13.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=.14.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于.15.如图,已知AE∥BD,∠1=88°,∠2=28°.则∠C=.三.解答题16.如图AB∥CD,∠B=62°,EG平分∠BED,EG⊥EF,求∠CEF的度数.17.已知:如图,直线AB∥CD,直线EF与直线AB,CD分别交于点G,H;GM平分∠FGB,∠3=60°.求∠1的度数.18.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.参考答案一.选择题1.解:∵∠ABE=150°,∴∠ABC=30°,又∵AB∥CD,∴∠ABC=∠BCD=30°,∵CE平分∠ACD,∴∠ACD=2∠BCD=60°,又∵AB∥CD,∴∠A+∠ACD=180°,∴∠A=180°﹣∠ACD=180°﹣60°=120°.故选:B.2.解:∵AD∥BC,∴∠3=∠1,故选:A.3.解:A、∵m∥n,∴∠2=∠1+∠A,∴∠A=∠2﹣∠1,不符合题意;B、∵m∥n,∴∠1=∠2+∠A,∴∠A=∠1﹣∠2,符合题意;C、∵m∥n,∴∠1+∠2+∠A=360°,∴∠A=360°﹣∠2﹣∠1,不符合题意;D、∵m∥n,∴∠A=∠1+∠2,不符合题意;故选:B.4.解:∵∠A=30°,∠F=40°,∴∠FEB=∠A+∠F=30°+40°=70°,∵AB∥CD,∴∠C=∠FEB=70°,故选:B.5.解:∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.解:延长QC交AB于D,∵MN∥PQ,∴∠2+∠MAB=180°,∵∠2=116°,∴∠MAB=180°﹣116°=64°,∵AB平分∠MAC,∴∠MAB=∠BAC=64°,△BDQ中,∠BDQ=∠2﹣∠1=116°﹣20°=96°,∴∠ADC=180°﹣96°=84°,△ADC中,∠3=∠BAC+∠ADC=64°+84°=148°.故选:D.7.解:∵CE是∠ACD的平分线,∴∠ACE=∠DCE,∵DE⊥CE,∴∠CDE+∠DCE=90°,∠BED+∠AEC=90°,∵∠DEB=32°,∴∠AEC=90°﹣∠DEB=90°﹣32°=58°,∵CD∥AB,∴∠CDE=∠BED,∴∠DCE=∠AEC,∴∠ACE=∠AEC,∴∠A=180°﹣2∠AEC=180°﹣2×58°=64°.故选:B.8.解:∵∠1=24°,CE⊥直线c于点E,∴∠EAC=90°﹣∠1=90°﹣24°=66°,∵a∥b,∴∠EAC=∠ABD=66°,∵∠ABD的平分线交直线a于点C,∴∠CBD=,∴∠2=180°﹣∠CBD=180°﹣33°=147°,故选:C.9.解:如右图所示,∵a∥b,∴∠1=∠4,∴∠1=70°,∴∠4=70°,∵∠3=50°,∠2+∠3+∠4=180°,∴∠2=180°﹣∠3﹣∠4=180°﹣50°﹣70°=60°,故选:C.10.解:∵a∥b,∴∠EAB+∠ABF=180°,∵∠DAE=∠BAE,∠DBF=∠ABF,∴∠DAB+∠ABD=×180°=135°,∴∠ADB=180°﹣(∠DAB+∠ABD)=180°﹣135°=45°,故选:A.二.填空题11.解:如图,∵∠1+∠3=90°,∴∠3=90°﹣∠1=90°﹣50°=40°,∵a∥b,∴∠2=∠3=40°,故答案为:40.12.解:如图,∵AD∥BC,∠1=75°,∴∠3=∠1=75°,∵AB∥CD,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°.13.解:∵AE∥BD,∠1=130°,∠2=30°,∴∠CBD=∠1=130°.∵∠BDC=∠2,∴∠BDC=30°.在△BCD中,∠CBD=130°,∠BDC=30°,∴∠C=180°﹣130°﹣30°=20°.故答案为:20°.14.解:∵AB∥CD,∴∠BEG=∠1=40°,∵EF是∠GEB的平分线,∴∠BEF=∠BEG=×40°=20°,∵AB∥CD,∴∠2=180°﹣∠BEF=180°﹣20°=160°.故答案为:160°.15.解:∵AE∥BD,∴∠1=∠3=88°,∵∠3=∠2+∠C,∴∠C=∠3﹣∠2=88°﹣28°=60°,故答案为:60°.三.解答题16.解:∵AB∥CD,∠B=62°,∴∠BED=∠B=62°,∵EG平分∠BED,∴∠DEG=∠BED=31°,∵EG⊥EF,∴∠FEG=90°,∴∠DEG+∠CEF=90°,∴∠CEF=90°﹣∠DEG=90°﹣31°=59°.17.解:∵EF与CD交于点H,(已知),∴∠3=∠4.(对顶角相等),∵∠3=60°,(已知),∴∠4=60°.(等量代换),∵AB∥CD,EF与AB,CD交于点G,H,(已知),∴∠4+∠FGB=180°.(两直线平行,同旁内角互补),∴∠FGB=120°.∵GM平分∠FGB,(已知),∴∠1=60°.(角平分线的定义).18.证明:∵AB∥DE,∴∠B+∠BCE=180°,∠B=∠BCD,∵CM平分∠BCE,∴∠1=∠2,∵CN⊥CM,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4,∵∠3+∠4=∠BCD,∴∠B=2∠DCN.。

北师版数学七年级下册同步练习2.3 平行线的性质

北师版数学七年级下册同步练习2.3 平行线的性质

2.3 平行线的性质一、单选题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°2.如图.己知AB∥CD,∠1=70°,则∠2的度数是()A. 60°B. 70°C. 80°D. 1103.已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A. 30°B. 35°C. 40°D. 45°4.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A. 30°B. 35°C. 40°D. 45°5.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是()A. 100°B. 105°C. 115°D. 120°6.如图,下列说法错误的是()A. 若∠3=∠2,则b∥cB. 若∠3+∠5=180°,则a∥cC. 若∠1=∠2,则a∥cD. 若a∥b,b∥c,则a∥c7.如图,已知∠1=∠2,∠BAD=∠BCD,则下列结论⑴AB∥CD,⑵AD∥BC,⑶∠B=∠D,⑷∠D=∠ACB,正确的有()A. 1个B. 2个C. 3个D. 4个8.如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A. 80°B. 40°C. 60°D. 50°9.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A. 相等B. 互余或互补C. 互补D. 相等或互补10.已知直线a∥b,∠1和∠2互余,∠3=121°,那么∠4等于()A. 159°B. 149°C. 139°D. 21°11.如图,EF∥BC,AC平分∠BAF,∠B=50°,则∠C的度数是()A. 50°B. 55°C. 60°D. 65°12.如图,AB∥CD∥EF,则下列各式中正确的是()A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°二、填空题13.如右图,AB∥CD,直线l分别交AB、CD于E,F,∠1=56°,则∠2的度数是________°.14.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n C n D n(n>2),则AB n长为________15.完成下面的证明过程:已知:如图,∠D=123°,∠EFD=57°,∠1=∠2求证:∠3=∠B证明:∵∠D=123°,∠EFD=57°(已知)∴∠D+∠EFD=180°∴AD∥________(________)又∵∠1=∠2(已知)∴________∥BC(内错角相等,两直线平行)∴EF∥________(________)∴∠3=∠B(两直线平行,同位角相等)16.如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=48°.则∠B=________度.17.如图所示,OP∥QR∥ST,若∠2=120°,∠3=130°,则∠1=________度.18.如果两个角的两条边分别平行,而其中一个角比另一个角的4倍少30°,则较大角的度数为________°.三、解答题19.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC 的位置关系,并说明理由.20.如图所示,已知∠1=∠2,∠3=∠4,∠5=∠C,求证:DE//BF21.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.22.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.请你判断AD和BE的位置关系,并说明理由.四、综合题23.如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.(1)请你判断∠1与∠BDC的数量关系,并说明理由;(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.24.如图,AB∥CD,E为AB上一点,∠BED=2∠BAD.(1)求证:AD平分∠CDE;(2)若AC⊥AD,∠ACD+∠AED=165°,求∠ACD的度数.25.如图1,已知直线l1∥l2,且l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.点P在线段AB上.(1)若∠1=22°,∠2=33°,则∠3=________.(2)试找出∠1、∠2、∠3之间的等量关系,并说明理由.(3)应用(2)中的结论解答下列问题:如图2,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数.(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),直接写出结论即可.答案解析部分一、单选题1.【答案】B【解析】【分析】根据两直线平行,内错角相等求出∠1的内错角,再根据三角板的度数求差即可得解.【解答】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.故答案为:25°.【点评】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.2.【答案】D【解析】【解答】解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选D.【分析】由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.3.【答案】B【解析】【解答】解:∵∠3是△ADG的外角,∴∠3=∠A+∠1=30°+25°=55°,∵l1∥l2,∴∠3=∠4=55°,∵∠4+∠EFC=90°,∴∠EFC=90°﹣55°=35°,∴∠2=35°.故选B.【分析】先根据三角形外角的性质求出∠3的度数,再由平行线的性质得出∠4的度数,由直角三角形的性质即可得出结论.4.【答案】C【解析】【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.【分析】先根据平行线的性质得∠BEF=∠C=70°,然后根据三角形外角性质计算∠A的度数.5.【答案】C【解析】【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEF,∵∠1=25°,∠GEF=90°,∴∠2=25°+90°=115°,故选C.【分析】根据矩形性质得出AD∥BC,推出∠2=∠DEF,求出∠DEF即可.6.【答案】A【解析】【解答】解:A、若∠3=∠2,则d∥e,故此选项错误,符合题意;B、若∠3+∠5=180°,则a∥c,正确,不合题意;C、若∠1=∠2,则a∥c,正确,不合题意;D、若a∥b,b∥c,则a∥c,正确,不合题意;故选:A.【分析】直接利用平行线的判定方法分别进行判断得出答案.7.【答案】C【解析】【分析】①根据内错角相等,判定两直线平行;②根据两直线平行,同旁内角互补与同旁内角互补,两直线平行进行判定;③根据两直线平行,同旁内角互补与同角的补角相等判定;④∠D与∠ACB不能构成三线八角,无法判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的特征一、填空题:(每题4分,共28分)1.如图1,AB ∥CD ,AF 分别交AB 、CD 于A 、C ,CE 平分∠D CF ,∠1=100 °,则∠2=_____.21FE DCB AG 1F EDCBAG21FEDCB A(1) (2) (3) 2.如图2,AB ⊥EF ,CD ⊥EF ,∠1=∠F =45°,那么与∠F CD 相等的角有_________个,它们分别是___________________________。

3.如图3,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2=_________。

4.如图4,DH ∥EG ∥BC ,DC ∥EF ,图中与∠1相等的角有________________________。

K HG 1FED CBA DCBA ED C B A(4) (5) (6) 5.如图5,AD ∥BC ,∠A 是∠ABC 的2倍。

(1)∠A =_______度。

(2)若BD 平分∠ABC ,则∠ADB =___________。

6.如图6,BA ∥DE ,∠B =150°,∠D =130°,则∠C 的度数是__________。

7.如图7,∠ACD =∠BCD ,DE ∥BC 交AC 于E ,若∠ACB =6 0°,∠B =74°,则∠EDC =___°,∠CDB =____°。

E D C B A FEDCBA30︒北西南东B AγβαDCBA(7) (8) (9)(10)二、选择题:(每题4分,共28分)8.如图8,由AC ∥ED ,可知相等的角有( ) A.6对 B.5对 C.4对 D.3对 9.如图9,由A 到B 的方向是( )A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°10.如图10,如果AB ∥CD ,则角α、β、γ之间的关系为( ) A. α+β+γ=360° B. α-β+γ=180° C. α+β-γ=180° D. α+β+γ=180°11.如图11,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =( )A.60°B.50°C.30°D.20°F EDCB A FEDCBA(11) (12) 12.下列说法中,为平行线特征的是( )①两条直线平行, 同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行. A.① B.②③ C.④ D.②和④13.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能( )A.相等B.互补C.相等或互补D.相等且互补14.如图12,AB ⊥BC ,BC ⊥CD ,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )A.是同位角且相等;B.不是同位角但相等;C.是同位角但不等;D.不是同位角也不等三、解答题:(共44分)15.已知,如图,MN ⊥AB ,垂足为G ,MN ⊥CD ,垂足为H ,直线EF 分别交AB 、CD 于G 、Q ,∠GQC =120°,求∠EGB 和∠HGQ 的度数。

(7分)QH GM NFEDC BA16.如图,∠CAB =100°,∠ABF =130°,AC ∥MD ,BF ∥ME ,求∠DME 的度数,(7分)MFE D CBA17.如图,DE ∥CB ,试证明∠AED =∠A +∠B 。

(7分)ED CBA18.如图,∠1=∠2,∠C =∠D ,那么∠A =∠F ,为什么?(7)1432FEDCBA19.如图,AB ∥CD ,∠1=∠2,∠BDF 与 ∠EFC 相等吗?为什么?(8分)12F E DCB A 20.如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠ AED 与∠C 的关系。

(8分)15432F EDCBA答案:1. 50°2. 4,∠F,∠1,∠FAB,∠ABG3. 54°4. ∠FEK,∠DCF,∠CKG,∠EKD,∠KDH5.(1)120°(2)30°6.80°7.30°,76°8.B 9.B 10.C 11.D 12.A 13.C 14.B15. ∵MN⊥AB,MN⊥CD∴∠MGB=∠MHD=90°∴AB∥CD∴∠EGB=∠EQH∵∠EQH=180°-∠GQC=180°-120°=60°∴∠EGB=60°∴∠EGM=90°-∠EGB=30°∴∠EGB=60°,∠HGQ=30°16. ∵AC∥MD,∠CAB=100°∴∠CAB+∠AMD=180°,∠AMD=80°理可得∠EMF=50°∴∠DME=∠AMB-∠AMD-∠EMB=180°-80°-50°=50°17.作EF∥AB交OB于F∵EF∥AB∴∠2=∠A,∠3=∠B∵DE∥CB∴∠1=∠3∴∠1=∠B∴∠1+∠2=∠B+∠A∴∠AED=∠A+∠B18. ∵∠2=∠3,∠1=∠2∴∠1=∠3∴DB∥EC∴∠4=∠C∵∠C=∠D∴∠D=∠4∴DF∥AC∴∠A=∠F19. ∠BEF=∠EFC,理由如下:连结BC∵AB∥CD∴∠ABC=∠DCB∵∠1=∠2∴∠ABC-∠1=∠DCB-∠2即∠EBC=∠BCF∴BE∥CF∴∠BEF=∠EFC20.∠AED=∠C∵∠1+∠2=180°∵∠1+∠4=180°∴∠2=∠4∴EF∥AB∴∠3=∠5∵∠3=∠B∴∠5=∠B∴DE∥BC∴∠C=∠AED.3.平行线的特征同步练习一、判断题1.在同一平面内的两条直线被第三条直线所截,那么同位角相等.()2.如图1,如果∠A+∠B=180°,那么∠C+∠D=180°.()图13.两直线平行,同旁内角相等.()4.如果两条平行线被第三条直线所截,则一对同旁内角的平分线互相垂直.()5.两条直线被第三条直线所截,那么这两条直线平行.()二、选择题1.如图2,AB∥CD,则()图2A.∠1=∠5B.∠2=∠6C.∠3=∠7D.∠5=∠82.下列说法,其中是平行线性质的是()①两直线平行,同旁内角互补②同位角相等,两直线平行③内错角相等,两直线平行④垂直于同一条直线的两直线平行A.①B.②③C.④D.①④3.如图3,已知∠1=∠2,∠3=125°,那么∠4的度数为()图3A.45°B.55°C.65°D.75°4.如图4,已知AB∥D E,∠A=150°,∠D=140°,则∠C的度数是()图4A.60°B.75°C.70°D.50°5.若两条平行线被第三条直线所截,则同一对同位角的平分线互相()A.垂直B.平行C.重合D.相交三、填空题1.两条直线被第三条直线所截,如果内错角相等,则同旁内角_________.2.如图5,直线a∥b,若∠1=118°,则∠2=_________.图5 图6 图73.如图6,已知AB∥CD,BC∥DE,那么∠B+∠D=_________.4.如图7,已知CE是DC的延长线,AB∥DC,AD∥BC,若∠B=60°,则∠BCE=_________,∠D=_________,∠A=_________.四、填写推理的理由1.如图8,∵BE平分∠ABC(已知)图8∴∠1=∠3()又∵∠1=∠2(已知)∴_________=∠2∴_________∥_________()∴∠AED=_________()2.如图9,∵AB∥CD图9∴∠A+_________=180°( )∵BC∥AD,∴∠A+_________=180°( )∴∠B=_________.3.平行线的特征一、1.× 2.√ 3.× 4.√ 5.×二、1.C 2.A 3.B 4.C 5.B三、1.互补 2.62° 3.180° 4.60° 60° 120°四、1.角平分线定义∠3 DE BC内错角相等,两直线平行∠C两直线平行,同位角相等2.∠D两直线平行,同旁内角互补∠B两直线平行,同旁内角互补∠D4.用尺规作线段和角一、1.× 2.√ 3.× 4.√二、1.AB为半径画弧A′B′2.任意长OC CD三、略。

相关文档
最新文档