2018课标版理数一轮(3)第三章-导数及其应用(含答案)4 第四节 导数的综合应用
2018届高考(新课标)数学(理)大一轮复习检测第三章导数及其应用3-3Word版含答案

A 组 专项基础训练(时间:35分钟)1.定积分⎠⎛01(2x +e x)d x 的值为( )A .e +2B .e +1C .eD .e -1【解析】 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10=e.故选C.【答案】 C2.(2017·河北定州中学第一次考试)曲线C :y =x 3(x ≥0)在点x =1处的切线为l ,则由曲线C 、直线l 及x 轴围成的封闭图形的面积是( )A .1 B.112C.43D.34【答案】 B3.(2017·武汉市高三调研测试)一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向作直线运动,则由x =1运动到x =2时,F (x )做的功为( )A. 3 JB.233 JC.433J D .2 3 J 【解析】 ⎠⎛12F (x )cos 30°d x =⎠⎛1232(5-x 2)d x∴F (x )做的功为43 3 J.【答案】 C4.(2017·沈阳质量监测)由曲线y =x 2,y =x 围成的封闭图形的面积为( ) A.16 B.13 C.23D .1【答案】 BA .-1B .0C .1D .2【答案】 A7.(2017·广东东莞一中、松山湖学校联考)由曲线y =2x 2,直线y =-4x -2,直线x =1围成的封闭图形的面积为________.所求图形的面积为S =⎠⎛-11(2x 2)d x -⎠⎛-11(-4x -2)d x =43-(-4)=163.【答案】 163【答案】 369.求曲线y =x ,y =2-x ,y =-13x 所围成图形的面积.10.在某介质内作变速直线运动的物体,经过时间t (单位:s)所走过的路程s =4t 2(单位:m),若介质阻力F 与物体的运动速度v 成正比,且当v =10 m/s 时,F =5 N ,求物体在位移区间内克服介质阻力所做的功.【解析】 ∵物体经过时间t 所走过的路程s =4t 2, ∴速度v (t )=s ′=8t .设F =kv (t ),由“当v =10 m/s 时,F =5 N ”知k =12,∴F =4t ·d W =F d s =4t ·d(4t 2)=32t 2d t .∵s ∈,∴t ∈⎣⎢⎡⎦⎥⎤12,1, ∴物体在位移区间内克服介质阻力所做的功W =∫11232t 2d t =32t 33⎪⎪⎪⎪112=283(J).B 组 专项能力提升 (时间:15分钟)11.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x 等于( )A .-1B .-13C.13 D .1【答案】 BA .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 【解析】 方法一 S 1=13x 3⎪⎪⎪21=83-13=73,S 2=ln x ⎪⎪⎪21=ln 2<ln e =1,S 3=e x ⎪⎪⎪21=e 2-e ≈2.72-2.7=4.59,所以S 2<S 1<S 3.【答案】 B【答案】 D14.汽车以v=3t+2(单位:m/s)作变速直线运动时,在第1 s至第2 s间的1 s内经过的路程是________m.【答案】 6.515.(2015·陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为________.【解析】建立平面直角坐标系如图所示,可求得A(3,0),B(5,2),∴可求得抛物线方程为y=225x2.【答案】6 5。
全国通用2018版高考数学一轮复习第三章导数及其应用3.2.3导数与函数的综合应用课件文北师大版

当 x 变化时,f(x)与 f′(x)的变化情况如下:
x
(-∞,-2) -2 -2,-23 -23 -23,+∞
f′(x)
+
0
-
0
+
f(x)
c
c-3227
所以,当 c>0 且 c-3227<0,存在 x1∈(-4,-2),x2∈-2,-23, x3∈-23,0,使得 f(x1)=f(x2)=f(x3)=0.由 f(x)的单调性知,当且仅 当 c∈0,3227时, 函数 f(x)=x3+4x2+4x+c 有三个不同零点.
解 (1)因为 x=5 时,y=11,所以a2+10=11,a=2. (2)由(1)可知,该商品每日的销售量为 y=x-2 3+10(x-6)2, 所以商场每日销售该商品所获得的利润为 f(x)=(x-3)x-2 3+10x-62 =2+10(x-3)(x-6)2,3<x<6. 从而,f′(x)=10[(x-6)2+2(x-3)(x-6)] =30(x-4)·(x-6),
(2)因 V(r)=5π(300r-4r3)(0<r<5 3), 故 V′(r)=π5(300-12r2), 故 V′(r)=0,解得 r=5 或-5(因 r=-5 不在定义域内,舍去). 当 r∈(0,5)时,V′(r)>0,故 V(r)在(0,5)上为增函数; 当 r∈(5,5 3)时,V′(r)<0,故 V(r)在(5,5 3)上为减函数. 由此可知,V(r)在 r=5 处取得最大值,此时 h=8. 所以当 r=5,h=8 时,该蓄水池的体积最大.
于是,当 x 变化时,f′(x),f(x)的变化情况如下表:
x
(3,4)
4
(4,6)
f′(x) +
2018年高考数学课标通用(理科)一轮复习配套教师用书第三章 导数及其应用 大题冲关 Word版含答案

高考中导数问题的热点题型■特级教师张全函数与导数作为高中数学的核心内容,常常与其他知识结合起来,形成层次丰富的各类综合题,常涉及的问题:研究函数的性质(如求单调区间、求极值、最值)、研究函数的零点(或方程的根)、求参数的取值范围、不等式的证明或恒成立问题,运用导数解决实际问题是函数应用的延伸,由于传统数学应用题的位置被概率统计解答题占据,因此很少出现单独考查函数应用题的问题,但结合其他知识综合考查用导数求解最值的问题在每年的高考试题中都有体现.试题类型齐全,中、高档难度,突出对四大数学思想方法的考查.热点一利用导数研究函数性质的综合问题利用导数研究函数的单调性、极值和最值均是高考命题的重点内容,在选择题、填空题和解答题中都有涉及.主要有以下两种考查形式:()研究具体函数的单调性、极值或最值,常涉及分类讨论思想.()由函数的单调性、极值或最值,求解参数的值或取值范围.[典题] [·四川成都模拟]已知关于的函数()=+(-)(∈).()求函数()在点()处的切线方程;()若函数()有极小值,试求的取值范围;()若在区间[,+∞)上,函数()不出现在直线=-的上方,试求的最大值.[解] ()′()=+(-)(>),∴′()=,又()=,∴()在点()处的切线方程为=-.()′()=(>),令()=-+(>),①当=时,′()=无解,()无极小值;②当<时,()=>,∴()=有两解,,且<<;当<<时,()>,′()>,当>时,()<,′()<,此时()无极小值.③当>时,∵()=>,()的对称轴为=,要使函数()有极小值,则Δ>,即->.∴<或>,∴>.此时()=有两正解,,不妨设≤,则当<<时,()<,′()<.当>时,()>,′()>,此时()有极小值().综上所述,的取值范围为(,+∞).()由题意,()≤-,≥,即+(-)≤-,≥.下面证明:≤-,>.记()=-(-)=-+,>,则′()=-=,>,当<<时,′()>,①′()<当>时,=,,()≤()∴即≤-,>.①当≤时,()≤ ≤-;②当>时,取>+,则()=+(-)(-)>+(-)> +-=-,与题意矛盾.故的最大值为..判断函数的单调性,求函数的单调区间、极值等问题,最终归结到判断′()的符号问题上,而′()>或′()<,最终可转化为一个一元一次或一元二次不等式问题.若含参数,则含参数的二次不等式的解法常常涉及到参数的讨论问题,只要把握好下面的四个“讨论点”,一切便迎刃而解.分类标准一:二次项系数是否为零,目的是讨论不等式是否为二次不等式;分类标准二:二次项系数的正负,目的是讨论二次函数图象的开口方向;分类标准三:判别式的正负,目的是讨论二次方程是否有解;分类标准四:两根差的正负,目的是比较根的大小..若已知()的单调性,则转化为不等式′()≥或′()≤在单调区间上恒成立问题.[·山东济南模拟]已知函数()=-,∈.()当=时,求函数=()的图象在点(-,(-))处的切线方程;()讨论()的单调性.解:()因为当=时,()=-,′()=---=(-)-,所以(-)=,′(-)=-.从而=()的图象在点(-,(-))处的切线方程为-=-(+),即=--.。
2018-2019学年高中一轮复习理数:第三章 导数及其应用 含解析

第三章⎪⎪⎪导数及其应用第一节 导数的概念及运算本节主要包括2个知识点: 1.导数的运算; 2.导数的几何意义.突破点(一) 导数的运算[基本知识]1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]1.判断题(1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)若(ln x )′=1x ,则⎝⎛⎭⎫1x ′=ln x .( )(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) (7)y =cos 3x 由函数y =cos u ,u =3x 复合而成.( ) 答案:(1)× (2)× (3)√ (4)× (5)× (6)× (7)√ 2.填空题(1)已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3(2)函数y =ln xe x 的导函数为________________.答案:y ′=1-x ln xx e x(3)已知f (x )=2sin x +x ,则f ′⎝⎛⎭⎫π4=________.解析:∵f (x )=2sin x +x ,∴f ′(x )=2cos x +1,则f ′⎝⎛⎭⎫π4=2cos π4+1=2+1. 答案:2+1[全析考法][典例] (1)函数f (x )=(x +1)2(x -3),则其导函数f ′(x )=( ) A .3x 2-2x B .3x 2-2x -5 C .3x 2-xD .3x 2-x -5(2)(2018·钦州模拟)已知函数f (x )=x ln x ,则f ′(1)+f (4)的值为( )A .1-8ln 2B .1+8ln 2C .8ln 2-1D .-8ln 2-1(3)已知函数f (x )=sin x cos φ-cos x sin φ-1(0<φ<π2),若f ′⎝⎛⎭⎫π3=1,则φ的值为( ) A.π3B.π6C.π4D.5π12[解析] (1)法一:因为f (x )=(x +1)2(x -3)=(x +1)(x +1)(x -3),所以f ′(x )=[(x +1)(x +1)]′(x -3)+(x +1)(x +1)(x -3)′=2(x +1)(x -3)+(x +1)2=3x 2-2x -5.法二:f (x )=(x +1)2(x -3)=x 3-x 2-5x -3,则f ′(x )=3x 2-2x -5.(2)因为f ′(x )=ln x +1,所以f ′(1)=0+1=1,所以f ′(1)+f (4)=1+4ln 4=1+8ln 2.故选B.(3)因为f (x )=sin x cos φ-cos x sin φ-1⎝⎛⎭⎫0<φ<π2,所以f ′(x )=cos x cos φ+sin x sin φ=cos(x -φ),因为f ′⎝⎛⎭⎫π3=1,所以cos ⎝⎛⎭⎫π3-φ=1,因为0<φ<π2,所以φ=π3,故选A. [答案] (1)B (2)B (3)A[方法技巧] 导数运算的常见形式及其求解方法[全练题点]1.下列函数中满足f (x )=f ′(x )的是( ) A .f (x )=3+x B .f (x )=-x C .f (x )=ln xD .f (x )=0解析:选D 若f (x )=0,则f ′(x )=0,从而有f (x )=f ′(x ).故选D. 2.(2018·延安模拟)设函数f (x )=ax +3,若f ′(1)=3,则a =( ) A .2 B .-2 C .3D .-3解析:选C 由题意得,f ′(x )=a ,因为f ′(1)=3,所以a =3,故选C.3.(2018·南宁模拟)设f (x )在x =x 0处可导,且li m Δx →f (x 0+3Δx )-f (x 0)Δx=1,则f ′(x 0)=( )A .1B .0C .3 D.13解析:选D 因为lim Δx →0f (x 0+3Δx )-f (x 0)Δx =1,所以lim Δx →0 ⎣⎡⎦⎤3×f (x 0+3Δx )-f (x 0)3Δx =1,即3f ′(x 0)=1,所以f ′(x 0)=13.故选D.4.(2018·桂林模拟)已知函数y =x cos x -sin x ,则其导函数y ′=( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B 函数y =x cos x -sin x 的导函数y ′=cos x -x sin x -cos x =-x sin x ,故选B.5.(2018·九江一模)已知f (x )是(0,+∞)上的可导函数,且f (x )=x 3+x 2f ′(2)+2ln x ,则函数f (x )的解析式为( )A .f (x )=x 3-32x 2+2ln xB .f (x )=x 3-133x 2+2ln x C .f (x )=x 3-3x 2+2ln x D .f (x )=x 3+3x 2+2ln x解析:选B ∵f (x )=x 3+x 2f ′(2)+2ln x ,∴f ′(x )=3x 2+2xf ′(2)+2x ,令x =2,得f ′(2)=12+4f ′(2)+1,∴f ′(2)=-133,∴f (x )=x 3-133x 2+2ln x ,故选B.突破点(二) 导数的几何意义[基本知识]函数f (x )在点x 0处 的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[基本能力]1.判断题(1)曲线的切线与曲线不一定只有一个公共点.( ) (2)求曲线过点P 的切线时P 点一定是切点.( ) 答案:(1)√ (2)× 2.填空题(1)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=0(2)已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x 0=-x 0+1,∴x 0=2,a =e 2. 答案:e 2(3)曲线f (x )=x ln x 在点M (1,f (1))处的切线方程为________.解析:由题意,得f ′(x )=ln x +1,所以f ′(1)=ln 1+1=1,即切线的斜率为1.因为f (1)=0,所以所求切线方程为y -0=x -1,即x -y -1=0.答案:x -y -1=0[全析考法]“过点A A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.求切点坐标[例2] (2018·32P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[解析] ∵f (x )=x 3+ax 2,∴f ′(x )=3x 2+2ax ,∵曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,∴3x 20+2ax 0=-1,∵x 0+x 30+ax 20=0,解得x 0=±1,∴当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.故选D.[答案] D求参数值或范围[例3] (1)(2018·长沙一模)若曲线y =12e x 2与曲线y =a ln x 在它们的公共点P (s ,t )处具有公共切线,则实数a =( )A .-2 B.12 C .1D .2(2)(2018·南京调研)若函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,则实数a 的取值范围是________.[解析] (1)y =12e x 2的导数为y ′=x e ,在点P (s ,t )处的切线斜率为s e ,y =a ln x 的导数为y ′=a x ,在点P (s ,t )处的切线斜率为a s ,由题意知,s e =a s ,且12e s 2=a ln s ,解得ln s =12,s 2=e ,故a =1.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,故1x +a =2,即a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).[答案] (1)C (2)(-∞,2)[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.[全练题点]1.[考点一]曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.2.[考点一]曲线y =x e x +2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x +2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.3.[考点二]已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.4.[考点三](2018·东城期末)若直线y =-x +2与曲线y =-e x+a相切,则a 的值为( )A .-3B .-2C .-1D .-4解析:选A 由于y ′=(-e x +a )′=-e x +a ,令-e x +a =-1,得切点的横坐标为x =-a ,所以切点为(-a ,-1),进而有-(-a )+2=-1,故a =-3.5.[考点三](2018·西安一模)若曲线y =e x -ae x (a >0)上任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,则a =( )A.112 B.13 C.34D .3解析:选C y ′=e x +a e x ,∵y =e x -aex 在任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,∴e x +a e x ≥3,由a >0知,e x +a ex ≥2a ⎝⎛⎭⎫当且仅当e x =a e x 时等号成立,故2a =3,故a =34,故选C.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+ 1)-x 2x 2+1.根据题意,有⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f(x)为偶函数,所以当x>0时,f(x)=f(-x)=ln x-3x,所以当x>0时,f′(x)=1x-3,则f′(1)=-2.所以y=f(x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.答案:y=-2x-1[课时达标检测][小题对点练——点点落实]对点练(一)导数的运算1.(2018·泉州质检)设函数f(x)=x(x+k)(x+2k),则f′(x)=()A.3x2+3kx+k2B.x2+2kx+2k2C.3x2+6kx+2k2D.3x2+6kx+k2解析:选C法一:f(x)=x(x+k)(x+2k),f′(x)=(x+k)(x+2k)+x[(x+k)(x+2k)]′=(x+k)·(x+2k)+x(x+2k)+x(x+k)=3x2+6kx+2k2,故选C.法二:因为f(x)=x(x+k)(x+2k)=x3+3kx2+2k2x,所以f′(x)=3x2+6kx+2k2,故选C.2.(2018·泰安一模)给出下列结论:①若y=log2x,则y′=1x ln 2;②若y=-1x,则y′=12x x;③若f(x)=1x2,则f′(3)=-227;④若y=ax(a>0),则y′=a x ln a.其中正确的个数是()A.1 B.2 C.3 D.4解析:选D根据求导公式可知①正确;若y=-1x=-x-12,则y′=12x-32=12x x,所以②正确;若f(x)=1x2,则f′(x)=-2x-3,所以f′(3)=-227,所以③正确;若y=ax(a>0),则y′=a x ln a,所以④正确.因此正确的结论个数是4,故选D.3.若函数y=x m的导函数为y′=6x5,则m=()A.4 B.5C.6 D.7解析:选C因为y=x m,所以y′=mx m-1,与y′=6x5相比较,可得m=6.4.已知函数f(x)=xe x(e是自然对数的底数),则其导函数f′(x)=()A.1+x e xB.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e x e 2x =1-x e x ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞) B .(0,2) C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x =2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B. 6.(2018·信阳模拟)已知函数f (x )=a e x +x ,若1<f ′(0)<2,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x +x ,则f ′(x )=(a e x )′+x ′=a e x +1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎡⎦⎤π2,f ⎝⎛⎭⎫π2处的切线的倾斜角α为( ) A.π6 B.π4 C.π3D.π2解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝⎛⎭⎫π2=1,故α=π4,选B.2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( )A .0条B .1条C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=(a 3-a 2-2a +1)-1a -(-1),所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8.5.(2018·临川一模)函数f (x )=x +ln xx的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln xx ,f ′(x )=1+1-ln x x 2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x ≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x 2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x ,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧ F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min=0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( ) A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a =1,a =12,故b =⎝⎛⎭⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝⎛⎭⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2.∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 2.(2018·青岛期末)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x-4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx2,所以⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝⎛⎭⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝⎛⎭⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝⎛⎭⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.第二节 导数与函数的单调性本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间;2.利用导数解决函数单调性的应用问题.突破点(一)利用导数讨论函数的单调性或求函数的单调区间[基本知识]1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.由函数的单调性与导数的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.当x∈(a,b)时,f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上单调递增(减)的充分条件.[基本能力]1.判断题(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.()(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.()(3)f′(x)>0是f(x)为增函数的充要条件.()答案:(1)×(2)√(3)×2.填空题(1)函数f(x)=e x-x的减区间为________.答案:(-∞,0)(2)函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.答案:单调递增(3)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.答案:3[全析考法][例1] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时, f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时, f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x - 2a ⎝⎛⎭⎫x + 2a . ①若0<a <2,则 2a >1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时, f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0< 2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫ 2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫ 2a ,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] (2018·山东德州期中)已知函数f (x )=13x 3-(2m +1)x 2+3m (m +2)x +1,其中m为实数.(1)当m =-1时,求函数f (x )在[-4,4]上的最大值和最小值; (2)求函数f (x )的单调递增区间.[解] (1)当m =-1时,f (x )=13x 3+x 2-3x +1,f ′(x )=x 2+2x -3=(x +3)(x -1).当x <-3或x >1时,f ′(x )>0,f (x )单调递增; 当-3<x <1时,f ′(x )<0,f (x )单调递减. ∴当x =-3时,f (x )极大值=10; 当x =1时,f (x )极小值=-23.又∵f (-4)=233,f (4)=793,∴函数f (x )在[-4,4]上的最大值为793,最小值为-23.(2)f ′(x )=x 2-2(2m +1)x +3m (m +2) =(x -3m )(x -m -2).当3m =m +2,即m =1时,f ′(x )=(x -3)2≥0, ∴f (x )单调递增,即f (x )的单调递增区间为(-∞,+∞).当3m >m +2,即m >1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <m +2或x >3m , 此时f (x )的单调递增区间为(-∞,m +2),(3m ,+∞).当3m <m +2,即m <1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <3m 或x >m +2, 此时f (x )的单调递增区间为(-∞,3m ),(m +2,+∞). 综上所述:当m =1时,f (x )的单调递增区间为(-∞,+∞); 当m >1时,f (x )的单调递增区间为(-∞,m +2),(3m ,+∞); 当m <1时,f (x )的单调递增区间为(-∞,3m ),(m +2,+∞).[方法技巧] 用导数求函数单调区间的三种类型及方法[全练题点]1.[考点二](2018·江西金溪一中等校联考)已知函数f (x )与f ′(x )的图象如图所示,则函数g (x )=f (x )ex 的单调递减区间为( )A .(0,4)B .(-∞,1),⎝⎛⎭⎫43,4C.⎝⎛⎭⎫0,43 D .(0,1),(4,+∞)解析:选D g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,令g ′(x )<0,即f ′(x )-f (x )<0,由题图可得x ∈(0,1)∪(4,+∞).故函数g (x )的单调递减区间为(0,1),(4,+∞).故选D.2.[考点二](2018·芜湖一模)函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 3.[考点一]已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.4.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.[全析考法]已知函数的单调性求参数的取值范围[例1] (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立, 即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3]. (2)因为f (x )在区间(-1,1)上为减函数, 所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3. 即a 的取值范围为[3,+∞). (3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a ,b )上恒为0.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1) 的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定(2)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)设g (x )=f (x )ex ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2, 所以e x 1f (x 2)>e x 2f (x 1).(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)A (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎡⎦⎤f (x )x ′;(4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→⎣⎡⎦⎤f (x )e x ′.[全练题点]1.[考点一]若函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,则( ) A .a ≥3 B .a =3 C .a ≤3D .0<a <3解析:选A 因为函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,所以f ′(x )=3x 2-2ax ≤0在[0,2]上恒成立.当x =0时,显然成立,当x ≠0时,a ≥32x 在(0,2]上恒成立.因为32x ≤3,所以a ≥3.综上,a ≥3. 2.[考点一]已知函数f (x )=12x 2-t cos x ,若其导函数f ′(x )在R 上单调递增,则实数t 的取值范围为( )A.⎣⎡⎦⎤-1,-13 B.⎣⎡⎦⎤-13,13 C .[-1,1]D.⎣⎡⎦⎤-1,13解析:选C 因为f (x )=12x 2-t cos x ,所以f ′(x )=x +t sin x .令g (x )=f ′(x ),因为f ′(x )在R 上单调递增,所以g ′(x )=1+t cos x ≥0恒成立,所以t cos x ≥-1恒成立,因为cos x∈[-1,1],所以⎩⎪⎨⎪⎧-t ≥-1,t ≥-1,所以-1≤t ≤1,即实数t 的取值范围为[-1,1].3.[考点二]对于R 上可导的任意函数f (x ),若满足1-xf ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.[考点二](2018·江西赣州联考)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)解析:选A 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).5.[考点一](2018·四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)6.[考点一](2018·辽宁大连双基测试)已知函数f (x )=ln x +axx +1(a ∈R ).(1)若函数f (x )在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f (x )的图象与直线y =2x 相切,求a 的值.解:(1)f ′(x )=1x +a (x +1)-ax (x +1)2=(x +1)2+axx (x +1)2.∵函数f (x )在区间(0,4)上单调递增,∴f ′(x )≥0在(0,4)上恒成立,∴(x +1)2+ax ≥0, 即a ≥-x 2+2x +1x =-⎝⎛⎭⎫x +1x -2在(0,4)上恒成立. ∵x +1x ≥2,当且仅当x =1时取等号,∴a ∈[-4,+∞).(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=ln x 0+ax 0x 0+1,∴1x 0+a (x 0+1)2=2,①且2x 0=ln x 0+ax 0x 0+1.② 由①得a =⎝⎛⎭⎫2-1x 0(x 0+1)2,③ 代入②,得2x 0=ln x 0+(2x 0-1)(x 0+1), 即ln x 0+2x 20-x 0-1=0.令F (x )=ln x +2x 2-x -1,x >0,则 F ′(x )=1x +4x -1=4x 2-x +1x >0, ∴F (x )在(0,+∞)上单调递增. ∵F (1)=0,∴x 0=1,代入③式得a =4.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x . 因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立, 即k ≥1x 在区间(1,+∞)上恒成立. 因为x >1,所以0<1x <1,所以k ≥1.故选D.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.3.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.4.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[课时达标检测][小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( ) A .(-∞,-2) B .[3,+∞) C .[-2,3]D.⎣⎡⎭⎫12,+∞ 解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x -2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧ 4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,故选B. 3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.解析:函数f (x )的定义域为(0,+∞),再由f ′(x )=1x -x -1>0可解得0<x <5-12.答案:⎝ ⎛⎭⎪⎫0,5-12 对点练(二) 利用导数解决函数单调性的应用问题1.(2018·河南洛阳模拟)已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B f ′(x )=-3x 2+2ax -1,由题意知,f ′(x )≤0在R 上恒成立,则Δ=(2a )2-4×(-1)×(-3)≤0恒成立,解得-3≤a ≤ 3.2.(2018·河北正定中学月考)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:选B 由f (x )=f (2-x )可知,f (x )的图象关于直线x =1对称.根据题意知当x ∈(-∞,1)时,f ′(x )>0,f (x )为增函数,当x ∈(1,+∞)时,f ′(x )<0,f (x )为减函数,所以f (3)=f (-1)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .故选B.3.(2018·河北唐山期末)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x的取值范围是( )A .(-1,3)B .(-∞,-3)∪(3,+∞)C .(-3,3)D .(-∞,-1)∪(3,+∞)解析:选D 因为f (-x )=ln(e -x +e x )+(-x )2=ln(e x +e -x )+x 2=f (x ),所以函数f (x )是偶函数.通过导函数可知函数y =e x +e-x在(0,+∞)上是增函数,所以函数f (x )=ln(e x +e-x)+x 2在(0,+∞)上也是增函数,所以不等式f (2x )>f (x +3)等价于|2x |>|x +3|,解得x <-1或x >3.故选D.4.(2018·云南大理州统测)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 017为奇函数,则不等式f (x )+2 017e x <0的解集是( )A .(-∞,0)B .(0,+∞) C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞解析:选B 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 017为奇函数,所以f (0)=-2 017,h (0)=-2 017.因为f (x )+2 017e x <0,所以f (x )e x <-2 017,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 017e x <0的解集是(0,+∞).故选B.5.若函数f (x )=x +4mx -m ln x 在[1,2]上为减函数,则m 的最小值为( ) A.32 B.34 C.23D.43解析:选C 因为f (x )=x +4m x -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x2-m x =x 2-mx -4mx2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C.6.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,。
2018版高考数学(理)一轮复习文档:第三章导数及其应用3.1含解析

1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是错误! 错误!=错误!错误!,我们称它为函数y =f (x )在x =x 0处的导数,记作()00|x x f x y ''=或,即f ′(x 0)=错误! 错误!=错误! 错误!.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=04.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[错误!]′=错误!(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y对u的导数与u对x的导数的乘积.【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2。
[错误!]′=-错误!(f(x)≠0).3.[af(x)+bg(x)]′=af′(x)+bg′(x).4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡".【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( ×)(2)f′(x0)与[f(x0)]′表示的意义相同.(×)(3)曲线的切线不一定与曲线只有一个公共点.(√)(4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)1.(教材改编)若f(x)=x·e x,则f′(1)等于()A.0 B.e C.2e D.e2答案C解析f′(x)=e x+x·e x,∴f′(1)=2e。
2018高考数学文人教新课标大一轮复习配套文档:第三章

3.2 导数的应用(一)1.函数的单调性与导数在某个区间(a,b)内,如果f ′(x)>0,那么函数y=f(x)在这个区间内____________;如果f ′(x)<0,那么函数y=f(x)在这个区间内____________;如果在某个区间内恒有f ′(x)=0,那么函数f(x)在这个区间上是________.2.函数的极值与导数(1)判断f(x0)是极大值,还是极小值的方法:一般地,当f ′(x0)=0时,①如果在x0附近的左侧 f ′(x)>0,右侧f ′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧__________,右侧__________,那么f(x0)是极小值.(2)求可导函数极值的步骤:①求f ′(x);②求方程__________的根;③检查f ′(x)在上述根的左右对应函数值的符号.如果左正右负,那么f(x)在这个根处取得________;如果左负右正,那么f(x)在这个根处取得__________.3.函数的最值与导数(1)在闭区间上图象连续不断的函数f(x)在上必有最大值与最小值.(2)若函数f(x)在上单调递增,则____________为函数在上的最小值,__________为函数在上的最大值;若函数f(x)在上单调递减,则__________为函数在上的最大值,__________为函数在上的最小值.(3)设函数f(x)在上图象连续不断,在(a,b)内可导,求f(x)在上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与端点处的函数值______,______进行比较,其中最大的一个是________,最小的一个是________.自查自纠1.单调递增单调递减常数函数2.(1)②f ′(x)<0 f ′(x)>0(2)②f ′(x)=0 ③极大值极小值3.(2)f(a) f(b) f(a) f(b)(3)②f(a) f(b) 最大值最小值(2016·宁夏模拟)函数f(x)=x+eln x的单调递增区间为( )A.(0,+∞) B.(e,+∞)C.(-∞,0)和(0,+∞) D.R解:函数定义域为(0,+∞),f ′(x)=1+ex>0,故单调递增区间是(0,+∞).故选A.(2016·四川模拟)已知函数y=f(x)的图象是下列四个图象之一,且其导数y=f ′(x)的图象如图所示,则该函数的图象是()解:由函数y =f (x )的导函数y =f ′(从左到右先增后减,知y =f (x )图象切线的斜率对应先增后减.故选B .(2016·杭州模拟)若函数f (x )=kx -ln ,+∞)上单调递增,则实数k 的取值范围是A .(-∞,-2]B .(-∞,-1]C ..类型三 导数法研究函数的极值问题 (2014·重庆)已知函数f (x )-32,其中a ∈R ,且曲线y =f (x )在点(1,的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x (1,f (1))处的切线垂直于直线y =12x 知-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,.依题意得f ′(x )=e x-2.当x <ln2时,x )是减函数,此时f (x )>f (ln2)=1-2ln2<0;当x >ln2时,f ′(x )>0,f (x 函数,因此对照各选项知,C 正确.故选C .2016·西安模拟)若函数f (x )=x 3-tx 2+区间上单调递减,则实数t 的取值范围是( ⎦⎥⎤∞,518B .(-∞,3] ⎭⎪⎫,+∞D .上单调递减,则有)≤0在上恒成立,即3x 2-2tx +3≤0,即为原点,AO所在直线为依题意可设抛物线的方程为,4).。
2018课标版文数一轮(3)第三章-导数及其应用(含答案)4-第四节 导数与函数的综合问题

以当x=0时,函数g(x)取得最小值g(0)=1,根据题意将不等式转化为2m-1 ≥g(x)min=1,所以m≥1,故选C.
栏目索引
命题角度二 存在性问题 a 1 2 x x 典例2 已知函数f(x)=x-(a+1)ln x- (a∈R),g(x)= x +e -xe .
x
2
(1)当x∈[1,e]时,求f(x)的最小值;
函数y=f(x)-a的零点个数即直线y=a与曲线y=f(x)的交点个数.因为1<a<2,
所以交点个数为4.故选C.
栏目索引
3.若a>3,则方程x3-ax2+1=0在(0,2)上的实根个数为 ( A.0 B.1 C.2 D.3
)
答案 B 设f(x)=x3-ax2+1,则f '(x)=3x2-2ax=x(3x-2a),由于a>3,则在(0,2) 上f '(x)<0,y=f(x)为减函数,而f(0)=1>0, f(2)=9-4a<0,则方程x3-ax2+1=0在 (0,2)上恰有1个实根,故选B. 4.设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则
2018年高考新课标数学(理)一轮考点突破练习第三章导数及其应用Word版含答案

第三章 导数及其应用1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.①常见的基本初等函数的导数公式: (C )′=0(C 为常数); (x n)′=nxn -1(n ∈N +);(sin x )′=cos x; (cos x )′=-sin x ; (e x)′=e x;(a x)′=a xln a (a >0,且a ≠1); (ln x )′=1x ;(log a x )′=1xlog a e(a >0,且a ≠1).②常用的导数运算法则: 法则1:′=u ′(x )±v ′(x ). 法则2:′=u ′(x )v (x )+u (x )v ′(x ). 法则3:⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).7.会用导数解决实际问题.8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.9.了解微积分基本定理的含义.3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx 就叫函数y =f (x )从x 0到x 0+Δx之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处 ,并把这个极限叫做f (x )在点x 0处的导数,记作 或y ′|x =x 0,即f ′(x 0)=lim ΔyΔx=limf (x 0+Δx )-f (x 0)Δx.(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′= limf (x +Δx )-f (x )Δx.(3)用定义求函数y =f (x )在点x 0处导数的方法①求函数的增量Δy = ; ②求平均变化率ΔyΔx = ;③取极限,得导数f ′(x 0)=lim ΔyΔx .2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .3.基本初等函数的导数公式 (1)c ′= (c 为常数), (x α)′= (α∈Q *); (2)(sin x )′=____________, (cos x )′=____________; (3)(ln x )′=____________, (log a x )′=____________; (4)(e x )′=____________, (a x)′=____________. 4.导数运算法则(1)′=__________________. (2)′=____________________;当g (x )=c (c 为常数)时,即′=____________.(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________ (g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ), u =g (x )的导数间的关系为______________.即y对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠:1.(1)可导 f ′(x 0) (3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0) 3.(1)0 αx α-1(2)cos x -sin x(3)1x1x ln a(4)e x a x ln a4.(1)f ′(x )±g ′(x )(2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x ) (3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x(2014·全国卷)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解:因为y ′=a -1x +1,所以切线的斜率为a -1=2,解得a =3.故选D .(2015·陕西)函数y =x e x在其极值点处的切线方程为( )A .y =e xB .y =(1+e)xC .y =1eD .y =-1e解:记y =f (x )=x e x,则f ′(x )=(1+x )e x,令f ′(x )=0,得x =-1,此时f (-1)=-1e .故函数 y =x e x在其极值点处的切线方程为y =-1e .故选D .(2016·山东)若函数y =f (x )的图象上存在两点,使得函数的图象在此两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =x 3B .y =ln xC .y =e xD .y =sin x 解:选项A 、B 、C 中函数的导数均为正值或非负值,故两点处的导数之积不可能为-1,排除A 、B 、C.或由y ′=cos x ,cos0cos π=-1知D 正确,故选D .(2014·广东)曲线y =e-5x+2在点(0,3)处的切线方程为________.解:因为y ′=-5e-5x,所求切线的斜率为-5e 0=-5,故所求切线的方程为y -3=-5x ,即y =-5x +3(或5x +y -3=0).故填y =-5x +3(或5x +y -3=0).(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解:x >0时,-x <0,f (-x )=ln x -3x =f (x ),所以当x >0时,f ′(x )=1x -3,f ′(1)=-2,所以切线方程为y +3=-2(x -1),整理得y =-2x -1.故填y =-2x -1(或2x +y +1=0).类型一 导数的概念用定义法求函数f (x )=x 2-2x -1在x =1处的导数.解法一:Δy =f (x +Δx )-f (x )=(x +Δx )2-2(x +Δx )-1-(x 2-2x -1) =x 2+2x ·Δx +Δx 2-2x -2Δx -1-x 2+2x +1=(2x -2)Δx +Δx 2,所以 Δy Δx =lim (2x -2)Δx +Δx 2Δx =lim=2x -2.所以函数f (x )=x 2-2x -1在x =1处的导数为f ′(x )|x =1=2×1-2=0.解法二:Δy =f (1+Δx )-f (1)=(1+Δx )2-2(1+Δx )-1-(12-2×1-1) =1+2Δx +Δx 2-2-2Δx -1+2=Δx 2, 所以 Δy Δx = Δx 2Δx =Δx =0.故f ′(x )|x =1=0.点拨:利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx ,再化简平均变化率,最后判断当Δx →0时,ΔyΔx 无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s时的高度h (t )=5t 3+30t 2+45t +4(单位:m).(1)求航天飞机在第1 s 内的平均速度; (2)用定义方法求航天飞机在第1 s 末的瞬时速度.解:(1)航天飞机在第1 s 内的平均速度为h (1)-h (0)1=5+30+45+4-41=80 m/s.(2)航天飞机第1 s 末高度的平均变化率为h (1+Δt )-h (1)Δt=错误!=5Δt 3+45Δt 2+120Δt Δt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120,所以航天飞机在第 1 s 末的瞬时速度为 120 m/s.类型二 求导运算求下列函数的导数: (1)y =(3x 2-4x )(2x +1); (2)y =x 2sin x ; (3)y =3x e x -2x+e ; (4)y =ln xx 2+1;(5)y =ln(2x -5).解:(1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x , 所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=(3x e x )′-(2x)′+e ′ =(3x )′e x +3x (e x )′-(2x)′ =3x e x ln3+3x e x -2xln2 =(ln3+1)(3e)x -2xln2. (4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2. (5)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5,即y ′=22x -5.点拨: 求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =e xcos x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =ln xe x ;(4)y =ln 1+x 2.解:(1)y ′=(e x)′cos x +e x(cos x )′= e x(cos x -sin x ).(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x3.(3)y ′=(ln x )′e x -(e x)′ln x(e x )2=1x e x -e xln x (e x )2=1x -ln x e x=1-x ln x x e x . (4)y =ln 1+x 2=12ln(1+x 2),所以y ′=12·11+x2(1+x 2)′=12·11+x 2·2x =x 1+x2. 类型三 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程. 解:(1)y ′=x 2,设切点为(x 0,y 0), 故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝ ⎛⎭⎪⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)因为y ′=x 2,且P (2,4)在曲线y =13x 3+43上, 所以在点P (2,4)处的切线的斜率k = y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43,又因为切线的斜率k = y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0, 所以x 20(x 0+1)-4(x 0+1)(x 0-1)=0, 所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y + 2=0.点拨:曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.(2016·四川)设直线l 1,l 2分别是函数f (x )=⎩⎪⎨⎪⎧-ln x ,0<x <1,ln x ,x >1 图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y轴相交于点A ,B ,则△PAB 的面积的取值范围是( )A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)解:设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设 x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1,所以x 2=1x 1.所以切线l 1的方程为y -ln x 1=1x 1(x -x 1),切线l 2的方程为y+ln x 2=-1x 2(x -x 2),即y -ln x 1=-x 1⎝ ⎛⎭⎪⎫x -1x 1.分别令 x =0得A (0,-1+ln x 1),B (0,1+ln x 1).易得l 1与l 2的交点P 的横坐标x P =21x 1+x 1,因为x 1>1,所以S △PAB =12|y A -y B |·|x P |=21x 1+x 1<1,所以0<S △PAB <1.故选A .1.“函数在点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在点x 0处的导数f ′(x 0)是一个常数,不是变量.(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x ).(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.函数y =f (x )在x =x 0处的导数f ′(x 0)的两种常用求法(1)利用导数的定义,即求 limf (x 0+Δx )-f (x 0)Δx的值;(2)求导函数在x 0处的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.关于用导数求曲线的切线问题(1)圆是一种特殊的封闭曲线,注意圆的切线的定义并不适用于一般的曲线.(2)求曲线在某一点处的切线方程,这里的某一点即是切点,求解步骤为先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.(3)求过某点的曲线的切线方程,这里的某点可能是切点(点在曲线上的情形),也可能不是切点,即便点在曲线上,切线也不一定唯一,如本节例3(3),就极易漏掉切线x -y +2=0.1.(2016·衡水调研)曲线y =1-2x +2在点 (-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2 解:因为y =1-2x +2=xx +2,所以y ′=x +2-x (x +2)2=2(x +2)2,y ′|x =-1=2,所以曲线在点(-1,-1)处的切线斜率为2,所以所求切线方程为y +1=2(x +1),即y =2x +1.故选A .2.(2016·武汉模拟)若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )A .2B .0C .-2D .-4解:f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2,所以 f ′(0)=2f ′(1)+0=-4.故选D .3.(2016·济南模拟)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2 解:设切点坐标为(x 0,y 0),由y ′=1x +a知 0x x y ='=1x 0+a=1,即x 0+a =1.解方程组⎩⎪⎨⎪⎧x 0+a =1,y 0=ln (x 0+a ),y 0=x 0+1, 得⎩⎪⎨⎪⎧x 0=-1,y 0=0,a =2.故选B . 4.(2016·丽水模拟)设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为( ) A .9x -y -16=0 B .9x +y -16=0C .6x -y -12=0D .6x +y -12=0解:f ′(x )=3x 2+2ax +a -3,由于f ′(x )是偶函数,所以a =0,此时f ′(x )=3x 2-3,f ′(2)=9,f (2)=2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2),即9x -y -16=0.故选A .5.下面四个函数图象中,有函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R )的导函数y =f ′(x )的图象,则f (-1)=()A.13 B .-23 C.73 D .-13或53 解:因为f ′(x )=x 2+2ax +a 2-1,所以f ′(x )的图象开口向上,则排除②④.若f ′(x )的图象为①,此时a =0,f (-1)=53;若f ′(x )的图象为③,此时a 2-1=0,又对称轴x =-a >0,所以a =-1,所以f (-1)=-13.故选D .6.(2015·杭州质检)若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( )A .-1 B.164 C .1或164 D .1或-164解:易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上,(1)当O (0,0)是直线l 与曲线f (x )的切点时,易求出切线方程y =2x ,联立⎩⎪⎨⎪⎧y =2x ,y =x 2+a消y 后,令Δ=0,得a =1.(2)当O (0,0)不是直线l 与曲线f (x )的切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.①又k =y 0x 0=x 20-3x 0+2,② 由①②联立,得x 0=32或x 0=0(舍),所以k =-14,所以所求切线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a , 得x 2+14x +a =0.依题意,Δ=116-4a =0,所以a =164.综上,a =1或a =164.故选C .7.若函数f (x )=12x 2-ax +ln x 存在垂直于y轴的切线,则实数a 的取值范围是________.解:因为f (x )=12x 2-ax +ln x ,所以f ′(x )=x -a +1x.因为f (x )存在垂直于y 轴的切线, 所以f ′(x )存在零点,即x +1x -a =0有解,x >0,则a =x +1x≥2.故填上连续的函数f (x )在上必有最大值与最小值.(2)若函数f (x )在上单调递增,则________为函数在上的最小值, 为函数在上的最大值;若函数f (x )在上单调递减,则 为函数在上的最大值, 为函数在上的最小值.(3)设函数f (x )在上连续,在(a ,b )内可导,求f (x )在上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值______,______进行比较,其中最大的一个是________,最小的一个是________.自查自纠:1.单调递增 单调递减 常数函数 2.(1)②f ′(x )<0 f ′(x )>0 (2)②f ′(x )=0 ③极大值 极小值 3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b ) 最大值 最小值(2016·宁夏模拟)函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(e ,+∞)C .(-∞,0)和(0,+∞)D .R解:函数定义域为(0,+∞),f ′(x )=1+ex>0,故单调递增区间是(0,+∞).故选A .(2016·四川模拟)已知函数y =f (x )的图象是下列四个图象之一,且其导数y =f ′(x )的图象如图所示,则该函数的图象是()解:由函数y =f (x )的导函数y =f ′(x )的图象从左到右先增后减,知y =f (x )图象切线的斜率对应先增后减.故选B .(2016·武汉模拟)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解:依题意得,当x <1时,f ′(x )>0,f (x )为增函数;又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .故选C.(2016·九江一模)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上是增函数,则实数a 的取值范围为________.解:由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,因为g (x )=-x +1x 在⎣⎢⎡⎦⎥⎤13,2上单调递减,所以g (x )≤g ⎝ ⎛⎭⎪⎫13=83,所以2a ≥83,即a ≥43.故填⎣⎢⎡⎭⎪⎫43,+∞.函数f (x )=x +2cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解:f ′(x )=1-2sin x ,令f ′(x )=0得sin x =12,从而x =π6,当x ∈⎝⎛⎭⎪⎫0,π6时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫π6,π2时,f ′(x )<0,f (x )单调递减,所以f (x )在x =π6处取得极大值,即最大值π6+ 3.故填π6+3.类型一 导数法判断函数的单调性已知函数y =f (x )的图象如图所示,则其导函数y =f ′(x )的图象可能是()解:由题意得函数y =f (x )在(0,+∞)上单调递减,则其导函数在(0,+∞)上恒小于0,排除B ,D ;又因为函数y =f (x )在(-∞,0)上先单调递增,后单调递减,再单调递增,则其导函数在(-∞,0)上先大于0,后小于0,再大于0,排除C ,故选A .点拨:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).(2014·北京联考)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是()A .在(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .当x =2时,f (x )取极大值D .当x =4时,f (x )取极大值解:由y =f ′(x )的图象可得y =f (x )的大致图象如图.由图可知,A ,B ,D 均错.故选C .类型二 导数法研究函数的单调性(2015·嘉兴质检)已知函数f (x )=e x2-1ex -ax (a ∈R ). (1)当a =32时,求函数f (x )的单调区间;(2)若函数f (x )在上为单调函数,求实数a 的取值范围.解:(1)当a =32时,f (x )=e x2-1e x -32x ,f ′(x )=12e x =12ex (e x -1)(e x-2),令f ′(x )=0,得e x=1或e x=2,即x =0或x =ln2.令f ′(x )>0,则x <0或x >ln2; 令f ′(x )<0,则0<x <ln2.所以f (x )的递增区间是(-∞,0),(ln2,+∞);递减区间是(0,ln2).(2)f ′(x )=e x2+1ex -a ,令e x=t ,由于x ∈,所以t ∈⎣⎢⎡⎦⎥⎤1e ,e .令h (t )=t 2+1t ⎝ ⎛⎭⎪⎫t ∈⎣⎢⎡⎦⎥⎤1e ,e ,h ′(t )=12-1t 2=t 2-22t2,所以当t ∈⎣⎢⎡⎦⎥⎤1e ,2时,h ′(t )≤0, 函数h (t )为单调减函数;当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调增函数.故h (t )在⎣⎢⎡⎦⎥⎤1e ,e 上的极小值点为t = 2. 又h (e)=e 2+1e <h ⎝ ⎛⎭⎪⎫1e =12e +e ,h (2)= 2.所以2≤h (t )≤e +12e .因为函数f (x )在上为单调函数, 若函数f (x )在上单调递增,则a ≤t 2+1t 对t ∈⎣⎢⎡⎦⎥⎤1e ,e 恒成立,所以a ≤2; 若函数f (x )在上单调递减,则a ≥t 2+1t 对t ∈⎣⎢⎡⎦⎥⎤1e ,e 恒成立,所以a ≥e +12e. 综上可得a 的取值范围是(-∞,2]∪⎣⎢⎡⎭⎪⎫e +12e ,+∞. 点拨:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.(3)存在单调区间问题可类似地转化为不等式有解问题.(1)(2016·山东)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .(Ⅰ)讨论f (x )的单调性; (Ⅱ)略.解:(Ⅰ)f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.①0<a <2时,2a>1,当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减;②a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增;③a >2时,0<2a<1,当x ∈⎝⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,函数f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎪⎫1,2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,2a 内单调递增,在⎝⎛⎭⎪⎫2a,1 内单调递减,在(1,+∞)内单调递增.(2)(2016·兰州模拟)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解:因为f (x )=x 2-e x-ax ,所以f ′(x )= 2x -e x-a ,因为函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,所以f ′(x )=2x -e x-a ≥0,即a ≤2x -e x 有解,设g (x )=2x -e x,则g ′(x )=2-e x,令g ′(x )=0,解得x =ln2,则当x <ln2时,g ′(x )>0,g (x )单调递增;当x >ln2时,g ′(x )<0,g (x )单调递减,所以当x =ln2时,g (x )取得最大值,且g (x )ma x =g (ln2)=2ln2-2,所以a ≤2ln2-2.故填(-∞,2ln 2-2].类型三 导数法研究函数的极值问题(2014·重庆)已知函数f (x )=x 4+ax-ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y = 12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5. 因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5.点拨:找函数的极值点,即先找导数的零点,但并不是说导数的零点就是极值点(如y =x 3),还要保证该零点为变号零点.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线斜率为2.(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)f ′(x )=2a (x -5)+6x,依题意,f ′(1)=6-8a =2,得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=(x -2)(x -3)x.令f ′(x )=0,得x =2或3.x ,f ′(x ),f (x )的变化情况如下表:单调减区间为(2,3).f (x )的极大值f (2)=92+6ln2,极小值f (3)=2+6ln3.类型四 导数法研究函数的最值问题(2015·衡水中学二调)已知函数f (x )=x ln x .(1)求函数y =f (x )在x =1处的切线方程; (2)求f (x )在区间(t >0)上的最小值.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1,所以f ′(1)=1,f (1)=0,所以所求切线方程为y -0=1×(x -1),即y=x -1.(2)当x 变化时,f ′(x ),f (x )的变化情况如下表:①当t ≥e 时,在区间上f (x )为增函数,所以f (x )min =f (t )=t ln t .②当0<t <1e 时,在区间⎣⎢⎡⎭⎪⎫t ,1e 上f (x )为减函数,在区间⎝ ⎛⎦⎥⎤1e ,t +2上f (x )为增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e .综上所述,当t ≥1e 时,f (x )在区间上的最小值为t ln t ,当0<t <1e 时,f (x )在区间上的最小值为-1e .点拨:函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a时取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝⎛⎭⎪⎫1-1a=-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a >2a -2,等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).类型五 实际应用问题(优化问题) (2016·山东质检)某分公司经销某种品牌产品,每件产品的成本为30元,并且每件产品须向总公司缴纳a 元(a 为常数,2≤a ≤5)的管理费,根据多年的统计经验,预计当每件产品的售价为x 元时,产品一年的销售量为ke x (e 为自然对数的底数)万件,已知每件产品的售价为40元时,该产品一年的销售量为500万件.经物价部门核定每件产品的售价x 最低不低于35元,最高不超过41元.(1)求分公司经营该产品一年的利润L (x )万元与每件产品的售价x 元的函数关系式;(2)当每件产品的售价为多少元时,该产品一年的利润L (x )最大,并求出L (x )的最大值.解:(1)由题意,该产品一年的销售量为y =ke x .将x =40,y =500代入,得k =500e 40. 故该产品一年的销售量y (万件)关于x (元)的函数关系式为y =500e40-x.所以L (x )=(x -30-a )y =500(x -30-a )e40-x(35≤x ≤41).(2)由(1)得,L ′(x )=500=500e 40-x(31+a -x ).①当2≤a ≤4时,L ′(x )≤500e 40-35(31+4-35)=0,当且仅当a =4,x =35时取等号. 所以L (x )在上单调递减.因此,L (x )ma x =L (35)=500(5-a )e 5. ②当4<a ≤5时,L ′(x )>0⇔35≤x <31+a ,L ′(x )<0⇔31+a <x ≤41.所以L (x )在上单调递减. 因此,L (x )ma x =L (31+a )=500e9-a.综上所述,当2≤a ≤4时,每件产品的售价为35元,该产品一年的利润L (x )最大,最大为500(5-a )e 5万元;当4<a ≤5时,每件产品的售价为(31+a )元,该产品一年的利润L (x )最大,最大为500e9-a万元.点拨:解此类应用问题,应以读题、建模、求解、作答这四个步骤为主线,同时还应注意实际问题中函数的定义域.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解:(1)因为蓄水池侧面的总成本为 100·2πrh =200πrh 元,底面的总成本为160πr 2元,所以蓄水池的总成本为(200πrh +160πr 2)元.又据题意200πrh +160πr 2=12 000π, 所以h =15r(300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因为r >0,又由h >0可得r <53,故函数V (r )的定义域为(0,53). (2)因为V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2).令V ′(r )=0,解得r 1=5,r 2=-5(舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数;当r∈(5,53)时,V′(r)<0,故V(r)在(5,53)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.导数值为0的点不一定是函数的极值点,“函数在某点的导数值为0”是“函数在该点取得极值”的必要不充分条件.3.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,连续函数的最值只要不在端点处必定是极值.4.实际问题中的最值(1)要从问题的实际意义出发确定函数的定义域.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0,q:x=x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解:由条件知由q可推出p,而由p推不出q.故选C.2.(2015·潍坊期末)函数f(x)=e x-x(e为自然对数的底数)在区间上的最大值是( ) A.1+1eB.1 C.e+1 D.e-1解:因为f(x)=e x-x,所以f′(x)=e x-1.令f′(x)=0,得x=0.且当x>0时,f′(x)=e x-1>0;x<0时,f′(x)=e x-1<0,即函数f(x)在x=0处取得极小值,f(0)=1,又f(-1)=1e+1,f(1)=e-1,比较得函数f(x)=e x-1在区间上的最大值是e-1.故选D.3.(2015·安徽)函数f(x)=ax3+bx2+cx+d 的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a>0,b>0,c>0,d<0解:f(0)=d>0;当x无限增大时f(x)无限增大,因此a >0;f ′(x )=3ax 2+2bx +c ,由图知x 1及x 2均大于0,而x 1与x 2为f ′(x )=0的两根,所以x 1+x 2=-2b 3a >0且x 1x 2=c3a>0,结合a >0得b <0,c >0.所以a >0,b <0,c >0,d >0.故选A .4.(2016·西安模拟)若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,518B .(-∞,3] C.⎣⎢⎡⎭⎪⎫518,+∞D .上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在上单调递增,所以t ≥ 32⎝ ⎛⎭⎪⎫4+14=518.故选C .5.(2016·陕西模拟)已知函数f (x )=x ⎝⎛⎭⎪⎫e x -1e x ,若f (x 1)<f (x 2),则( )A .x 1>x 2B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解:因为f (-x )=-x ⎝⎛⎭⎪⎫e -x -1e -x =x ⎝ ⎛⎭⎪⎫e x -1e x =f (x ),所以f (x )为偶函数.由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|)(*). 又f ′(x )=e x -1e x +x ⎝⎛⎭⎪⎫e x +1e x =e 2x(x +1)+x -1ex, 当x ≥0时,e 2x(x +1)+x -1≥e 0(0+1)+0-1=0, 所以f ′(x )≥0,所以f (x )在(e 为自然对数的底数)上的最大值.解:(1)当x <1时,f ′(x )=-3x 2+2x =-x (3x -2),令f ′(x )=0,解得x =0或x =23.当x 变化时,f ′(x ),f (x )的变化情况如下表:故函数f (x )的极大值点为x =3;当x =0时,函数f (x )取得极小值为f (0)=0.(2)①当-1≤x <1时,由(1)知,函数f (x )在和⎣⎢⎡⎭⎪⎫23,1上单调递减,在⎝ ⎛⎭⎪⎫0,23上单调递增. 因为f (-1)=2,f ⎝ ⎛⎭⎪⎫23=427,所以f (x )在上单调递增,则f (x )在上的最大值为f (e)=a .综上所述,当a ≥2时,f (x )在上的最大值为a ;当a <2时,f (x )在上的最大值为2.(2015·全国卷Ⅱ)设函数f (x )=e mx+x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0, +∞)单调递增;(2)若对于任意x 1,x 2∈,都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.解:(1)证明:f ′(x )=m (e mx-1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx-1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx-1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx-1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在单调递减,在单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈,|f (x 1)-f (x 2)|≤e -1的充要条件是:⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1, 即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1,①,设函数g (t )=e t -t -e +1,则g ′(t )=e t-1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e<0,故当t ∈时,g (t )≤0.当m ∈时,g (m )≤0,g (-m )≤0,即①式成立.当m >1时,由g (t )的单调性知,g (m )>0,即e m-m >e -1;当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m 的取值范围是.3.3 导数的应用(二)1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=________,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈.直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出__________和____________即可.在此基础上还应注意:(1)结合____________可减少比较次数. (2)含参数的函数求最值时分类: ①按____________分类; ②按____________分类.3.实际问题中的导数,常见的有以下几种情形: (1)加速度是速度关于________的导数; (2)线密度是质量关于________的导数; (3)功率是功关于________的导数; (4)瞬时电流是电荷量关于________的导数; (5)水流的瞬时速度是流过的水量关于________的导数;(6)边际成本是成本关于________的导数. 4.N 型曲线与直线y =k 的位置关系问题如图,方程f (x )=0有三个根x 1,x 2,x 3时,极大值f (a )>0且极小值f (b )<0.曲线y =f (x )与直线y =k (k 是常数)有一个交点时,见图中的直线①或直线②,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有两个交点时,见图中的直线③或直线④,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有三个交点时,见图中的直线⑤.以上这些问题,常见于求参数的取值范围、讨论不等关系等形式的题目.自查自纠: 1.02.最小值 最大值 (1)单调性 (2)单调性 极值点3.(1)时间 (2)长度 (3)时间 (4)时间 (5)时间(6)产量4.< > = =(2016·岳阳模拟)函数f (x )=ln x -x 在区间(0,e]上的最大值为( )A .1-eB .-1C .-eD .0解:因为f ′(x )=1x -1=1-x x,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以当x =1时,f (x )取得最大值ln1-1=-1.故选B .(2016·长沙模拟)若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,4]C .(0,+∞)D .上有解,则实数m 的取值范围是( )A .B .C .D .(-∞,-2)∪(2,+∞)解:方程x 3-3x +m =0在上有解,等价于m =3x -x 3在上有解,故m 的取值范围即为函数f (x )=3x -x 3在上的值域,求导可得f ′(x )=3-3x 2=3(1-x 2),从而f (x )在(-1,1)上单调递增,在(-∞,-1)及(1,+∞)上单调递减,故当x ∈时,f (x )ma x =f (1)=2,f (x )min =min{f (0),f (2)}=f (2)=-2,故m 的取值范围为 .故选A .(2016·贵州模拟)函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________.解:令f ′(x )=3x 2-3a =0,得x =±a , 则f (x ),f ′(x )随x 的变化情况如下表:x(-∞,-a )-a(-a ,a )a(a ,+∞) f ′(x ) + 0 - 0+f (x )↗ 极大值 ↘ 极小值 ↗从而⎩⎨⎧(-a )3-3a (-a )+b =6,(a )3-3a a +b =2,解得⎩⎪⎨⎪⎧a =1,b =4. 所以f (x )的单调递减区间是(-1,1).故填(-1,1).(2016·常德模拟)已知函数f (x )=-12x 2+4x -3ln x 在上不单调,则实数t 的取值范围是________.解:由题意知f ′(x )=-x +4-3x=-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1,3,两极值点间的距离大于区间的长度,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 故填(0,1)∪(2,3).类型一 函数单调性的进一步讨论已知实数a >0,函数f (x )=a (x -2)2+2ln x .(1)当a =1时,讨论函数f (x )的单调性;(2)若f (x )在区间上是增函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2-4x +4+2ln x , f ′(x )=2x -4+2x =2(x -1)2x,因为x >0,所以f ′(x )≥0,所以f (x )在区间(0,+∞)上单调递增.(2)因为f ′(x )=2ax -4a +2x =2ax 2-4ax +2x,又f (x )在区间上是增函数,所以f ′(x )=2ax 2-4ax +2x≥0对x ∈恒成立,即2ax 2-4ax +2≥0对x ∈恒成立, 令g (x )=2ax 2-4ax +2, 则g (x )=2a (x -1)2+2-2a , 因为a >0,所以g (x )在上单调递增, 只要使g (x )min =g (1)=2-2a ≥0即可,所以0<a ≤1.点拨:①函数f(x)在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解;而存在单调区间问题,可转化为不等式有解问题.②对导数进行研究时,不可忽略原函数的定义域,如本题中易忽略“x>0”.(2015·云南第一次检测)已知f(x)=e x(x3+mx2-2x+2).(1)假设m=-2,求f(x)的极大值与极小值;(2)是否存在实数m,使f(x)在上单调递增?如果存在,求m的取值范围;如果不存在,请说明理由.解:(1)当m=-2时,f(x)=e x(x3-2x2-2x+2),其定义域为(-∞,+∞).则f′(x)=e x(x3-2x2-2x+2)+e x(3x2-4x-2)=x e x(x2+x-6)=(x+3)x(x-2)e x,所以当x∈(-∞,-3)或x∈(0,2)时,f′(x)<0;当x∈(-3,0)或x∈(2,+∞)时,f′(x)>0.f′(-3)=f′(0)=f′(2)=0,所以f(x)在(-∞,-3)上单调递减,在(-3,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增,所以当x=-3或x=2时,f(x)取得极小值;当x=0时,f(x)取得极大值,所以f(x)的极小值为f(-3)=-37e-3和f(2)=-2e2,f(x)的极大值为f(0)=2.(2)f′(x)=e x(x3+mx2-2x+2)+e x(3x2+2mx-2)=x e x.因为f(x)在上单调递增,所以当x∈时,f′(x)≥0.又因为当x∈时,x e x<0,所以当x∈时,x2+(m+3)x+2m-2≤0,所以⎩⎪⎨⎪⎧(-2)2-2(m+3)+2m-2≤0,(-1)2-(m+3)+2m-2≤0,解得m≤4,所以当m∈(-∞,4]时,f(x)在上单调递增.类型二极值与最值的进一步讨论(2016·云南模拟)已知函数f(x)=12ax2-(2a+1)x+2ln x(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.解:(1)f′(x)=(ax-1)(x-2)x(x>0).①当a≤0时,x>0,ax-1<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当0<a<12时,1a>2,在区间(0,2)和⎝⎛⎭⎪⎫1a,+∞上,f′(x)>0;在区间⎝⎛⎭⎪⎫2,1a上f′(x)<0.故f(x)的单调递增区间是(0,2)和⎝⎛⎭⎪⎫1a,+∞,单调递减区间是⎝⎛⎭⎪⎫2,1a.③当a=12时,f′(x)=(x-2)22x,故f(x)的单调递增区间是(0,+∞).④当a>12时,0<1a<2,在区间⎝⎛⎭⎪⎫0,1a和(2,+∞)上,f′(x)>0;在区间⎝⎛⎭⎪⎫1a,2上,f′(x)<0,故f(x)的单调递增区间是⎝⎛⎭⎪⎫0,1a和(2,+∞),单调递减区间是⎝ ⎛⎭⎪⎫1a,2.(2)由已知,在(0,2]上有f (x )ma x <g (x )ma x . 由已知,g (x )ma x =0,由(1)可知, ①当a ≤12时,f (x )在(0,2]上单调递增,故f (x )ma x =f (2)=2a -2(2a +1)+2ln2= -2a -2+2ln2,所以-2a -2+2ln2<0,解得a >ln2-1.故ln2-1<a ≤12.②当a >12时,f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎝ ⎛⎦⎥⎤1a ,2上单调递减,故f (x )ma x =f ⎝ ⎛⎭⎪⎫1a =-2-12a -2ln a .由a >12可知ln a >ln 12>ln 1e =-1,2ln a >-2,-2ln a <2,所以-2-2ln a <0,f (x )ma x <0,综上所述,a 的取值范围是(ln2-1,+∞). 点拨:(1)研究函数问题定义域应优先;(2)对任意x 1∈(0,2],指的是对区间内的任意一个自变量;存在x 2∈(0,2],指的是区间内存在一个自变量,故本题是恒成立问题和有解问题的综合,解题时注意最值的化归.(2015·山东改编)设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R ,讨论函数f (x )极值点的个数.解:f (x )=ln(x +1)+a (x 2-x ),定义域为(-1,+∞),f ′(x )=1x +1+a (2x -1) =a (2x -1)(x +1)+1x +1=2ax 2+ax +1-a x +1,当a =0时,f ′(x )=1x +1>0,函数f (x )在(-1,+∞)为增函数,无极值点.当a ≠0时,设g (x )=2ax 2+ax +1-a ,g (-1)=1,Δ=a 2-8a (1-a )=9a 2-8a ,若Δ=a (9a -8)≤0,即0<a ≤89时,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)为增函数,无极值点.若Δ=a (9a -8)>0,即a >89或a <0,而当a <0时,g (-1)≥0,此时方程g (x )=0在(-1,+∞)只有一个实数根,此时函数f (x )只有一个极值点;当a >89时,方程g (x )=0在(-1,+∞)总有两个不相等的实数根,此时函数f (x )有两个极值点.综上可知,当0≤a ≤89时,f (x )的极值点个数为0;当a <0时,f (x )的极值点个数为1;当a >89时,f (x )的极值点个数为2.类型三 方程根的讨论(2014·全国Ⅱ)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)当a为何值时,x轴为曲线y=f(x)的切线? (2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论 h(x)零点的个数.
栏目索引
解析 (1)设曲线y=f(x)与x轴相切于点(x0,0),则f(x0)=0, f '(x0)=0,即
1 3 x0 ax0 0, 4 2 3 x0 a 0. 1 3 解得x0= ,a=- . 2 4 3 因此,当a=- 时,x轴为曲线y=f(x)的切线. 4
栏目索引
a 3 1 5 5 3 ③若f <0,即-3<a<- ,由于f(0)= , f(1)=a+ ,所以当- <a<- 时, 3 4 4 4 4 4 5 f(x)在(0,1)内有两个零点;当-3<a≤- 时, f(x)在(0,1)内有一个零点. 4 3 5 3 5 综上,当a>- 或a<- 时,h(x)有一个零点;当a=- 或a=- 时,h(x)有两个零 4 4 4 4 5 3 点;当- <a<- 时,h(x)有三个零点. 4 4
栏目索引
方程f '(x)=0的判别式Δ=(2b)2-12ac, (1)当Δ≤0,即b2≤3ac时, f '(x)≥0恒成立, f(x)在R上为增函数,又易知存 在x'、x″∈R,使f(x')f(x″)<0,故方程f(x)=0有① 一 个实根. (2)当Δ>0,即b2>3ac时,方程f '(x)=0有两个实根,设为x1,x2(x1<x2),函数在x1 处取得极大值M,在x2处取得极小值m(M>m). a.当m>0时,方程f(x)=0有② 一 个实根; b.当m=0时,方程f(x)=0有③ 两 个实根; c.当m<0,M>0时,方程f(x)=0有④ 三 个实根;
a 3
1 4
5 4
a 3
a 2a a a 1 时, f(x)取得最小值,最小值为f = + (0,1)中,当x= . 3 3 3 3 4 a 3 ①若f >0,即- <a<0,则f(x)在(0,1)内无零点; 3 4 a 3 ②若f =0,即a=- ,则f(x)在(0,1)内有唯一零点; 3 4
栏目索引
考点二
利用导数研究不等式的有关问题
命题角度一 证明不等式
典例2 (2016课标全国Ⅲ,21,12分)设函数f(x)=ln x-x+1. (1)讨论f(x)的单调性; (2)证明当x∈(1,+∞)时,1< <x; (3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx. 解析 (1)由题设知, f(x)的定义域为(0,+∞), f ' (x)= -1,令f '(x)=0,解得x=1.
零点.
栏目索引
当x∈(0,1)时,g(x)=-ln x>0,所以只需考虑f(x)在(0,1)内的零点个数. (i)若a≤-3或a≥0,则f '(x)=3x2+a在(0,1)内无零点,故f(x)在(0,1)内单调.而 f(0)= , f(1)=a+ ,所以当a≤-3时, f(x)在(0,1)内有一个零点;当a≥0时, f(x)在(0,1)内没有零点. (ii)若-3<a<0,则f(x)在 0, 内单调递减,在 ,1 内单调递增,故在
栏目索引
理数
课标版
第四节 导数的综合应用
栏目索引
教材研读
1.利用导数证明不等式的基本步骤 (1)作差或变形. (2)构造新的函数h(x). (3)对h(x)求导.
(4)利用h'(x)判断h(x)的单调性或最值.
(5)下结论.
2.一元三次方程根的个数问题
令f(x)=ax3+bx2+cx+d(a>0),则f '(x)=3ax2+2bx+c.
2 3
2 - 3
2
, 3
f '(x) f(x)
+ ↗
0 c
↘
0
32 c- 27
+ ↗
(6分)
栏目索引
2 ,x ∈ 32 <0时,存在x ∈(-4,-2),x ∈ 2 ,使 所以,当c>0且c- 1 2 3 2, ,0
因此,h(x)在区间(1,+∞)内单调递增. 又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0, 即f(x)>g(x)恒成立. 综上,a∈ , .
1 2
栏目索引
方法技巧 1.利用导数证明不等式的方法 证明f(x)<g(x),x∈(a,b),可以构造函数F(x)=f(x)-g(x),如果F'(x)<0,则F(x)在 (a,b)上是减函数,同时若F(a)≤0,由减函数的定义可知,x∈(a,b)时,有F(x) <0,即证明了f(x)<g(x). 2.利用导数解决不等式的恒成立问题的策略 (1)首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相 应的含参不等式,从而求出参数的取值范围. (2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.
1 2ax 2 1 (1)f '(x)=2ax- = (x>0). x x
1 2a
1 x
当a≤0时, f '(x)<0, f(x)在(0,+∞)内单调递减. 当a>0时,由f '(x)=0,有x= .
1 此时,当x∈ 0, 时, f (2)当x∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x) 在(1,+∞)内无零点.
5 5 4 4 5 (x)的零点;若a<- ,则f(1)<0,h(1)=min{f(1),g(1)}=f(1)<0,故x=1不是h(x)的 4
当x=1时,若a≥- ,则f(1)=a+ ≥0,h(1)=min{f(1),g(1)}=g(1)=0,故x=1是h
栏目索引
(2)当a=b=4时, f(x)=x3+4x2+4x+c, 所以f '(x)=3x2+8x+4. 令f '(x)=0,得3x2+8x+4=0, 解得x=-2或x=- . (4分) f(x)与f '(x)在区间(-∞,+∞)上的情况如下表:
x (-∞,-2) -2
2 2, 3
栏目索引
综上所述,若函数f(x)有三个不同零点,则必有Δ=4a2-12b>0. 故a2-3b>0是f(x)有三个不同零点的必要条件. (11分) 当a=b=4,c=0时,a2-3b>0, f(x)=x3+4x2+4x=x(x+2)2只有两个不同零点,所以 a2-3b>0不是f(x)有三个不同零点的充分条件.(12分) 因此a2-3b>0是f(x)有三个不同零点的必要而不充分条件. (13分)
1 时, f '(x)>0, f(x)单调递增. 当x∈ , 2a
栏目索引
1 1 e x 1 1 x-1 x-1 (2)令g(x)= - x 1 = x 1 ,s(x)=e -x.则s'(x)=e -1. xe x e
而当x>1时,s'(x)>0,
所以s(x)在区间(1,+∞)内单调递增. 又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0. 当a≤0,x>1时, f(x)=a(x2-1)-ln x<0. 故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.
c 1 ln c
栏目索引
命题角度二 不等式恒成立问题 典例3 (2016四川,21,14分)设函数f(x)=ax2-a-ln x,其中a∈R. (1)讨论f(x)的单调性; (2)确定a的所有可能取值,使得f(x)> -e1-x在区间(1,+∞)内恒成立(e=2.718… 为自然对数的底数). 解析
1 x
x 1 ln x
当0<x<1时, f ‘(x)>0, f(x)单调递增;当x>1时, f ’(x)<0, f(x)单调递减. (4分) (2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0. 所以当x≠1时,ln x<x-1.
栏目索引
1 1 x 1 故当x∈(1,+∞)时,ln x<x-1,ln < -1,即1< <x. (7分) x x ln x
栏目索引
方法技巧 利用导数研究方程根的方法 (1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最 小值、变化趋势等. (2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置. (3)可以通过数形结合的思想去分析问题,使问题的求解有一个清晰、 直观的整体展现.
1 1-1 (2015课标Ⅰ,21,12分)已知函数f(x)=x3+ax+ ,g(x)=-ln x. 4
27
得f(x1)=f(x2)=f(x3)=0.
27
3
3
32 时,函数f(x)=x3+4x2+4x+c有三个不 由f(x)的单调性知,当且仅当c∈ 0,
同零点. (8分)
(3)证明:当Δ=4a2-12b<0时, f '(x)=3x2+2ax+b>0,x∈(-∞,+∞),