单片机简易数字计算器汇编

合集下载

51单片机简易计算器

51单片机简易计算器

P3=0xf7;
0x7b:
temp=P3; temp=temp&0xf0; if(temp!=0xf0) {
delay(10); temp=P3; temp=temp&0xf0; if(temp!=0xf0) {
temp=P3; switch(temp) {
case 0xe7:
case 0xd7:
//5
case 0xbd:num1=10*num1+3;num=num1;break;
//6
case 0x7d:// -
num2=num1;num1=0;
flag=2;break;
} while(temp!=0xf0) { temp=P3; temp=temp&0xf0; }
}
}
P3=0xfb; temp=P3; temp=temp&0xf0; if(temp!=0xf0) { delay(10); temp=P3; temp=temp&0xf0; if(temp!=0xf0) { temp=P3; switch(temp) { case 0xeb:
break;
num1=10*num1+4; num=num1;
case 0xdb: break;
num1=10*num1+5; num=num1;
case 0xbb: break;
num1=10*num1+6; num=num1;
case // *
num2=num1; num1=0;
flag=3; break; } while(temp!=0xf0) { temp=P3; temp=temp&0xf0; } } }

(完整版)基于51单片机的数码管简易计算器

(完整版)基于51单片机的数码管简易计算器

基于51/52单片机的简易计算器制作11级自动化2班王栎斐宋为为闫巨东一、题目利用单片机芯片STC89C52、四位八段共阳数码管及已制作好的电路板等器件设计制作一个计算器。

二、任务与要求要求计算器能实现加减乘除四种运算具体如下1. 加法:四位整数加法计算结果若超过八位则显示计算错误2. 减法:四位整数减法计算结果若超过八位则显示计算错误3. 乘法:多位整数乘法计算结果若超过四位则显示计算错误4. 除法:整数除法5. 有清除功能三、课程设计简述总体设计思路简述1.按照系统设计的功能的要求初步确定设计系统由主控模块、显示模块、键扫描接口电路共三个模块组成。

主控芯片使用STC89C52单片机。

2.键盘电路采用4*4矩阵键盘电路。

3.显示模块采用共阳极数码管构成。

四、硬件电路五、软件编程部份#include<reg52.h>#define uchar unsigned char#define uint unsigned int//uchar code num[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x40};//共阴极// 0 1 2 3 4 5 6 7 8 9 熄灭-//uchar code loc[]={0xff,0xfe,0xfd,0xfb,0xf7};//uchar code ero[]={0x79,0x50,0x5c};uchar code num[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff,0x40};//共阳极uchar code loc[]={0x00,0x80,0x40,0x20,0x10};uchar code ero[]={~0x79,~0x50,~0x5c};uint n=0,n1=0,n2=0; //赋初值uchar flag=0; //计算类型选择关键字void delay(int t);void display(int n);void error();main(){while(1){uchar temp;//第一行检测P3=0xfe;temp=P3;temp=temp&0xf0;if(temp!=0xf0){delay(10);temp=P3;temp=temp&0xfe;if(temp!=0xfe){temp=P3;switch(temp){case 0xee:n1=0;n2=0;n=0;flag=0;break; //清零case 0xde:n1=10*n1+0;n=n1;break;case 0xbe: if(flag==1)n=n2+n1; //=if(flag==2)n=n2-n1;if(flag==3)n=n2*n1;if(flag==4)n=n2/n1;n1=0;break;case 0x7e: // +n2=n1;n1=0;flag=1;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}//扫描第二行P3=0xfd;temp=P3;temp=temp&0xf0;if(temp!=0xf0){delay(10);temp=P3;temp=temp&0xf0;if(temp!=0xf0){temp=P3;switch(temp){case 0xed:n1=10*n1+1;n=n1;break; //4case 0xdd:n1=10*n1+2;n=n1;break; //5case 0xbd:n1=10*n1+3;n=n1;break; //6case 0x7d:// -n2=n1;n1=0;flag=2;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}//扫描第三行P3=0xfb;temp=P3;temp=temp&0xf0;if(temp!=0xf0){delay(10);temp=P3;temp=temp&0xf0;if(temp!=0xf0){temp=P3;switch(temp){case 0xeb:n1=10*n1+4;n=n1;break;case 0xdb:n1=10*n1+5;n=n1;break;case 0xbb:n1=10*n1+6;n=n1;break;case 0x7b: // *n2=n1;n1=0;flag=3;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}//扫描第四行P3=0xf7;temp=P3;temp=temp&0xf0;if(temp!=0xf0){delay(10);temp=P3;temp=temp&0xf0;if(temp!=0xf0){temp=P3;switch(temp){case 0xe7:n1=10*n1+7;n=n1;break; //7case 0xd7:n1=10*n1+8;n=n1;break; //8case 0xb7:n1=10*n1+9;n=n1;break; //9case 0x77: // /n2=n1;n1=0;flag=4;break;}while(temp!=0xf0){temp=P3;temp=temp&0xf0;}}}display(n);}}//延时函数void delay(int t){int x,y;for(x=0;x<t;x++)for(y=0;y<t;y++);}//数码管显示void display(int n){//溢出处理uchar g,s,b,q;int abs;if((n>9999)||(n<-999)) error();//正数if((n>=0)&&(n<=9999)) {g=n%10;s=n/10%10;b=n/100%10;q=n/1000%10;P0=num[g];delay(5);P2=loc[4];delay(2);P2=loc[0];delay(3);if(n>=10){P0=num[s];P2=loc[3];delay(2);P2=loc[0];delay(3);}if(n>=100){P0=num[b];P2=loc[2];delay(2);P2=loc[0];delay(3);}if(n>=1000){P0=num[q];P2=loc[1];delay(2);P2=loc[0];delay(3);}}//负数if((n<0)&&(n>=-999)){abs=-n;g=abs%10;s=abs/10%10;b=abs/100%10;q=abs/1000%10;P0=num[g];P2=loc[4];delay(2);P2=loc[0];delay(2);if((abs/10%10>0)||(abs/100%10>0)){P0=num[s];P2=loc[3];;delay(2);P2=loc[0];delay(2);if((abs/100%10>0)){P0=num[b];P2=loc[2];delay(2);P2=loc[0];delay(2);if((abs/1000%10>0)){P0=num[q];P2=loc[1];delay(2);P2=loc[0];delay(2);}else{P0=num[11];P2=loc[1];delay(2);P2=loc[0];delay(2);}}else{P0=num[11];P2=loc[2];delay(2);P2=loc[0];delay(2);}}else{P0=num[11];P2=loc[3];delay(2);P2=loc[0];delay(2);}}}//溢出显示void error(){P2=loc[1];P0=ero[0];delay(2);P2=loc[0];delay(3);P2=loc[2];P0=ero[1];delay(2);P2=loc[0];delay(3);P2=loc[3];P0=ero[1];delay(2);P2=loc[0];delay(3);P2=loc[4];P0=ero[2];delay(2);P2=loc[0];delay(3); }。

基于单片机的计算器——汇编

基于单片机的计算器——汇编

基于单片机的计算器——汇编编号:单片机综合设计实训 (论文)说明书题目:基于单片机的电子计算器院(系):专业:学生姓名:学号:指导教师:年01 月 1 日摘要当今社会,随着人们物质生活的不断提高,电子产品已经走进了家家户户,无论是生活或学习,还是娱乐和消遣几乎样样都离不开电子产品,大型复杂的计算能力是人脑所不能胜任的,而且比较容易出错。

计算器作为一种快速通用的计算工具方便了用户的使用。

计算器可谓是我们最亲密的电子伙伴之一。

单片机由于其微小的体积和极低的成本,广泛的应用于家用电器、工业控制等领域中。

在工业生产中。

单片微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。

单片微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。

本系统就是充分利用了AT89S52芯片的I/O引脚。

系统以采用MCS-51系列单片机Intel8051为中心器件来设计计算器控制器,以矩阵键盘输入、八位数码管显示,实现了能根据实际输入值计算并显示的功能。

关键词:计算器 AT89S52 八位数码管矩阵键盘AbstractIn today's society, with people constantly improve the material life, the electronic produc ts have entered the each and every family, whether living or studying, or entertainment and recreation almost everything is inseparable from the electronic products, large and complex co mputing capability is the human brain are not competent, but relatively easy to go wrong.Calc ulator as a rapid generic computational tool is convenient for users to use.The calculator is our most intimate electronic partners.SCM because of its small size and low cost, widely used in household appliances, industr ial control and other areas.In industrial production.Single chip microcomputer, the microcomp uter is an important branch, is full of vitality.Single chip micro computer referred to as SCM, is particularly applicable to the control field, it is also known as the micro controller.The system is to make full use of the AT89S52 chip I / O pins.System for using MCS-51 MCU Intel8051 as the center device to design the computer controller, with the matrix keybo ard input, the eight digital tube display, can be achieved according to the actual input value ca lculation and display functions.Key words: calculator AT89S52 digital tube eight matrix keyboard目录1实训设计内容 (4)1.1 设计目的 (4)1.2 设计任务 (4)2 系统硬件设计 (4)2.1 芯片介绍 (4)2.1.1主控芯片AT89S52概述与介绍 (4)2.1.2 MAX232芯片介绍 (9)2.2 硬件电路 (10)2.2.1 键盘接口电路 (10)2.2.2 7段LED数码管 (10)2.2.3 程序下载接口 (11)2.2.4 单片机时钟电路 (11)2.2.5 单片机复位电路 (12)3 软件设计 (12)3.1 按键扫程序设计 (12)3.2 算法设计 (13)4 电路板制作过程 (13)5 作品调试 (14)5.1硬件调试 (14)5.2 程序调试 (14)致谢 (16)参考文献: (17)附录: (18)1实训设计内容1.1 设计目的通过本次课题设计,应用《单片机原理及应用》等所学相关知识及查阅资料,完成简易计算器的设计,以达到理论与实践更好的结合、进一步提高综合运用所学知识和设计的能力的目的。

基于51单片机的简易计算器

基于51单片机的简易计算器

基于51单片机的简易计算器51单片机是一种广泛应用于嵌入式系统中的常用微控制器。

我们可以利用51单片机的强大功能和丰富的外设资源,设计一个简易计算器。

这个计算器可以进行基本的加减乘除运算,并且具备显示结果的功能。

首先,我们需要准备一块51单片机开发板,一块1602液晶显示屏模块,以及一些按键开关和电阻。

我们可以将运算器主要分为以下几个模块:数码管显示模块、键盘输入模块、运算模块和存储模块。

数码管显示模块:我们使用1602液晶显示屏模块来显示计算器的结果。

我们可以通过51单片机的IO口,将计算结果发送给液晶显示屏模块,实现结果的显示。

键盘输入模块:我们可以使用几个按键开关来实现数字和运算符的输入。

通过对按键的检测,我们可以将用户输入的数字和运算符转化为字符形式,并保存到内存中。

运算模块:我们需要根据用户输入的数字和运算符,进行相应的运算。

我们可以使用栈来实现这个功能。

栈是一种常用的数据结构,具有"先进后出"的特点。

我们可以将用户输入的数字和运算符按照一定的规则入栈,然后按照相应的顺序进行出栈和运算。

最后将结果保存到内存中。

存储模块:我们可以使用内部RAM来保存运算结果。

51单片机的内部RAM具有一定的存储能力,可以满足我们的基本需求。

在编写程序时,我们可以使用汇编语言或者C语言。

通过合理的编程,我们可以实现计算器的各项功能。

总结一下,基于51单片机的简易计算器主要包括数码管显示模块、键盘输入模块、运算模块和存储模块。

我们可以通过合理的编程,将这些模块相互配合,实现一个功能完善的计算器。

这个计算器不仅可以进行基本的加减乘除运算,还可以显示结果,方便用户进行计算。

基于单片机的简易计算器编程

基于单片机的简易计算器编程
if(t[j]==0x33) { DispCharacter(0,k--,'3');}
if(t[j]==0x34) { DispCharacter(0,k--,'4');}
if(t[j]==0x35) { DispCharacter(0,k--,'5');}
if(t[j]==0x36) { DispCharacter(0,k--,'6');}
}
for(i=r-2;i>=0;i--)
{
tx=u;
u=u+(( unsigned long )(t[i]-48)*(pow(r-i-2)));
if(u<tx) { systemerror();}
}
}
void hou( ) //计算符号后面的数值
{
int j,flash=0; //标志位:从不是零的高位开始显示!
int k=12;
for(j=3;j>=0;j--)
{
if(f3==0) { break; }
if(m[0]==0x30&&m[1]==0x30&&m[2]==0x30) { f3=0; break; }
PinRW=0;
PinE=0;
PinData = data1;
PinE=1;
ShortDelay(10);
PinE=0;
PinRW=1;
PinRS=0;
}
void WriteInstruc(char Instruc)
{
while(StatusCheck());
if(m[j]==0x32) { DispCharacter(1,k++,'2'); flash++;}

单片机简易计算器设计(二)2024

单片机简易计算器设计(二)2024

单片机简易计算器设计(二)引言:单片机简易计算器是一种以单片机为核心实现基本算术运算的小型电子设备。

本文继续探讨单片机简易计算器的设计方案,并详细介绍了其具体实现步骤和功能。

正文:第一大点:电路设计1. 选择适当的单片机型号2. 设计电源电路,确保稳定供电3. 搭建输入输出电路,包括按键和显示模块的连接4. 设计外部调试接口,方便程序的调试和更新5. 进行电路的模拟仿真和实际测试,确保电路的正常工作第二大点:程序编写1. 定义输入输出的数据结构2. 编写初始化程序,配置端口和寄存器3. 编写按键扫描程序,实现按键的读取和编码4. 编写基本算术运算程序,包括加法、减法、乘法和除法5. 编写显示程序,将结果显示在数码管或液晶屏上第三大点:算法优化1. 选择合适的算法,使计算速度尽可能快2. 使用位运算代替乘除法运算,提高运算效率3. 使用查表法来加速计算过程4. 增加缓存机制,优化存储空间的使用5. 对程序进行反复优化和测试,确保算法的准确性和高效性第四大点:错误处理与异常处理1. 设计输入错误的检测机制,防止用户输入无效的数据2. 处理溢出和除零等运算错误,避免程序崩溃3. 设计异常处理程序,对错误输入进行友好提示4. 进行充分的测试和调试,确保程序的稳定性5. 添加日志功能,记录错误信息和运行状态,便于排查问题第五大点:功能扩展1. 添加科学计算功能,如平方根、三角函数等2. 实现单位换算功能,方便不同单位之间的转换3. 增加储存器功能,可以保存计算结果或中间数据4. 设计菜单界面,使用户可以自由选择不同的功能5. 进行实际应用测试,检验扩展功能的可靠性和实用性总结:本文对单片机简易计算器的设计进行了全面的阐述。

通过合理的电路设计、程序编写和算法优化,以及错误和异常处理,使得计算器具备稳定高效的运算能力。

同时还介绍了功能扩展方面的设计思路,为后续的开发和升级提供了参考。

51单片机简易计算器

51单片机简易计算器

***************51单片机简易计算器************按键介绍:| 7 | 8 | 9 | + |-------------| 4 | 5 | 6 | -|-------------| 1 | 2 | 3 | * |-------------| 0 | = | C | / |操作说明:按下第一个数(0—9)后再按运算符(+ - * /),最后按=显示结果,按C 可以清除全屏加最大:9999+9999=19998乘最大:9999*9999=99980001除:1/9=0.1111保留小数点后四位#include <REGX52.H>#define uint unsigned int#define uchar unsigned char/******************LCD1602**********************/#define LCD_RS P2_4//定义LCD_RS端口#define LCD_RW P2_5//定义LCD_RW端口#define LCD_EN P2_6//定义LCD_EN端口#define LCD_DA P0//定义LCD_DA端口(数据端)#define KEY P3//定义矩阵按键为P3口#define Speak P2_3//定义蜂鸣器端口#define LED P2_2//定义指示灯#define KEY_1P2_0//定义按键为P1.7口(开/关蜂鸣器、LED灯) #define LED1P1//定义流水指示灯/**************定义显示数据数组*************/uchar code table[]= {" "};/****************定义动画数组***************/uchar code table1[]={" Welcome to "};uchar code table2[]={" 51 MCU Counter "};/*************定义流水灯显示数组************/uchar code table3[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//从低位往高位(流水)uchar code table4[]={0x7f,0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe};//从高位往低位(流水)uchar code table5[]={0x7e,0xbd,0xdb,0xe7};//从两边往中间(流水)uchar code table6[]={0xe7,0xdb,0xbd,0x7e};//从中间往两边(流水)/***************定义运算数据***************/long int data_a=0;//第一个数long int data_b=0; //第二个数long int data_c=0;//计算结果uchar dispaly[10]; //显示缓冲uchar i,j;//定义i,juchar flag=1;//定义开/关蜂鸣器、LED灯标志位,初始化为1uchar n=1;//定义n为1(默认8位LED显示流水状态1)uchar k=0;//定义kuchar num=0;//定义时间基数初始值为0uchar key=0xff; //键值初始化uchar a=0;//第1个数可以按1-4次(在主函数中体现)uchar b=5; //第2个数可以按1-4次(在主函数中体现)uchar x=0; //定义x=0/***************延时函数*********************/void delay(uint time)//延时函数{uint i,j;for(i=time;i>0;i--)for(j=110;j>0;j--);}/***************蜂鸣器响延时函数************/void delay_fmq(uint time)//蜂鸣器响延时函数{uint x,y;for(x=time;x>0;x--)for(y=5;y>0;y--);}/************LED灯闪烁并且蜂鸣器响***********/void spk()//LED灯闪烁并且蜂鸣器响{LED=0;//LED亮for(j=0;j<100;j++)//利用for语句延时{Speak=0;//蜂鸣器为低电平delay_fmq(5);//延时Speak=1;//蜂鸣器为高电平delay_fmq(5);//延时}LED=1;//LED灭}/***************1602液晶写指令*****************/void write_com(uchar com) //1602液晶写指令(参照LCD1602时序图) {LCD_RS=0; //写指令LCD_RW=0;//写液晶LCD_DA=com; //写入指令comdelay(2); //延时LCD_EN=1; //使能1602delay(2); //延时LCD_EN=0;//使能1602}/****************1602液晶写数据***************/void write_date(uchar date) //1602液晶写数据(参照LCD1602时序图) {LCD_RS=1; //写数据LCD_RW=0; //写液晶LCD_DA=date; //写入数据datedelay(2);//延时LCD_EN=1; //使能1602delay(2); //延时LCD_EN=0;//使能1602}/****************指定x,y写入字符函数*********/void W_lcd(unsigned char x,unsigned char y,unsigned char Data){if(y==0)//如果y=0{write_com(0x80 + x);//第一行}else//否则y=1{write_com(0xc0 + x);//第二行}write_date(Data); //写入数据}/****************指定x,y写入字符串函数********/void LCD_Write_String(unsigned char x,unsigned char y,unsigned char *s){if(y==0)//如果y=0{write_com(0x80 + x);//第一行}else//否则y=1{write_com(0xC0 + x);//第二行}while(*s){write_date(*s);//写入数据s++;//s++}}/*****************初始化液晶******************/void LCD_init() //初始化液晶{write_com(0x38); //8 位总线,双行显示,5X7 的点阵字符write_com(0x0c); //开显示,无光标,光标不闪烁write_com(0x01); //清屏}/*****************开机动画********************/void cartoon()//开机动画{spk();//蜂鸣器响,LED亮write_com(0x80);//写指令准备显示第1行第1个for(i=0;i<16;i++)//for语句循环16次{write_date(table1[i]);//写数据" Welcome to "delay(100);//延时一下(为了数字、字母一个一个显示) }write_com(0xc0);//写指令准备显示第2行第1个for(i=0;i<16;i++)//for语句循环16次{write_date(table2[i]);//写数据" 51 MCU Counter "delay(100);//延时一下(为了数字、字母一个一个显示) }spk();//蜂鸣器响,LED亮delay(200);}/*************反转法键盘扫描******************/short keycheckdown()//反转法键盘扫描{short temp1,temp2,temp,a=0xff;KEY=0xf0;//输入行值(或列值)delay(20);//延时temp1=KEY;//读列值(或行值)KEY=0xff;delay(20);//延时KEY=0x0f;//输入列值(或行值)delay(20);//延时temp2=KEY;//读行值(或列值)KEY=0xff;temp=(temp1&0xf0)|(temp2&0xf);//将两次读入数据组合switch(temp)//通过读入数据组合判断按键位置{/************第一行按键7 8 9 + *********/case 0xee :a=7; //按键7if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xed :a=8; //按键8if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xeb :a=9; //按键9if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xe7 :a=0x0a;//按键+if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回/************第二行按键4 5 6 - *********/case 0xde :a=4; //按键4if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xdd :a=5; //按键5if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xdb :a=6; //按键6if(flag==1)//若flag为1,则蜂鸣器响,LED亮spk();}break; //返回case 0xd7 :a=0x0b;//按键-if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回/************第三行按键1 2 3 * *********/case 0xbe :a=1; //按键1if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xbd :a=2; //按键2if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xbb :a=3; //按键3if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0xb7 :a=0x0c;//按键*if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();break; //返回/************第四行按键0 = C / *********/case 0x7e :a=0;//按键0if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0x7d :a=0x0e;//按键=if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0x7b :a=0x0f;//按键Cif(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回case 0x77 :a=0x0d;//按键/if(flag==1)//若flag为1,则蜂鸣器响,LED亮{spk();}break; //返回default :a=0xff;//没有键按下}return a;//返回按键值}/******************显示数据a******************/ void display_a() //显示数据a{dispaly[3]=data_a%10000/1000; //千位dispaly[2]=data_a%1000/100; //百位dispaly[1]=data_a%100/10; //十位dispaly[0]=data_a%10; //个位write_com(0x80+0); //显示数据aif(data_a>999){write_date('0'+dispaly[3]);//显示千位}if(data_a>99){write_date('0'+dispaly[2]);//显示百位}if(data_a>9){write_date('0'+dispaly[1]); //显示十位}write_date('0'+dispaly[0]); //显示个位}/******************显示数据b******************/ void display_b() //显示数据b{write_com(0x80+7); //第一行dispaly[3]=data_b%10000/1000; //千位dispaly[2]=data_b%1000/100; //百位dispaly[1]=data_b%100/10; //十位dispaly[0]=data_b%10; //个位if(data_b>999){write_date('0'+dispaly[3]);//显示千位}if(data_b>99){write_date('0'+dispaly[2]); //显示百位}if(data_b>9){write_date('0'+dispaly[1]); //显示十位}write_date('0'+dispaly[0]); //显示个位}/******************计算结果*******************/void display_c(x){if(data_c<100000000&&data_c>-1)//溢出时显示错误{dispaly[8]=data_c%1000000000/100000000; //万万dispaly[7]=data_c%100000000/10000000; //千万dispaly[6]=data_c%10000000/1000000; //百万dispaly[5]=data_c%1000000/100000; //十万dispaly[4]=data_c%100000/10000; //万dispaly[3]=data_c%10000/1000; //千dispaly[2]=data_c%1000/100; //百dispaly[1]=data_c%100/10; //十dispaly[0]=data_c%10; //个write_com(0x80+0x40+7); //第二行if(x==4){if(data_c>99999999){write_date('0'+dispaly[8]);//显示万万}if(data_c>9999999){write_date('0'+dispaly[7]);//显示千万}if(data_c>999999){write_date('0'+dispaly[6]);//显示百万}if(data_c>99999){write_date('0'+dispaly[5]);//显示十万}write_date('0'+dispaly[4]); //万write_date('.');write_date('0'+dispaly[3]); //千write_date('0'+dispaly[2]); //百write_date('0'+dispaly[1]); //十write_date('0'+dispaly[0]); //个}else{if(data_c>99999999){write_date('0'+dispaly[8]);//显示万万}if(data_c>9999999){write_date('0'+dispaly[7]);//千万}if(data_c>999999){write_date('0'+dispaly[6]);//百万}if(data_c>99999){write_date('0'+dispaly[5]);//十万}if(data_c>9999){write_date('0'+dispaly[4]);//万}if(data_c>999){write_date('0'+dispaly[3]);//千}if(data_c>99){write_date('0'+dispaly[2]);//百}if(data_c>9){write_date('0'+dispaly[1]);//十}write_date('0'+dispaly[0]); //个}}else //溢出时显示错误{write_com(0x80+0x40+11); //第二行write_date('E'); //显示Ewrite_date('r'); //显示Rwrite_date('r');//显示Rwrite_date('o');//显示Owrite_date('r');//显示R}}/****************加减乘除运算*****************/void eql(uchar yunsuan)//加减乘除运算{switch(yunsuan)//功能键选择{case 1:data_c=data_a+data_b;//加法break; //返回case 2:if(data_a>=data_b)//若a>b{data_c=data_a-data_b;//减法}else//否则a<b{data_c=data_b-data_a;//减法W_lcd(5,1,'-');//带上负号}break; //返回case 3:data_c=(data_a*data_b);//乘法break;//返回case 4:if(data_b==0)//如果被除数为0{LCD_Write_String(1,1,"Error");//除法溢出时显示错误}else{data_c=(data_a*10000)/data_b;//除法}break;//返回case 0: break;//不做运算返回}}/****************定时器0初始化****************/void Time0_init()//定时器0初始化{TMOD=0x01;//定时器0为方式1TL0=(65536-50000)%256;TH0=(65536-50000)/256;//12M晶振定时时间50msET0=1;//开定时器0中断EA=1;//开总中断TR0=1;//开启定时器0}/****************开/关指示函数***************/void K_G_ZS()//开/关指示函数{if(KEY_1==0)//若按键按下{delay(20);//延时去抖if(KEY_1==0)//再次确认按键是否按下{flag=!flag;//flag取反}//flag=0关闭蜂鸣器响和LED亮。

单片机课程设计一汇编语言实现四位数计算器

单片机课程设计一汇编语言实现四位数计算器

单片机课程设计一汇编语言实现四位数计算器
四位数计算器是一种能够进行基本数学运算的设备,它可以对四位数进行加法、减法、乘法和除法运算。

这个计算器的设计基于单片机和汇编语言,它可以方便地进行各种数学运算,满足用户的需求。

我们需要一个单片机作为计算器的核心。

单片机是一种集成电路,可以完成各种计算和控制任务。

我们选择一款适合的单片机,并将其与其他必要的电子元件进行连接,以构建一个完整的计算器系统。

接下来,我们需要使用汇编语言编写相应的程序来实现计算器功能。

汇编语言是一种低级语言,可以直接控制计算机的硬件,实现各种操作。

通过编写汇编语言程序,我们可以实现加法、减法、乘法和除法等运算。

在程序中,我们首先需要设计一个界面,将计算器的输入和输出与单片机相连接。

用户可以通过按键输入需要计算的四位数和运算符,计算器将根据用户的输入进行相应的运算,并将结果显示在数码管上。

在程序的编写过程中,我们需要考虑各种可能的输入情况,例如用户输入的数字是否超出了四位数的范围,用户是否输入了错误的运算符等。

我们需要对这些情况进行处理,保证计算器的运算结果是准确的。

除了基本的加减乘除运算,我们还可以在计算器中添加其他功能,
例如开根号、取余数等。

这些功能的实现也需要通过编写相应的汇编语言程序来完成。

通过单片机和汇编语言的结合,我们可以实现一个功能完备的四位数计算器。

这个计算器可以方便地进行各种数学运算,满足用户的需求。

通过合理的设计和编程,我们可以使计算器的使用变得简单而高效,为用户提供便利的计算体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的简易计算器设计自动化控制一班kaoyanbaomu521摘要:近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。

在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。

本任务是个简易的两位数的四则运算,程序都是根据教材内和网络中的程序参考编写而成,在功能上还并不完善,限制也较多。

本任务重在设计构思与团队合作,使得我们用专业知识、专业技能分析和解决问题全面系统的锻炼。

关键词:单片机计算器范围加减乘除1 引言1.1 计算器的历史说起计算器,值得我们骄傲的是,最早的计算工具诞生在中国。

中国古代最早采用的一种计算工具叫筹策,又被叫做算筹。

这种算筹多用竹子制成,也有用木头,兽骨充当材料的。

约二百七十枚一束,放在布袋里可随身携带。

直到今天仍在使用的珠算盘,是中国古代计算工具领域中的另一项发明,明代时的珠算盘已经与现代的珠算盘几乎相同。

17世纪初,西方国家的计算工具有了较大的发展,英国数学家纳皮尔发明的"纳皮尔算筹",英国牧师奥却德发明了圆柱型对数计算尺,这种计算尺不仅能做加减乘除、乘方、开方运算,甚至可以计算三角函数,指数函数和对数函数,这些计算工具不仅带动了计算器的发展,也为现代计算器发展奠定了良好的基础,成为现代社会应用广泛的计算工具。

1.2 电子计算器的特殊键在使用电子计算器进行四则运算的时候,一般要用到数字键,四则运算键和清除数据键。

除了这些按键,还有一些特殊键,可以使计算更加简便迅速。

2 单片机概述单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。

单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。

通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O接口电路等。

因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。

单片机经过1、2、3、3代的发展,目前单片机正朝着高性能和多品种方向发展,它们的CPU功能在增强,内部资源在增多,引角的多功能化,以及低电压底功耗。

3 芯片简介3.1 MSC-51芯片简介MCS-51单片机内部结构8051是MCS-51系列单片机的典型产品,我们以这一代表性的机型进行系统的讲解。

8051单片机包含中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口和中断系统等几大单元及数据总线、地址总线和控制总线等三大总线,现在我们分别加以说明:·中央处理器:中央处理器(CPU)是整个单片机的核心部件,是8位数据宽度的处理器,能处理8位二进制数据或代码,CPU负责控制、指挥和调度整个单元系统协调的工作,完成运算和控制输入输出功能等操作。

·数据存储器(RAM)8051内部有128个8位用户数据存储单元和128个专用寄存器单元,它们是统一编址的,专用寄存器只能用于存放控制指令数据,用户只能访问,而不能用于存放用户数据,所以,用户能使用的RAM只有128个,可存放读写的数据,运算的中间结果或用户定义的字型表。

图1·程序存储器(ROM):8051共有4096个8位掩膜ROM,用于存放用户程序,原始数据或表格。

·定时/计数器(ROM):8051有两个16位的可编程定时/计数器,以实现定时或计数产生中断用于控制程序转向。

·并行输入输出(I/O)口:8051共有4组8位I/O口(P0、P1、P2或P3),用于对外部数据的传输。

·全双工串行口:8051内置一个全双工串行通信口,用于与其它设备间的串行数据传送,该串行口既可以用作异步通信收发器,也可以当同步移位器使用。

·中断系统:8051具备较完善的中断功能,有两个外中断、两个定时/计数器中断和一个串行中断,可满足不同的控制要求,并具有2级的优先级别选择。

·时钟电路:8051内置最高频率达12MHz的时钟电路,用于产生整个单片机运行的脉冲时序,但8051单片机需外置振荡电容。

单片机的结构有两种类型,一种是程序存储器和数据存储器分开的形式,即哈佛(Harvard)结构,另一种是采用通用计算机广泛使用的程序存储器与数据存储器合二为一的结构,即普林斯顿(Princeton)结构。

INTEL的MCS-51系列单片机采用的是哈佛结构的形式,而后续产品16位的MCS-96系列单片机则采用普林斯顿结构。

下图是MCS-51系列单片机的内部结构示意图2。

图2MCS-51的引脚说明:MCS-51系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。

现在我们对这些引脚的功能加以说明:MCS-51的引脚说明:MCS-51系列单片机中的8031、8051及8751均采用40Pin封装的双列直接DIP结构,右图是它们的引脚配置,40个引脚中,正电源和地线两根,Array外置石英振荡器的时钟线两根,4组8位共32个I/O口,中断口线与P3口线复用。

现在我们对这些引脚的功能加以说明:如图3图3Pin9:RESET/V pd复位信号复用脚,当8051通电,时钟电路开始工作,在RESET引脚上出现24个时钟周期以上的高电平,系统即初始复位。

初始化后,程序计数器PC指向0000H,P0-P3输出口全部为高电平,堆栈指针写入07H,其它专用寄存器被清“0”。

RESET 由高电平下降为低电平后,系统即从0000H地址开始执行程序。

然而,初始复位不改变RAM(包括工作寄存器R0-R7)的状态,8051的初始态。

8051的复位方式可以是自动复位,也可以是手动复位,见下图4。

此外,RESET/V pd 还是一复用脚,V cc掉电其间,此脚可接上备用电源,以保证单片机内部RAM的数据不丢失。

图4·Pin30:ALE/当访问外部程序器时,ALE(地址锁存)的输出用于锁存地址的低位字节。

而访问内部程序存储器时,ALE端将有一个1/6时钟频率的正脉冲信号,这个信号可以用于识别单片机是否工作,也可以当作一个时钟向外输出。

更有一个特点,当访问外部程序存储器,ALE会跳过一个脉冲。

如果单片机是EPROM,在编程其间,将用于输入编程脉冲。

·Pin29:当访问外部程序存储器时,此脚输出负脉冲选通信号,PC的16位地址数据将出现在P0和P2口上,外部程序存储器则把指令数据放到P0口上,由CPU读入并执行。

程序存储器的内外部选通线,8051和8751单片机,内置有4kB的程序·Pin31:EA/Vpp存储器,当EA为高电平并且程序地址小于4kB时,读取内部程序存储器指令数据,而超过4kB地址则读取外部指令数据。

如EA为低电平,则不管地址大小,一律读取外部程序存储器指令。

显然,对内部无程序存储器的8031,EA端必须接地。

在编程时,EA/V脚还需加上21V的编程电压。

pp4 相关知识4.1数码管显示在本任务中用4位数码管显示当前数值的千,百,十,个,由于数码管个数多,如采用静态显示方式,则占用单片机的I/O口线太多,如果用定时器/计数器的串行移位寄存器工作方式及外接串入并出移位寄存器74LS164的方式,则电路复杂。

所以,在数码管个数较多时,常采用动态显示方式。

如图1-1所示为单片机应用系统中的一种数码管动态显示电路图,4位数码管的相同段并联在一起,由一个8位I/O(P1口)输出字形码控制显示某一字形,每个数码管的公共端由另外一个I/O口(P0口)输出的字位码控制,即数码管显示的字形是由单片机I/O 口输出的字形码确定,而哪个数码管点亮是由单片机I/O口输出的字位码确定的。

4个数码管分时轮流循环点亮,在同一时刻只有1个数码管点亮,但由于数码管具有余辉特性及人眼具有视觉暂留特性,所以适当地选取循环扫描频率,看上去所有数码管是同时点亮的,察觉不出闪烁现象。

动态显示方式所接数码管不能太多,否则会因每个数码管所分配的实际导通时间太少,使得数码管的亮度不足。

在本任务中,为了简便,字形码和字位码都没由加驱动电路,在实际应用中应加驱动电路。

数码管有共阴极和共阳极两种,对于共阳数码管,字形驱动输出0有效,字位驱动输出1有效;而对于共阴数码管则相反,即:字形驱动输出1有效,字位驱动输出0有效。

4.2矩阵按键键盘是单片机系统中最常用的人机对话输入设备,用户通过键盘向单片机输入数据或指令。

键盘控制程序需完成的任务有:监测是否有键按下,有键按下时,在无硬件去抖的动电路时,应用软件延时方法消除按键抖动影响;当有多个键同时按下时,只处理一个按键,不管一次按键持续多长时间,仅执行一次按键功能程序。

矩阵按键扫描程序是一种节省IO口的方法,按键数目越多节省IO口就越可观,思路:先判断某一列(行)是否有按键按下,再判断该行(列)是那一只键按下。

但是,在程序的写法上,采用了最简单的方法,使得程序效率最高。

本程序中,如果检测到某键按下了,就不再检测其它的按键,这完全能满足绝大多数需要,又能节省大量的CPU时间。

本键盘扫描程序的优点在于:不用专门的按键延时程序,提高了CPU效率,也不用中断来扫描键盘,节省了硬件资源。

另外,本键盘扫描程序,每次扫描占用CPU时最短,不论有键按下或者无键按下都可以在很短的时间完成一次扫描。

本键盘扫描子程序名叫key,每次要扫描时用lcall key调用即可。

5 计算器硬件电路设计8051单片机的P2口作键盘口,其中P2.4-P2.7为键盘扫描输出线,P2.0-P2.3为键盘扫描输入线。

键盘由4*4共16个按键组成,10个数字键(由0-9组成)5个运算符号(加减乘除等于)组成,1个清除键(作用相当于整体复位)。

4个数码管用于显示当前数值的千,百,十,个,采用动态显示方式,P1口接4个数码管的七段,P0口分别接4个数码管的公共端,P1口输出数码管的字形码,P0口输出数码管的字位码。

6 计算器程序设计6.1存储单元分配30H单元:数值个位显示单元;31H单元:数值十位显示单元;32H单元:数值百位显示单元;33H单元:数值千位显示单元;23H单元:第一操作数存储单元;24H单元:第二操作数存储单元;25H单元:键值暂存单元;27H单元:清除键状态;34H-37H单元:结果数据转换暂存单元;38H-39H单元:结果高低8位暂存单元;R5单元:操作数计数单元;R4单元:操作数数值位数计数单元;R3单元:运算符号存储单元。

6.2 主程序设计主程序进行程序中用到的一些存储单元的初始化,数值显示和4*4键盘扫描。

相关文档
最新文档