专题14 角平分线问题(学生版)备战2021年中考数学专题复习精讲精练

合集下载

三角形角平分线专题讲解

三角形角平分线专题讲解

二 由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。

下面就几何中常见的定理所涉及到的辅助线作以介绍。

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。

分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法图1-1B图1-2DBC来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。

但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。

简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

另外一个全等自已证明。

此题的证明也可以延长BE 与CD 的延长线交于一点来证明。

自已试一试。

初中九年级数学中考复习方法技巧专题:角平分线练习题真题含解析

初中九年级数学中考复习方法技巧专题:角平分线练习题真题含解析

初中九年级数学中考复习方法技巧专题:角平分线练习题【方法解读】1.与角平分线有关的判定和性质:(1)角平分线的判定和性质.(2)角平分线的夹角:①三角形两内角的平分线的夹角等于90。

与第三角一半的和;②三角形两外角的平分线的夹角等于90。

与第三角一半的差;③三角形一内角与另一外角的平分线的夹角等于第三角的一半.(3)三角形的内心及其性质.(4)圆中孤、圆心角、圆周角之间的关系.2.与角平分线有关的图形或辅助线:(1)角平分线“加”平行线构成等腰三角形.(2)角平分线“加”垂线构成等腰三角形. (3)过角平分线上的点作边的垂线.1.(2018 -黑龙江]如图F7-1,匕8=/C=90\羽是BC的中点平分ZADG且NAOC110。

,则NAM8的度数是( )图F7 -1A.30。

B.35。

C.450D.6O02.(2018 -陕西]如图F7-2,在△A8C 中^4C=8,ZABC=60°,ZC=45°^4D±BG垂足为 D.ZABC 的平分线交 AD 于点E,则AE的长为 ()A•沌 B.2V2D.3V23.(2018 •达州]如图F7-3,AABC的周长为19,点D.E在边BC上,匕A8C的平分线垂直于A氏垂足为N、/ACB的平分线垂直于AD,垂足为M.若8C=7.则初V的长为( )人3 A ・-2 B.2C图F7-3D.34.如图F74在直角梯形AMD中,DC//A戏例8=90。

&丄8CM=BC,NA"的平分线分别交AZMC于点时则芸的值是 (A.\/2-lB.2+V2C./2+1D.725.(2017 -滨州]如图F7-5,点P为定角ZAOB的平分线上的一个定点,且/MPN与NAO8互补.若ZMPN在绕点P旋转的过程中,其两边分别与OA.OB相交于MJV两点,则以下结论:⑴PM=PN恒成立;⑵OM+ON的值不变;(3)四边形PMON 的面积不变;(4)MN的长不变.其中正确的个数为A.4B.3C.2D.16.(2016 -宁夏]如图F7-6,在平行四边形ABCD中,ZR4D的平分线AE交BC于点氏且BE=3,若平行四边形ABCD的周长是16,则EC等于7.(2017 -十堰]如图F7-7,AABC内接于OO,ZACB=90°,ZACB的平分线交OO于点。

中考数学复习方案 提分微课(02) 角平分线问题

中考数学复习方案  提分微课(02) 角平分线问题
∵DC∥EB,∴∠CEA=∠DCE,
∴∠CEA=∠ECA,∴AE=AC=3 2,故答案为:3 2.
13.在▱ABCD中,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F,若
AD=11,EF=5,则AB=
.
[答案]8或3
[解析]①如图①,在▱ABCD中,∵BC∥AD,∴∠ADF=∠CFD.
图W2-1
1.如图W2-2,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,若CD=3,则点
D到AB的距离DE是
( C )
A.5
B.4
C.3
图W2-2
D.2
2.[2018·枣庄]如图 W2-3,在 Rt△ ABC 中,∠ACB=90°,CD⊥AB,垂足为 D,AF 平分
∠CAB,交 CD 于点 E,交 CB 于点 F.若 AC=3,AB=5,则 CE 的长为 (
∵DF平分∠ADC交BC于点F,∴∠ADF=∠CDF,
∴∠CFD=∠CDF,∴CF=CD.同理可证AB=BE.
∴AB=BE=CF=CD.∵EF=5,BC=AD=11,

∴BC=BE+CF-EF=2AB-EF=2AB-5=11,∴AB=8.
②如图②,在▱ABCD中,同①可得AB=BE=CF=CD,
∵EF=5,∴BC=BE+CF+EF=2AB+EF=2AB+5=11,∴AB=3.
故答案为8或3.

14.如图W2-16,在△ABC中,AD平分∠BAC,BD⊥AD,过D作DE∥AC,交AB于E,若
AB=5,则DE=
.
5
[答案] 2
[解析]∵AC∥ED,AD 平分∠EAC,
图W2-16

2021年九年级中考数学九年级复习小专题专项课时练:三角形的角平分线、中线和高(一)

2021年九年级中考数学九年级复习小专题专项课时练:三角形的角平分线、中线和高(一)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021年中考数学九年级复习小专题专项课时练:三角形的角平分线、中线和高(一)一.选择题1.如图,在△ABC中,∠1=∠2=∠3=∠4.则下列说法中,正确的是()A.AD是△ABE的中线B.AE是△ABC的角平分线C.AF是△ACE的高线D.AE是△ABC的中线2.如图,在Rt△ABF中,∠F=90°,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CD⊥AC交AB于点D,过点C作CE⊥AB交AB于点E,则下列说法中,错误的是()A.△ABC中,AB边上的高是CEB.△ABC中,BC边上的高是AFC.△ACD中,AC边上的高是CED.△ACD中,CD边上的高是AC3.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC 中AC边上的高是()A.CF B.BE C.AD D.CD4.下列说法正确的是()A.在一个三角形中至少有一个直角B.三角形的中线是射线C.三角形的高是线段D.一个三角形的三条高的交点一定在三角形的外部5.如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长大3cm,则AB与AC的差为()A.2cm B.3cm C.4cm D.6cm6.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高7.下列叙述中错误的一项是()A.三角形的中线、角平分线、高都是线段B.三角形的三条高线中至少存在一条在三角形内部C.只有一条高在三角形内部的三角形一定是钝角三角形D.三角形的三条角平分线都在三角形内部8.下列说法不正确的是()A.三角形的三条高线交于一点B.直角三角形有三条高C.三角形的三条角平分线交于一点D.三角形的三条中线交于一点9.下列各图中,线段CD是△ABC的高的是()A.B.C.D.10.如图,∠CBD=∠AEC=90°,△ABC中,AB边上的高是线段()A.BD B.CE C.BE D.CA二.填空题11.如图,在△ABC中,AB=8,AC=5,AD为中线,则△ABD与△ACD的周长之差=.12.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm.13.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是.14.如图,∠CBD=∠E=∠F=90°,则线段是△ABC中BC边上的高.15.如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE 交于H,则∠CHD=.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段是△ABC中AC边上的高.三.解答题17.如图,在△ABC中,AD,AE,AF分别为△ABC的高线、角平分线和中线.(1)写出图中所有相等的角和相等的线段;(2)当BF=8cm,AD=7cm时,求△ABC的面积.18.如图所示方格纸中,每个小正方形的边长均为1,点A,点B,点C在小正方形的顶点上.(1)画出△ABC中边BC上的高AD;(2)画出△ABC中边AC上的中线BE;(3)直接写出△ABE的面积为.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C =60°,求∠DAE和∠BOA的度数.20.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.21.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?22.已知△ABC的周长为33cm,AD是BC边上的中线,.(1)如图,当AC=10cm时,求BD的长.(2)若AC=12cm,能否求出DC的长?为什么?23.如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多2,且AB与AC的和为10.(1)求AB、AC的长.(2)求BC边的取值范围.参考答案一.选择题1.解:∵∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,即∠BAE=∠CAE,∴AE是△ABC的角平分线,故选:B.2.解:∵过点C作CE⊥AB交AB于点E,∠F=90°,∴△ABC中,AB边上的高是CE,BC边上的高是AF,∴A、B两个选项说法正确,不符合题意;∵CD⊥AC交AB于点D,∴△ACD中,AC边上的高是CD,CD边上的高是AC,∴C选项说法错误,符合题意;D选项说法正确,不符合题意;故选:C.3.解:△ABC中,画AC边上的高,是线段BE.故选:B.4.解:A、一个三角形的三个内角中最多有一个直角,错误;B、三角形的中线是线段,错误;C、三角形的高是线段,正确;D、锐角三角形的高总在三角形的内部,而直角三角形和钝角三角形则不一定,错误;故选:C.5.解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.故选:B.6.解:A、∵AE=DE,∴BE是△ABD的中线,正确;B、∵BD平分∠EBC,∴BD是△EBC的角平分线,正确;C、∵BD是△EBC的角平分线,∴∠EBD=∠CBD,∵BE是中线,∴∠EBD≠∠ABE,∴∠1=∠2=∠3不正确,符合题意;D、∵∠C=90°,∴BC是△ABE的高,正确.故选:C.7.解:A、三角形的角平分线、中线、高都是线段,故此选项正确;B、锐角三角形的三条高都在三角形的内部;直角三角形的一条高在三角形的内部,两条就是直角边;钝角三角形的一条高在三角形的内部,两条高在三角形的外部.故此选项正确;C、根据B中的分析,知只有一条高在三角形内部的三角形可能是直角三角形,也可能是钝角三角形.故此选项错误;D、根据角平分线的定义,知三角形的三条角平分线都在三角形的内部.故此选项正确.故选:C.8.解:A、三角形三条高线所在的直线一定交于一点,但三角形的三条高线不一定交于一点,比如钝角三角形,因为高线是线段不可延长,错误;B、直角三角形有三条高,正确;C、三角形的三条角平分线交于一点,正确;D、三角形的三条中线交于一点,正确;故选:A.9.解:线段CD是△ABC的高的是.故选:B.10.解:∵∠AEC=90°,∴△ABC中,AB边上的高是线段CE.故选:B.二.填空题(共6小题)11.解:∵AD为中线,∴BD=CD,则C△ABD ﹣C△ACD=(AB+AD+BD)﹣(AC+AD+CD)=AB+AD+BD﹣AC﹣AD﹣CD=AB﹣AC=8﹣5=3,故答案为:3.12.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.13.解:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为11,AB=5,BC=3,∴△BCD的周长是11﹣(5﹣3)=9,故答案为9.14.解:∵AE⊥BC于E,∴△ABC中BC边上的高是AE.故答案为:AE.15.解:延长CH交AB于点H,在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为∠CHD=45°.16.解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE三.解答题(共7小题)17.解:(1)∵AE是△ABC的角平分线,∴∠BAE=∠CAE.∵AD是△ABC的高,∴∠ADB=∠ADC=90°.∵AF是△ABC的中线,∴BF=CF.图中所有相等的角和相等的线段为:∠BAE=∠CAE,∠ADB=∠ADC=90°,BF=CF.(2)∵BF=CF,BF=8cm,AD=7cm,∴BC=2BF=2×8=16cm,=BC•AD∴S△ABC=×16cm×7cm=56cm2.答:△ABC的面积是56cm2.18.解:(1)如图所示,线段AD即为所求;(2)如图所示,线段BE即为所求;=BC•AD=4×4=8.(3)S△ABC∴△ABE的面积=S=4,△ABC故答案为:4.19.解:∵∠CAB=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.20.解:设BD=CD=x,AB=y,则AC=2BC=4x,∵BC边上的中线AD把△ABC的周长分成60和40两部分,AC>AB,∴AC+CD=60,AB+BD=40,即,解得:,当AB=28,BC=24,AC=48时,符合三角形三边关系定理,能组成三角形,所以AC=48,AB=28.21.解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°.(2)如图所示,EF即是△BED中BD边上的高.(3)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△BED =S△ABC=×60=15;∵BD=5,∴EF=2S△BED÷BD=2×15÷5=6,即点E到BC边的距离为6.22.解:(1)∵,AC=10cm,∴AB=15cm.又∵△ABC的周长是33cm,∴BC=8cm.∵AD是BC边上的中线,∴.(2)不能,理由如下:∵,AC=12cm,∴AB=18cm.又∵△ABC的周长是33cm,∴BC=3cm.∵AC+BC=15<AB=18,∴不能构成三角形ABC,则不能求出DC的长.23.解:(1)∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC=2,即AB﹣AC=2①,又AB+AC=10②,①+②得.2AB=12,解得AB=6,②﹣①得,2AC=8,解得AC=4,∴AB和AC的长分别为:AB=6,AC=4;(2)∵AB=6,AC=4,∴2<BC<10.一天,毕达哥拉斯应邀到朋友家做客。

2021年中考数学总复习第四章 三角形 微专题 与角平分线有关的问题

2021年中考数学总复习第四章 三角形 微专题  与角平分线有关的问题
第13题图
微专题 与角平分线有关的问题
如下图,OC是∠AOB的平分线,点D是OA上的一点,若过点D作DE∥CO,交BO的 延长线于点E,则△EOD是等腰三角形.
微专题 与角平分线有关的问题
方法应用 3. 如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,若EC=1则OF= ____2____.
微专题 与角平分线有关的问题
微专题 与角平分线有关的问题
方法展示
方法一 过角平分线上的点向角两边作垂线
如图,P是∠MON的平分线上一点,PA⊥OM于点A,过点P作PB⊥ON于点B,则 Rt△AOP≌Rt△BOP,PB=PA.可记为“图中有角平分线,可向两边作垂线”,在这 个基本图形中,可以得到一组全等三角形, 也可以利用角平分线的性质定理得到线段相等.
第8题图
微专题 与角平分线有关的问题
方法展示
方法五 两内角角平分线交角
如图,若点P是∠ABC和∠ACB的平分线的交点,PD∥AB,PE∥AC,FG∥BC,则
∠BPC=90°+
1 2
∠A,C△PDE=BC,C△AFG=AB+AC.
微专题 与角平分线有关的问题
方法应用 9. 如图,在△ABC中,∠A=84°,点O是∠ABC、∠ACB的平分线的交点,点P是 ∠BOC、∠OCB的平分线的交点,若∠P=100°,则∠ACB的度数为___5_6_˚___.
微专题 与角平分线有关的问题
方法应用
1. 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,CD平分∠ACB,

S ACD S BCD
= _____3___.
第1题图
微专题 与角平分线有关的问题
2. 如图,AD是∠BAC的平分线,DE⊥AB于点E,若AB=18,AC=12,△ABC的面 积等于30,则DE=____2____.

中考数学复习--角平分线问题

中考数学复习--角平分线问题

A.2
B.3
C.4
D.5
2.(2018 枣庄)如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为 D,AF 平分∠CAB,交 CD 于点
E,交 CB 于点 F,若 AC=3,AB=5,则 CE 的长为------------------------------------------------------------( )
(1分∠ACO,交 x 轴于点 D,求直线 CD 的函数关系式。
类型二、角平分线+角平分线的垂线→等腰三角形 当题目中有垂直于角平分线的线段时,通过延长该线段构造等腰三角形加以求解。
第5题
第6题
第7题
5.如图,在△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC,BD⊥AD,若 BD=2,则 AE=
16.(2018 广州)如图,在四边形 ABCD 中,∠B=∠C=90°,AB>CD,AD=AB+CD。 (1)利用尺规作∠ADC 的平分线 DE,交 BC 于点 E,连接 AE(保留作图痕迹,不写作法); (2)在(1)的条件下, ①证明:AE⊥DE; ②若 CD=2,AB=4,点 M,N 分别是 AE,AB 上的动点,求 BM+MN 的最小值。
1
类型三、由角平分线作对称→全等三角形 如图,若点 P 是∠MON 平分线上一点,点 A 是边 OM 上任意一点,可以考虑在边 ON 上截取 OB=OA, 连接 PB,构造△OPB≌△OPA,从而将一些线段或角转化到到另一侧,进而达到解题目的。
8.如图,在菱形 ABCD 中,P 是 AB 上一个动点且不与 A,B 重合,连接 DP 交对角线 AC 于点 E,连接 BE,求证:∠APD=∠CBE。
9.如图,在△ABC 中,∠C=2∠B,AD 平分∠BAC,求证:AB=AC+CD。

2023年中考数学总复习专题14二次函数与线段数量关系最值定值问题(学生版)

2023年中考数学总复习专题14二次函数与线段数量关系最值定值问题(学生版)

(全国通用)专题14二次函数与线段数量关系最值定值问题图形运动的过程中,求两条线段之间的函数关系,是中考数学的热点问题.产生两条线段间的函数关系,常见的情况有两种,一是勾股定理,二是比例关系.还有一种不常见的,就是线段全长等于部分线段之和.由比例线段产生的函数关系问题,在两种类型的题目中比较常用.一是由平行线产生的对于线段成比例,二是相似三角形的对应边成比例.一般步骤是先说理产生比例关系,再代入数值或表示数的字母,最后整理、变形,根据要求写出定义域.关键是寻找比例关系,难点是有的整理、变形比较繁琐,容易出错.【例1】(2022•武汉模拟)抛物线y=x2﹣2x+m的顶点A在x轴上,与y轴交于点B.(1)求抛物线的解析式;(2)如图1,直线CD∥AB交抛物线于C,D两点,若,求△COD的面积;(3)如图2,P为抛物线对称轴上顶点下方的一点,过点P作直线交抛物线于点E,F,交x轴于点M,求的值.【例2】(2022•黄石)如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.(1)A,B,C三点的坐标为,,.(2)连接AP,交线段BC于点D,①当CP与x轴平行时,求的值;②当CP与x轴不平行时,求的最大值;(3)连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m的值,若不存在,请说明理由.【例3】(2022•河南三模)如图,抛物线y=ax2+bx﹣4交x轴于A,B两点,交y轴于点C,OB=2OC=4OA,连接AC,BC.(1)求抛物线的解析式;(2)点D是抛物线y=ax2+bx﹣4的图象上在第四象限内的一动点,DE⊥x轴于点E,交BC于点F.设点D的横坐标为m.①请用含m的代数式表示线段DF的长;②已知DG∥AC,交BC于点G,请直接写出当时点D的坐标.【例4】(2021•大庆)如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=﹣2的距离总相等.①证明上述结论并求出点F的坐标;②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.证明:当直线l绕点F旋转时,+是定值,并求出该定值;(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.1.(2020•道里区二模)已知:在平面直角坐标系中,点O为坐标原点,抛物线y=﹣+bx+3交x轴于A、B两点(点B在点A的右边)交y轴于点C,OB=3OC.(1)如图1,求抛物线的解析式;(2)如图2,点E是第一象限抛物线上的点,连接BE,过点E作ED⊥OB于点D,tan∠EBD=,求△BDE的面积;(3)如图3,在(2)的条件下,连接BC交DE于点Q,点K是第四象限抛物线上的点,连接EK交BC于点M,交x轴于点N,∠EMC=45°,过点K作直线KT⊥x轴于点T,过点E作EL∥x轴,交直线KT于点L,点F是抛物线对称轴右侧第一象限抛物线上的点,连接ET、LF,LF的延长线交ET于点P,连接DP并延长交EL于点S,SE=2SL,求点F的坐标.2.(2020•三明二模)如图,抛物线y=x2+mx(m<0)交x轴于O,A两点,顶点为点B.(Ⅰ)求△AOB的面积(用含m的代数式表示);(Ⅱ)直线y=kx+b(k>0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C.过点C作CE∥AB交x轴于点E.(ⅰ)若∠OBA=90°,2<<3,求k的取值范围;(ⅱ)求证:DE∥y轴.3.(2022•杜尔伯特县一模)如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若点E在x轴上,且∠ECB=∠CBD,求点E的坐标.(3)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.4.(2020•江岸区校级一模)已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.5.(2020•涡阳县一模)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式.(2)点P是直线上方的抛物线上的一个动点,求△ABP的面积最大时的P点坐标.(3)若点P是抛物线上的一个动点(不与点A点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(4)设抛物线与y轴交于点F,在抛物线的第一象限内,是否存在一点M,使得AM被FC平分?若存在,请求出点M的坐标;若不存在,说明理由.6.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.(1)求a,m的值和点C的坐标;(2)若点P是x轴上的点,连接PB,P A,当=时,求点P的坐标;(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.7.(2021•甘肃)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.(1)求抛物线y=x2+bx+c的表达式;(2)当GF=时,连接BD,求△BDF的面积;(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.8.(2021•丽水)如图,已知抛物线L:y=x2+bx+c经过点A(0,﹣5),B(5,0).(1)求b,c的值;(2)连结AB,交抛物线L的对称轴于点M.①求点M的坐标;②将抛物线L向左平移m(m>0)个单位得到抛物线L1.过点M作MN∥y轴,交抛物线L1于点N.P是抛物线L1上一点,横坐标为﹣1,过点P作PE∥x轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若PE+MN=10,求m的值.9.(2020•陕西)已知抛物线L:y=﹣x2+bx+c过点(﹣3,3)和(1,﹣5),与x轴的交点为A,B(点A 在点B的左侧).(1)求抛物线L的表达式;(2)若点P在抛物线L上,点E、F在抛物线L的对称轴上,D是抛物线L的顶点,要使△PEF∽△DAB (P的对应点是D),且PE:DA=1:4,求满足条件的点P的坐标.10.(2020•盘锦)如图1,直线y=x﹣4与x轴交于点B,与y轴交于点A,抛物线y=﹣x2+bx+c经过点B和点C(0,4),△ABO沿射线AB方向以每秒个单位长度的速度平移,平移后的三角形记为△DEF (点A,B,O的对应点分别为点D,E,F),平移时间为t(0<t<4)秒,射线DF交x轴于点G,交抛物线于点M,连接ME.(1)求抛物线的解析式;(2)当tan∠EMF=时,请直接写出t的值;(3)如图2,点N在抛物线上,点N的横坐标是点M的横坐标的,连接OM,NF,OM与NF相交于点P,当NP=FP时,求t的值.11.(2022•深圳三模)如图1,抛物线y=ax2+bx经过点A(﹣5,0),点B(﹣1,﹣2).(1)求抛物线解析式;(2)如图2,点P为抛物线上第三象限内一动点,过点Q(﹣4,0)作y轴的平行线,交直线AP于点M,交直线OP于点N,当点P运动时,4QM+QN的值是否变化?若变化,说明变化规律,若不变,求(3)如图3,长度为的线段CD(点C在点D的左边)在射线AB上移动(点C在线段AB上),连接OD,过点C作CE∥OD交抛物线于点E,线段CD在移动的过程中,直线CE经过一定点F,直接写出定点F的坐标与的最小值.12.(2022•阿克苏地区一模)如图1.抛物线与x轴交于A、B两点,与y轴交于点C,连接BC,已知点B(4,0).(1)若C(0,3),求抛物线的解析式.(2)在(1)的条件下,P(﹣2,m)为该抛物线上一点,Q是x轴上一点求的最小值,并求此时点Q的坐标.(3)如图2.过点A作BC的平行线,交y轴与点D,交抛物线于另一点E.若DE=7AD,求c的值.13.(2022•松江区二模)如图,在平面直角坐标系中,已知直线y=2x+8与x轴交于点A、与y轴交于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线的表达式;(2)P是抛物线上一点,且位于直线AB上方,过点P作PM∥y轴、PN∥x轴,分别交直线AB于点M、①当MN=AB时,求点P的坐标;②联结OP交AB于点C,当点C是MN的中点时,求的值.14.(2022•游仙区模拟)如图,抛物线与坐标轴分别交于A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式;(2)抛物线上是否存在点P,使得∠CBP=∠ACO,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,Q是△ABC内任意一点,求++的值.15.(2022•龙岩模拟)抛物线y=ax2+bx+c经过A(﹣1,0),B(3,4)两点,与y轴交于点C.(1)求抛物线的解析式(用含a的式子表示);(2)当a>0时,连接AB,BC,若tan∠ABC=,求a的值;(3)直线y=﹣x+m与线段AB交于点P,与抛物线交于M,N两点(点M在点N的左侧),若PM•PN =6,求m的值.16.(2022•雷州市模拟)如图(1),抛物线y=ax2+bx+6与x轴交于点A(﹣6,0)、B(2,0),与y轴交于点C,抛物线对称轴交抛物线于点M,交x轴于点N.点P是抛物线上的动点,且位于x轴上方.(1)求抛物线的解析式.(2)如图(2),点D与点C关于直线MN对称,若∠CAD=∠CAP,求点P的坐标.(3)直线BP交y轴于点E,交直线MN于点F,猜想线段OE、FM、MN三者之间存在的数量关系,并证明.17.(2022•马鞍山二模)如图,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0)、B(3,0),与y轴交于C点,直线y=kx(k<0)交线段BC下方抛物线于D点,交BC于E点(1)分别求出a、b的值;(2)求出线段BC的函数关系式,并写出自变量取值范围;(3)探究是否有最大值,若存在,请求出此时k值,若不存在,请说明理由.18.(2022•南岗区校级二模)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=﹣ax2+6ax+6与y 轴交于点B,交x轴的负半轴于点A,交x轴的正半轴于点C,且S△ABC=30.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,其横坐标为t,PD⊥x轴于点D,设tan∠P AD等于m,求m与t之间的函数关系式;(3)如图3,在(2)的条件下,当m=时,过点B作BN⊥AB交∠P AC的平分线于点N,点K在线段AB上,点M在线段AN上,连接KM、KN,∠MKN=2∠BNK,作MT⊥KN于点T,延长MT交BN 于点H,若NH=4BH,求直线KN的解析式.19.(2022•江汉区校级模拟)如图1,已知抛物线y=ax2+bx+c(a>0)与x轴交于A(﹣1,0),B(3,0),与y轴交于点C.(1)若C(0,﹣3),求抛物线的解析式;(2)在(1)的条件下,E是线段BC上一动点,AE交抛物线于F点,求的最大值;(3)如图2,点N为y轴上一点,AN、BN交抛物线于E、F两点,求•的值.20.(2022•成都模拟)如图,抛物线与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C.(1)求点A,B,C的坐标及抛物线的对称轴;(2)如图1,点P(1,m),Q(1,m﹣2)是两动点,分别连接PC,QB,请求出|PC﹣QB|的最大值,并求出m的值;(3)如图2,∠BAC的角平分线交y轴于点D,过D点的直线l与射线AB,AC分别于E,F,当直线l 绕点D旋转时,是否为定值,若是,请求出该定值;若不是,请说明理由.21.(2022•沈阳模拟)如图,在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A 在点B左侧),与y轴交于点C,直线l:y=kx+b经过点B,点C,点P是抛物线上一动点,连接OP交直线BC于点D.(1)求直线l的解析式;(2)当=时,求点P的坐标;(3)在(2)的条件下,点N是直线BC上一动点,连接ON,过点D作DF⊥ON于点F,点F在线段ON上,当OD=DF时,请直接写出点N的坐标.22.(2022•沈阳模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣过点A(3,2)和点B (,0),与x轴的另一个交点为点C.(1)求抛物线的函数表达式.(2)判断△ABC的形状,并说明理由.(3)点D在线段BC上,连接AD,作DE⊥AD,且DE=AD,连接AE交x轴于点F.点F不与点C 重合,射线DP⊥AE,交AE于点P,交AC于点Q.①当AD=AF时,请直接写出∠CAE的度数;②当=时,请直接写出CQ的长.。

专题14尺规作图问题(解析版) -2021年中考数学必考的十五种类型大题夺分技巧再训练

专题14尺规作图问题(解析版) -2021年中考数学必考的十五种类型大题夺分技巧再训练

专题14 尺规作图问题1.已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.【答案】见解析。

【分析】(1)根据作法即可补全图形;(2)根据等腰三角形的性质和同弧所对圆周角等于圆心角的一半即可完成下面的证明.【解析】(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC(同弧所对的圆周角等于圆心角的一半),∴∠ABP=12∠BAC.故答案为:∠BPC,同弧所对的圆周角等于圆心角的一半.2.如图,在△ABC中,D是BC边上一点,且BD=BA.(1)尺规作图(保留作图痕迹,不写作法):①作∠ABC的角平分线交AD于点E;②作线段DC的垂直平分线交DC于点F.(2)连接EF,直接写出线段EF和AC的数量关系及位置关系.【答案】见解析。

【分析】(1)根据尺规作基本图形的方法:①作∠ABC的角平分线交AD于点E即可;②作线段DC的垂直平分线交DC于点F即可.(2)连接EF,根据等腰三角形的性质和三角形中位线定理,即可写出线段EF和AC的数量关系及位置关系.【解析】(1)如图,①BE即为所求;②如图,线段DC的垂直平分线交DC于点F.(2)∵BD =BA ,BE 平分∠ABD ,∴点E 是AD 的中点,∵点F 是CD 的中点,∴EF 是△ADC 的中位线,∴线段EF 和AC 的数量关系为:EF =12AC ,位置关系为:EF ∥AC .3.如图,已知△ABC ,AC >AB ,∠C =45°.请用尺规作图法,在AC 边上求作一点P ,使∠PBC =45°.(保留作图痕迹.不写作法)【答案】见解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题14 角平分线问题
1.角的平分线定义:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC 是∠AOB 的平分线,所以∠1=∠2=∠AOB ,或∠AOB=2∠1=2∠2. 类似地,还有角的三等分线等.
2.作角平分线
角平分线的作法(尺规作图)
①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;
②分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;
③过点P 作射线OP ,射线OP 即为所求.
3.角平分线的性质
(1)定理:角平分线上的点到角的两边的距离相等。

符号语言:∵OP 平分∠AOB ,AP ⊥OA ,BP ⊥OB ,∴
AP=BP.
1
2
(2)逆定理:到角的两边距离相等的点在角的平分线上。

符号语言:∵ AP ⊥OA ,BP ⊥OB ,AP=BP ,∴点P 在∠AOB 的平分线上.
注意:三角形的角平分线。

三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线的数学语言:
如下图,AD 是ΔABC 的角平分线,或∠BAD =∠CAD 且点D 在BC 上.
说明:AD 是ΔABC 的角平分线∠BAD =∠DAC =∠BAC (或∠BAC =2∠BAD =2∠DAC) . (1)三角形的角平分线是线段;
(2)一个三角形有三条角平分线,并且都在三角形的内部;
(3)三角形三条角平分线交于三角形内部一点,这一点叫做三角形的内心;
(4)可以用量角器或圆规画三角形的角平分线.
4.角平分线的综合应用
2
1
(1)为推导线段相等、角相等提供依据和思路;
(2)在解决综合问题中的应用.
【例题1】(2020•襄阳)如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()
A.132°B.128°C.122°D.112°
【对点练习】(2020长春模拟)如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()
A.44° B.40° C.39° D.38°
【例题2】(2020•随州)如图,点A,B,C在⊙O上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为.
【对点练习】(2019四川自贡)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,CD∥AB,∠ABC的平分线BD交AC于点E,DE=.
【例题3】(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A 与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.
【对点练习】已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.
求证:点P在∠MON的平分线上.
一、选择题
1.(2020•乐山)如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=()
A.10°B.20°C.30°D.40°
2.(2020•福建)如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()
A.10 B.5 C.4 D.3
3.如图,在∆ABC中,∠C=90°,AD平分∠BAC,过点D作DE AB于点E,测得BC=9,BE=3,则∆BDE的周长是( )
A.15
B.12
C.9
D.6
4.如图,面积为24的▱ABCD中,对角线BD平分∠ABC,过点D作DE⊥BD交BC的延长线于点E,DE=6,则sin∠DCE的值为()
A.B.C.D.
5.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()
A.作∠APB的平分线PC交AB于点C
B.过点P作PC⊥AB于点C且AC=BC
C.取AB中点C,连接PC
D.过点P作PC⊥AB,垂足为C
6.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()
A.75° B.80° C.85° D.90°
7.(2019山东滨州)如图,在正方形ABCD中,对角线相交于点O,BN平分∠CBD,交边CD于点N,交对角线AC于点M,若OM=1,则线段DN的长是多少()
A.1.5 B.2 C.D.2
8.(2019陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。

若DE=1,则BC的长为()
2 C.2+
3 D.3
A.2+2
B.3
9.(2019内蒙古)如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D 、E 为圆心,大于DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积是( )
A .1
B .
C .2
D .
二、填空题
10.(2020•扬州)如图,在△ABC 中,按以下步骤作图:
①以点B 为圆心,任意长为半径作弧,分别交AB 、BC 于点D 、E .
②分别以点D 、E 为圆心,大于12DE 的同样长为半径作弧,两弧交于点F .
③作射线BF 交AC 于点G .
如果AB =8,BC =12,△ABG 的面积为18,则△CBG 的面积为 .
11.如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=8cm ,则CD= .
12.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为.
13.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.
14.(2019内蒙古通辽)如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为点E,且AE平分∠BAC,则AB的长为.
15.(2019宁夏)如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.
三、解答题
16.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.
17.(2020•武汉)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.
(1)求证:AD平分∠BAE;
(2)若CD=DE,求sin∠BAC的值.
18.已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,
垂足分别为点A、点B.
求证:PA=PB.
19.已知:如图,在R t△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,
且DE=DC.
(1)求证:BD平分∠ABC;
(2)若∠A=36°,求∠DBC的度数.
20.已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.
21.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.求证:AC=BC.
22.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:ME=BD.
23. 如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.
24.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA交OA于点D,PE⊥OB交OB于
点E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
25.如图,在四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.
求证:(1)OC平分∠ACD;(2)OA⊥OC;(3)AB+CD=AC.
26.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.。

相关文档
最新文档