2013年普通高等学校招生全国统一考试(天津卷)文科数学
2013年天津高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试(天津卷)数学(文史类)一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2,1A x x B x x =∈=∈R R 剟, 则B A = ( )A. (],2-∞-B.[]1,2C.[]2,2-D. []2,1-【测量目标】集合间的关系,集合的基本运算. 【考查方式】考查了集合的表示法(描述法)、集合的交集运算. 【参考答案】D【试题解析】先化简集合A ,再利用数轴进行集合的交集运算. 由已知得{22}A x x=∈-R 剟,于是{21}A B x x =∈-R 剟2.设变量,x y 满足约束条件360,20,30,x y x y y +-⎧⎪--⎨⎪-⎩………则目标函数2z y x =-的最小值为 ( )A. 7-B.4-C. 1D. 2 【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,作出可行域,通过平移目标函数,求可行域的最值. 【参考答案】A【试题解析】作出可行域,平移直线x y 2=,当直线过可行域内的点)3,5(A 时,Z 有最小值, min 3257Z =-⨯=-.3.阅读程序框图, 运行相应的程序, 则输出n 的值为 ( ) A. 7 B. 6 C. 5 D. 4 【测量目标】循环结构的程序框图.【考查方式】执行程序框图中的循环语句,求值. 【参考答案】D【试题解析】结合循环结构逐步执行求解. .0,1==s n第一次:()211,21,11101=+=<--=⨯-+=n s ,第二次:()312,21,12112=+=<=⨯-+-=n s ,第三次:()31132,22,314s n =+-⨯=--<=+=,第四次:()22,24124==⨯-+-=s ,满足2s …,跳出循环,输出4=n .4.设,a b ∈R 则 “2()0a b a -<”是“a b <”的 ( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【测量目标】不等式的性质及运算,充分、必要条件.【考查方式】给出关于,a b 的两个不等式,由,a b 关系判断充分、必要条件. 【参考答案】A【试题解析】分别判断由2()0a b a -<是否能得出b a <成立和由b a <是否能得出2()0a b a -<成立.由2()0a b a -<可得b a <,当0=a ,b a <成立;而当0=a ,b a <成立时,2()0a b a -<不成立,所以2()0a b a -<是b a <的充分而不必要条件.5.已知过点()2,2p 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =( ) A. 12-B. 1C. 2D.12【测量目标】直线与圆的位置关系.【考查方式】由线线垂直判断切线方程,根据切线过固定点,圆心到切线的距离等于圆的半径,用点到直线的距离公式列出等式进而求未知数. 【参考答案】C【试题解析】圆的切线与直线10ax y -+=垂直,设切线方程为0=++c ay x ,再代入点(2,2)P 结合圆心到切线的距离等于圆的半径,求出a 的值.由题得圆心()1,0,切线与直线01=+-y ax 垂直,切线方程为0=++c ay x .(步骤1)0=++c ay x 过点p )2,2(22,c a ∴=--=2=a .(步骤2)6.函数π()sin 24f x x ⎛⎫=- ⎪⎝⎭在区间π0,2⎡⎤⎢⎥⎣⎦上的最小值是 ( )A.1-B.C. D. 0【测量目标】三角函数的最值.【考查方式】给出正弦函数()f x 及其定义域,由正弦函数的单调性判断最小值.【参考答案】B 【试题解析】确定π24x -的范围,根据正弦函数的单调性求出最小值. πππ3π0,,22444x x ⎡⎤∈∴--⎢⎥⎣⎦剟,(步骤1) 当ππ244x -=-时,π()sin 24f x x ⎛⎫=- ⎪⎝⎭有最小值22-.(步骤2) 7.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足()()212log log 21f a f a f ⎛⎫+ ⎪⎝⎭…, 则a 的取值范围是 ( )A. [1,2]B. 10,2⎛⎤ ⎥⎝⎦C. 1,22⎡⎤⎢⎥⎣⎦D. (0,2]【测量目标】利用函数的奇偶性、单调性求参数范围.【考查方式】已知复合函数()f x 的不等式,先转化再由函数的单调性和奇偶性,求解不等式中的参数范围. 【参考答案】C【试题解析】根据函数的单调性和奇偶性得出关于a 的不等式的求解..12log f a ⎛⎫= ⎪⎝⎭()2log f a -=()2log f a ,∴原不等式可化为()2log f a ()1f ….(步骤1)又 ()x f 在区间[)0+∞,上单调递增,0∴…2log a …1,即1…2a ….(步骤2)()x f 是偶函数,∴()2log f a ()1f -….(步骤3)又()x f 在区间(]0,∞-上单调递减,1∴-…2log a 0…,112a 剟.(步骤3)综上所知122a 剟.(步骤4)8.设函数2()e 2,()ln 3x x g x x x x f +-=+-=. 若实数,a b 满足()0,()0f a g b ==, 则 ( ) A. ()0()g a f b << B. ()0()f b g a <<C. 0()()g a f b <<D. ()()0f b g a <<【测量目标】利用导数解决不等式问题.【考查方式】已知两个函数,通过导数判断函数的单调性,比较值的大小. 【试题解析】首先确定b a ,的取值范围,再根据函数的单调性求解.()e 10x f x '=+> ,∴()x f 是增函数. (步骤1)∵()x g 的定义域是()0,+∞,∴()120,g x x x'=+>∴()x g 是()0,+∞上的增函数. (步骤2)∵()010,(1)e 10,0 1.f f a =-<=->∴<<(步骤3)(1)20,g =-< (2)ln 210,12,()0,()0.g b f b g a =+>∴<<∴><(步骤4)二.填空题: 本大题共6小题, 每小题5分, 共30分. 9.i 是虚数单位. 复数()()3i 12i +- = . 【测量目标】复数的四则运算.【考查方式】给出两个复数的乘积形式,直接求答案. 【参考答案】55i -【试题解析】()()23i 12i 35i 2i 55i +-=--=-.10.已知一个正方体的所有顶点在一个球面上. 若球的体积为9π2, 则正方体的棱长为 .【测量目标】空间几何体的结构特征及运算.【考查方式】已知球的体积,利用球内接于正方体的特殊性质,求棱长. 【参考答案】3【试题解析】先求球的半径,再根据正方体的体对角线等于球的直径求棱长.设正方体棱长为a ,求半径为R ,则3493ππ,3,322R R a =∴==∴=11.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .【测量目标】圆锥曲线的方程及性质.【考查方式】已知抛物线方程,双曲线的离心率,两曲线有一个共同焦点,利用抛物线、双曲线的性质求方程.【参考答案】1322=-y x 【试题解析】首先由题设求出双曲线的半焦距,再求出b a ,的值.由题可知抛物线的准线方程为2-=x ,∴双曲线的半焦距2=c .(步骤1) 又双曲线的离心率为2 ,∴3,1==b a ,(步骤2)∴双曲线的方程为1322=-y x .(步骤3) 12.在平行四边形ABCD 中, 1AD =, 60BAD ︒∠=,E 为CD 的中点. 若1AC BE =, 则AB 的长为 .【测量目标】平面向量的应用.【考查方式】已知平行四边形及向量,用向量表示,运用平面向量简单的四则运算求值. 【参考答案】21 【试题解析】用,AB AD表示AC 与BE ,然后进行向量的数量积运算.由已知得AC =AD AB + ,12BE AD AB =- ,∴AC BE =221122AD AB AD AB AD AB -+-211122AB AD AB =+- 2111cos 60122AB AD AB ︒=+-= ,(步骤1)∴12AB = .(步骤2)13.如图, 在圆内接梯形ABCD 中, AB DC , 过点A 作的切线与CB 的延长线交于点E . 若5AB AD ==, 4BE =, 则弦BD 的长为 .【测量目标】直线与圆的位置关系.【考查方式】已知圆、内接多边形及切线,利用圆的内接四边形的性质、切割线定理、三角形的相似,求弦长. 【参考答案】215【试题解析】根据圆的内接四边形的性质,切割线定理及三角形的相似的性质列出比例式求解.因为AB DC ,所以四边形ABCD 是等腰梯形,所以5===AB AD BC .(步骤1)又AE 是切线,所以AE BD ,()244536AE BE EC ==+= ,所以6=AE .(步骤2)因为CDB ∠=BAE ∠, BCD ∠=ABE ∠,所以ABE DCB △∽△,所以BCBEDB AE =,于是215465=⨯=BD .(步骤3) 14.设2a b +=,0b > ,则1||2||a a b+的最小值为 . 【测量目标】含绝对值的不等式求最值.【考查方式】根据已知条件,去掉绝对值符号,利用均值不等式判断最小值. 【参考答案】43 【试题解析】分0,0<>a a ,去掉绝对值符号,用均值不等式求解.当0>a 时,1115224444a a ab a b a a b a b a b a b +⎛⎫+=+=+=++ ⎪⎝⎭…; 当0<a 时,1111312244444a a ab a b a a b a b a b a b -+--⎛⎫+=+=+=-++-+= ⎪---⎝⎭… 三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.15.(本小题满分13分)某产品的三个质量指标分别为,,x y z 用综合指标S x y z =++评价该产品的等级. 若4S …, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:((Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(1) 用产品编号列出所有可能的结果;(2) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.【测量目标】随机事件及概率,抽样调查,古典概型.【考查方式】列举法,样本估计总体,古典概型及其概率计算公式等基础知识.【试题解析】用列举法计算随机事件所含的基本事件数,用古典概型及其概率计算公式求出概率. 解:(1)计算10件产品的综合指标S ,如下表:(步骤1)其中4S …的有1A ,2A ,4A ,5A ,7A ,9A ,共六件, 故该样本的一等品率为6.0106=,从而可估计该产品的一等品率为0.6. (步骤2) (2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{}12,A A ,{}14,A A ,{}15,A A ,{}17,A A ,{}19,A A ,{}24,A A ,{}25,A A ,{}27,A A ,{}29,A A ,{}45,A A ,{}47,A A {}49,A A ,{}57,A A ,{}59,A A {}79,A A ,共15种. (步骤3)②在该样本的一等品中,综合指标S 等于4的产品编号分别为1A ,2A ,5A ,7A ,则事件B 发生的所有可能结果为{}12,A A ,{}15,A A ,{}17,A A ,{}25,A A ,{}27,A A ,{}57,A A ,共6种. (步骤4) 所以()52156==B P . (步骤5) 16.(本小题满分13分)在ABC △中, 内角C B A ,,所对的边分别是,,a b c .已知sin 3sin b A c B =, a = 3, 2cos 3B =. (Ⅰ) 求b 的值; (Ⅱ) 求πsin 23B ⎛⎫-⎪⎝⎭的值. 【测量目标】正、余弦定理,两角和与差的正弦及二倍角公式.【考查方式】给出关于边角的等式,利用公式和定理求边长和正弦值.【试题解析】⑴先用正弦定理求出c ,再用余弦定理求出b ;⑵用二倍角公式和两角差公式求值.解:⑴在ABC △中,由sin sin a b A B=,可得sin sin b A a B =.(步骤1) 又由sin 3sin b A c B =,可得c a 3=.又3=a ,故1=c .(步骤2)由B ac c a b cos 2222-+=,32cos =B ,可得6=b .(步骤3)⑵由32cos =B ,得35sin =B ,进而得1cos 22cos 2-=B B 91-=, 954cos sin 22sin ==B B B (步骤4) ∴πππsin 2sin 2cos sin cos 2333B B B ⎛⎫-=- ⎪⎝⎭=18354+.(步骤5) 17. (本小题满分13分)如图, 三棱柱111C B A ABC -中, 侧棱A A 1⊥底面ABC ,且各棱长均相等.F E D ,,分别为棱11,,C A BC AB 的中点. (Ⅰ) 证明EF 平面CD A 1;(Ⅱ) 证明平面CD A 1⊥平面11ABB A ; (Ⅲ) 求直线BC 与平面CD A 1所成角的正弦值.【测量目标】立体几何的结构,线面平行,面面垂直的判定,线面夹角的正弦值.【考查方式】(1)由线线关系⇒线面平行(2)线线垂直⇒线面垂直⇒面面垂直 (3)利用三棱柱中线段关系求出线面角的正弦值. 【试题解析】(1)证明:如图,在三棱柱中111C B A ABC -,11ACAC ,且11AC AC =,连接ED , 在ABC △中,因为D E ,分别为AB BC ,的中点,所以AC DE 21=且DE AC (步骤1)又因为F 为11AC 的中点,可得1A F DE =,且1A F D E ,即四边形1A DEF 为平行四边形,所以1EFDA .(步骤2)又EF ⊄平面1ACD ,1DA ⊂平面1ACD , 所以EF 平面1ACD .(步骤3) (2)证明:由于底面ABC △是正三角形,D AB 为的中点,故CD AB ⊥,(步骤4) 又由于侧棱1A A ⊥底面ABC CD ⊂,平面ABC , 所以1A A CD ⊥.(步骤5)又1A A AB A =,因此CD ⊥平面11A ABB CD ⊂,而平面1ACD , 所以平面111ACD A ABB ⊥平面.(步骤6) (3)解:在平面11A ABB 内,过点1B BG A D ⊥作交直线1A D 的延长线于点G ,连接CG . 由于平面1ACD ⊥平面11A ABB ,而直线11A D ACD 是平面与平面11A ABB 的交线, 故BG ⊥平面1ACD .由此得BCG ∠为直线BC 与平面1ACD 所成的角.(步骤7)设棱长为a ,可得1A D =由1A AD BGD △∽△,易得BG (步骤8)在Rt BGC △中,sin BCG ∠=5BG BC =.所以直线BC 与平面1ACD 所成角的正弦值为5.(步骤9) 18.(本小题满分13分)设椭圆22221(0)x y a b a b +=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被(Ⅰ) 求椭圆的方程;(Ⅱ) 设,A B 分别为椭圆的左右顶点, 过点F 且斜率为K 的直线与椭圆交于,C D 两点. 若8AC DB AD CB += , 求K 的值.【测量目标】椭圆的定义与几何性质,直线与椭圆的位置关系.【考查方式】利用直线的定义和直线的位置关系求解椭圆的标准方程,利用直线的方程、向量的坐标运算、代数方法研究圆锥曲线的性质,运用方程求直线的斜率. 【试题解析】 ⑴设(),F c o -,用33=a c ,知c a 3=.(步骤1) 过点F 且与x 轴垂直的直线为c x -=,代入椭圆的方程有()12222=+-by a c , 解得36±=y ,于是334362=b ,解得2=b .(步骤2) 又222b c a =-,从而1,3==c a ,所以椭圆的方程为22=132x y +.(步骤3) (2)设点()11,C x y ,()22,y x D ,由()0,1-F 得直线CD 的方程为()1y k x =+,由方程组221,132y k x x y =(+)⎧⎪⎨+=⎪⎩消去y ,整理得()0636322222=-+++k x k x k求解可得21x x +=22623k k -+,21x x =223623k k -+.因为A ()0,3-,B ()0,3所以AC DB +AD CB())())11222211,,x y x y x y x y =+-+-1212622x x y y =--()()2121262211x x k x x =--++()()222121262222k x x k x x k =-+-+-22212623k k+=++. (步骤5) 由已知得222126823k k++=+,解得=k (步骤6) 19. (本小题满分14分) 已知首项为32的等比数列{}n a 的前n 项和为n S (n *∈N )且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 证明1361n n S S +…(n *∈N ).【测量目标】等差、等比数列的通项公式及前n 项和,不等式的证明.【考查方式】(1)利用数列的定义及性质由等差数列转化求出等比数列的通项公式.(2)将等比数列的前n 项和建立不等式关系,分类讨论. 【试题解析】解:(1)设等比数列{}n a 的公比为q ,因为4324,,2S S S -成等差数列, 所以342342S S S S -=+,即4234S S S S -=-, 可得342a a -=,于是4312a q a ==-.(步骤1) 又=1a 32,所以等比数列{}n a 的通项公式为11313(1)222n n n n a --⎛⎫=⨯-=- ⎪⎝⎭.(步骤2)(2)证明:由(1)得:112nn S ⎛⎫=-- ⎪⎝⎭,11112112n n nn S S ⎛⎫+=--+ ⎪⎝⎭⎛⎫-- ⎪⎝⎭1122212.221n n n nn n +⎧+⎪()⎪=⎨⎪+⎪(-)⎩,为奇数,,为偶数 当n 为奇数时,1n nS S +随n 的增大而减小,所以111113=6n n S S S S ++….当n 为偶数时,1n nS S +随n 的增大而减小,所以221125=12n n S S S S ++…. (步骤3)故对于n *∈N ,有1136n n S S +….(步骤4) 20.(本小题满分14分)设[2,0]a ∈-, 已知函数332(5),0,3,0().2x f x a x x a x x ax x -++-⎧>=⎪+⎪⎨⎩…(Ⅰ) 证明()f x 在区间()1,1-内单调递减, 在区间()1,+∞内单调递增;(Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明1213x x x ++-….【测量目标】函数与方程,函数与导数,不等式的性质.【考查方式】给定直线与函数的位置关系,利用导数研究函数的单调性,通过定义域判断值域,由基本不等式判断最小值等知识. 【试题解析】证明:(1)设函数()()()3150f x x a x x =-+…,()=x f 2 3232a x x ax +-+()0x …, ①()213(5)f x x a '+=-,由[2,0]a ∈-,从而当10x -<…时,()213(5)350f x x a a '=-+<--…,所以函数()1f x 在区间(1,0]-内单调递减.(步骤1) ②()223(3)(3)(1)f x x a x a x a x '=-++=--,由于[2,0]a ∈-,所以当01x <<时,()20f x '<; 当1x >时,()20f x '>.即函数()2f x 在区间(]0,1内单调递减,在区间()1,+∞内单调递增.(步骤2)综合①,②及()()1200f f =,可知函数()f x 在区间(1,1)-内单调递减,在区间()1,+∞内单调递增.(步骤3)(2)由(1)知()f x '在区间(0)-∞,内单调递减,在区间306a +⎛⎫⎪⎝⎭,内单调递减,在区间36a +⎛⎫+∞⎪⎝⎭,内单调递增.(步骤1) 因为曲线()y f x =在点()()(1,2,3)i i i P x f x i ,=处的切线相互平行, 从而123x x x ,,互不相等,且()()()123f x f x f x '''==.(步骤2)不妨设1230x x x <<<,由22212233(5)(3)(3)x a x a x a x a x a 3-+=3-++=3-++, 解得222323(3)()0x x a x x ---33+=23x x +=33a +,从而20x <<36a +3x <.(步骤3) 设()23(3)g x x a x a =-++,则36a g +⎛⎫⎪⎝⎭()()20g x g a <<=.由()2123(5)x a g x a -+=<,解得 10x <,所以123x x x ++>33a +.(步骤4)设t =a =2352t -,因为[2,0]a ∈-,所以t ∈⎣⎦,(步骤4) 故123x x x ++>,2231111(1)6233t t t +-+=---…即123x x x ++…13-.(步骤5)。
2013年普通高等学校招生全国统一考试(新课标1卷)数学文科

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年天津市高考数学试卷(文科)教师版

2013年天津市高考数学试卷(文科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.共8小题,每小题5分,共40分.1.(5分)(2013•天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2]D.[﹣2,1]【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选:D.2.(5分)(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣7B.﹣4C.1D.2【分析】先根据条件画出可行域,设z=y﹣2x,再利用几何意义求最值,将最小值转化为y轴上的截距最小,只需求出直线z=y﹣2x,过可行域内的点B(5,3)时的最小值,从而得到z最小值即可.【解答】解:设变量x、y满足约束条件,在坐标系中画出可行域三角形,平移直线y﹣2x=0经过点A(5,3)时,y﹣2x最小,最小值为:﹣7,则目标函数z=y﹣2x的最小值为﹣7.故选:A.3.(5分)(2013•天津)阅读如图所示的程序框图,运行相应的程序,则输出n 的值为()A.7B.6C.5D.4【分析】利用循环结构可知道需要循环4次方可得到S←2,因此输出的n←4.【解答】解:由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4,因此当n=4时,S←2,满足判断框的条件,故跳出循环程序.故输出的n的值为4.故选:D.4.(5分)(2013•天津)设a,b∈R,则“(a﹣b)a2<0”是“a<b”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分必要条件定义判断,结合不等式求解.【解答】解:∵a,b∈R,则(a﹣b)a2<0,∴a<b成立,由a<b,则a﹣b<0,“(a﹣b)a2≤0,所以根据充分必要条件的定义可的判断:a,b∈R,则“(a﹣b)a2<0”是a<b的充分不必要条件,故选:A.5.(5分)(2013•天津)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,则a=()A.B.1C.2D.【分析】由题意判断点在圆上,求出P与圆心连线的斜率就是直线ax﹣y+1=0的斜率,然后求出a的值即可.【解答】解:因为点P(2,2)满足圆(x﹣1)2+y2=5的方程,所以P在圆上,又过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线ax﹣y+1=0垂直,所以切点与圆心连线与直线ax﹣y+1=0平行,所以直线ax﹣y+1=0的斜率为:a==2.故选:C.6.(5分)(2013•天津)函数f(x)=sin(2x﹣)在区间[0,]上的最小值是()A.﹣1B.﹣C.D.0【分析】由题意,可先求出2x取值范围,再由正弦函数的性质即可求出所求的最小值.【解答】解:由题意x∈,,得2x∈[﹣,],∴∈[,1]∴函数在区间,的最小值为.故选:B.7.(5分)(2013•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(log2a)+f()≤2f(1),则a的取值范围是()A.,B.[1,2]C.,D.(0,2]【分析】由偶函数的性质将f(log2a)+f()≤2f(1)化为:f(log2a)≤f(1),再由f(x)的单调性列出不等式,根据对数函数的性质求出a的取值范围.【解答】解:因为函数f(x)是定义在R上的偶函数,所以f()=f(﹣log2a)=f(log2a),则f(log2a)+f()≤2f(1)为:f(log2a)≤f(1),因为函数f(x)在区间[0,+∞)上单调递增,所以|log2a|≤1,解得≤a≤2,则a的取值范围是[,2],故选:A.8.(5分)(2013•天津)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0【分析】先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围即可.【解答】解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x ﹣2在R上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=>,g(b)=0,∴<<.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选:A.二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津)i是虚数单位.复数(3+i)(1﹣2i)=5﹣5i.【分析】利用复数的运算法则即可得出.【解答】解:(3+i)(1﹣2i)=3﹣6i+i﹣2i2=5﹣5i.故答案为5﹣5i.10.(5分)(2013•天津)已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为.【分析】设出正方体棱长,利用正方体的体对角线就是外接球的直径,通过球的体积求出正方体的棱长.【解答】解:因为正方体的体对角线就是外接球的直径,设正方体的棱长为a,所以正方体的体对角线长为:a,正方体的外接球的半径为:,球的体积为:,解得a=.故答案为:.11.(5分)(2013•天津)已知抛物线y2=8x的准线过双曲线>,>的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.【分析】利用抛物线的标准方程y2=8x,可得,故其准线方程为x=﹣2.由题意可得双曲线>,>的一个焦点为(﹣2,0),即可得到c=2.再利用双曲线的离心率的计算公式可得=2,得到a=1,再利用b2=c2﹣a2可得b2.进而得到双曲线的方程.【解答】解:由抛物线y2=8x,可得,故其准线方程为x=﹣2.由题意可得双曲线>,>的一个焦点为(﹣2,0),∴c=2.又双曲线的离心率为2,∴=2,得到a=1,∴b2=c2﹣a2=3.∴双曲线的方程为.故答案为.12.(5分)(2013•天津)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD 的中点.若,则AB的长为.【分析】利用向量的三角形法则和平行四边形法则和数量积得运算即可得出.【解答】解:∵,.∴===+﹣==1,化为,∵,∴.故答案为.13.(5分)(2013•天津)如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.【分析】连结圆心O与A,说明OA⊥AE,利用切割线定理求出AE,通过余弦定理求出∠BAE的余弦值,然后求解BD即可.【解答】解:如图连结圆心O与A,因为过点A作圆的切线与CB的延长线交于点E.所以OA⊥AE,因为AB=AD=5,BE=4,梯形ABCD中,AB∥DC,BC=5,由切割线定理可知:AE2=E B•EC,所以AE==6,在△ABE中,BE2=AE2+AB2﹣2AB•AEcosα,即16=25+36﹣60cosα,所以cosα=,AB=AD=5,所以BD=2×ABcosα=.故答案为:.14.(5分)(2013•天津)设a+b=2,b>0,则的最小值为.【分析】由题意得代入所求的式子,进行化简后,再对部分式子利用基本不等式求出范围,再由a的范围求出式子的最小值.【解答】解:∵a+b=2,∴,∴=,∵b>0,|a|>0,∴≥1(当且仅当b2=4a2时取等),∴≥1,故当a<0时,的最小值为.故答案为:.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.15.(13分)(2013•天津)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如表:(Ⅰ)利用上表提供的样本数据估计该批产品的一等品率;(Ⅱ)在该样品的一等品中,随机抽取2件产品,(i)用产品编列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.【分析】(Ⅰ)用综合指标S=x+y+z计算出10件产品的综合指标并列表表示,则样本的一等品率可求;(Ⅱ)(i)直接用列举法列出在该样品的一等品中,随机抽取2件产品的所有等可能结果;(ii)列出在取出的2件产品中,每件产品的综合指标S都等于4的所有情况,然后利用古典概型概率计算公式求解.【解答】解:(Ⅰ)计算10件产品的综合指标S,如下表:其中S≤4的有A1,A2,A4,A5,A7,A9共6件,故样本的一等品率为.从而可估计该批产品的一等品率为0.6;(Ⅱ)(i)在该样本的一等品种,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9}共15种.(ii)在该样本的一等品种,综合指标S等于4的产品编分别为A1,A2,A5,A7.则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以p(B)=.16.(13分)(2013•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsin A=3csin B,a=3,cos B=.(1)求b的值;(2)求sin(2B﹣)的值.【分析】(Ⅰ)直接利用正弦定理推出bsinA=asinB,结合已知条件求出c,利用余弦定理直接求b的值;(Ⅱ)利用(Ⅰ)求出B的正弦函数值,然后利用二倍角公式求得正弦、余弦函数值,利用两角差的正弦函数直接求解的值.【解答】解:(Ⅰ)在△ABC中,有正弦定理,可得bsinA=asinB,又bsinA=3csinB,可得a=3c,又a=3,所以c=1.由余弦定理可知:b2=a2+c2﹣2accosB,,即b2=32+12﹣2×3×cosB,可得b=.(Ⅱ)由,可得sinB=,所以cos2B=2cos2B﹣1=﹣,sin2B=2sinBcosB=,所以===.17.(13分)(2013•天津)如图,三棱锥ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点(Ⅰ)证明EF∥平面A1CD;(Ⅱ)证明平面A1CD⊥平面A1ABB1;(Ⅲ)求直线B1C1与平面A1CD所成角的正弦值.【分析】(I)连接ED,要证明EF∥平面平面A1CD,只需证明EF∥DA1即可;(II)欲证平面平面A1CD⊥平面A1ABB1,即证平面内一直线与另一平面垂直,根据直线与平面垂直的判定定理证得CD⊥面A1ABB1,再根据面面垂直的判定定理得证;(III)先过B作BG⊥AD交A1D于G,利用(II)中结论得出BG⊥面A1CD,从而∠BCG为所求的角,最后在直角△BGC中,求出sin∠BCG即可得出直线BC 与平面A1CD所成角的正弦值.【解答】证明:(I)三棱柱ABC﹣A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,可得DE∥AC,DE=AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,所以A1DEF是平行四边形,所以EF∥DA1,DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD(II)∵D是AB的中点,∴CD⊥AB,又AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;(III)过B作BG⊥A1D交A1D于G,∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,BG⊥A1D,∴BG⊥面A1CD,则∠BCG为所求的角,设棱长为a,可得A1D=,由△A1AD∽△BGD,得BG=,在直角△BGC中,sin∠BCG==,∴直线BC与平面A1CD所成角的正弦值.18.(13分)(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.【分析】(Ⅰ)先根据椭圆方程的一般形式,令x=c代入求出弦长使其等于,再由离心率为,可求出a,b,c的关系,进而得到椭圆的方程.(Ⅱ)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y 得,(2+3k2)x2+6k2x+3k2﹣6=0,再由韦达定理进行求解.求得,利用=8,即可求得k的值.【解答】解:(Ⅰ)根据椭圆方程为>>.∵过焦点且垂直于x轴的直线被椭圆截得的线段长为,∴当x=﹣c时,,得y=±,∴=,∵离心率为,∴=,解得b=,c=1,a=.∴椭圆的方程为;(Ⅱ)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,∴x1+x2=﹣,x1x2=,又A(﹣,0),B(,0),∴=(x1+,y1)•(﹣x2.﹣y2)+(x2+,y2)•(﹣x1.﹣y1),=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2,=6+=8,解得k=.19.(14分)(2013•天津)已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且﹣2S2,S3,4S4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明.【分析】(Ⅰ)由题意得2S3=﹣2S2+4S4,变形为S4﹣S3=S2﹣S4,进而求出公比q 的值,代入通项公式进行化简;(Ⅱ)根据(Ⅰ)求出,代入再对n分类进行化简,判断出S n随n的变化情况,再分别求出最大值,再求出的最大值.【解答】(Ⅰ)解:设等比数列{a n}的公比为q,∵﹣2S2,S3,4S4等差数列,∴2S3=﹣2S2+4S4,即S4﹣S3=S2﹣S4,得2a4=﹣a3,∴q=,∵,∴=;(Ⅱ)证明:由(Ⅰ)得,S n==1﹣,∴,当n为奇数时,==,当n为偶数时,=,∴随着n的增大而减小,即,且,综上,有成立.20.(14分)(2013•天津)设a∈[﹣2,0],已知函数,,>(Ⅰ)证明f(x)在区间(﹣1,1)内单调递减,在区间(1,+∞)内单调递增;(Ⅱ)设曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明>.【分析】(Ⅰ)令,>.分别求导即可得到其单调性;(Ⅱ)由(Ⅰ)可知:f′(x)在区间(﹣∞,0)内单调递减,在区间,内单调递减,在区间,内单调递增.已知曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,可知x1,x2,x3互不相等,利用导数的几何意义可得.不妨x1<0<x2<x3,根据以上等式可得,从而<<<.设g(x)=3x2﹣(a+3)x+a,利用二次函数的单调性可得<<.由<,解得<<,于是可得>,通过换元设t=,已知a∈[﹣2,0],可得,,故>,即可证明.【解答】解:(Ⅰ)令,>.①,由于a∈[﹣2,0],从而当﹣1<x<0时,<,所以函数f1(x)在区间(﹣1,0)内单调递减,②=(3x﹣a)(x﹣1),由于a∈[﹣2,0],所以0<x<1时,<;当x>1时,>,即函数f2(x)在区间(0,1)内单调递减,在区间(1,+∞)上单调递增.综合①②及f1(0)=f2(0),可知:f(x)在区间(﹣1,1)内单调递减,在区间(1,+∞)内单调递增;(Ⅱ)证明:由(Ⅰ)可知:f′(x)在区间(﹣∞,0)内单调递减,在区间,内单调递减,在区间,内单调递增.因为曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且.不妨x1<0<x2<x3,由+a=.可得,解得,从而<<<.设g(x)=3x2﹣(a+3)x+a,则<<.由<,解得<<,所以>,设t=,则,∵a∈[﹣2,0],∴,,故>,故>.。
2013年普通高等学校招生全国统一考试文科数学(新课标I卷)Word版无答案

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2) = ( )(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)(B)(C)(D)(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程为()(A)y=±x (B)y=±x (C)y=±x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为的等比数列{an }的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b= (A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考文科数学天津卷(含详细答案)

绝密★启用前2013年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选凃其他答案标号.2.本卷共8小题,每小题5分,共40分. 参考公式:•如果事件A ,B 互斥,那么 •球的体积公式34π3V R =. ()()()P AB P A P B =+.•棱柱的体积公式V Sh =. 其中R 表示球的半径. 其中S 表示棱柱的底面面积, h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|||2}A x x =∈≤R ,{|1}B x x =∈R ≤,则A B =( ) A .(,2]∞-B .[1,2]C .[]2,2-D .[12,]--2.设变量x ,y 满足约束条件0,230,306,x x y y y +----⎧⎪⎨⎪⎩≥≤≤则目标函数2z y x =-的最小值为( ) A .-7B .-4C .1D .23.阅读右边的程序框图,运行相应的程序,则输出n 的值 为( ) A .7 B .6 C .5D .44.设a ,b ∈R ,则“2()0a b a -<”是“a b <”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知过点(2,2)P 的直线与圆22(1)5x y -+=相切,且 与直线10ax y -+=垂直,则a = ( ) A .12-B .1C .2D .126.函数π()sin(2)4f x x =-在区间π[0,]上的最小值为( )A .1-B . CD .07.已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上单调递增.若实数a 满足212(log )(log )2(1)f a f a f +≤,则a 的取值范围是( )A .[1,2]B .1(0,]2C .1[,2]2D .(0,2]8.设函数()e 2x f x x =+-,2()ln 3g x x x =+-.若实数a ,b 满足()0f a =,()0g b =, 则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共12小题,共110分.二、填空题:本大题共6小题,每小题5分,共30分. 9.i 是虚数单位,复数(3i)(12i)+-= .10.已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为 .11.已知抛物线28y x =的准线过双曲线22221x y a b-=(0a >,0b >)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为 .12.在平行四边形ABCD 中,1AD =,60BAD ∠=,E 为CD 的中点.若1AC BE =,则AB 的长为 .13.如图,在圆内接梯形ABCD 中,AB DC ∥.过点A 作圆的切线与CB 的延长线交于点E .若5AB AD ==,4BE =,则弦BD 的长为 .14.设2a b +=,0b >,则1||2||a a b+的最小值为 .--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)某产品的三个质量指标分别为x ,y ,z ,用综合指标S x y z =++评价该产品的等级. 若4S ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质(Ⅰ)利用上表提供的样本数据估计该批产品的一等品率; (Ⅱ)在该样本的一等品中,随机抽取2件产品, (i )用产品编号列出所有可能的结果;(ii )设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B 发生的概率.16.(本小题满分13分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin 3sin b A c B =,3a =,2cos 3B =.(Ⅰ)求b 的值;(Ⅱ)求πsin(2)3B -的值.17.(本小题满分13分)如图,三棱柱111ABC A B C -中,侧棱1A A ⊥底面ABC ,且各棱长均相等,D ,E ,F 分别为棱AB ,BC ,11AC 的中点. (Ⅰ)证明:EF ∥平面1A CD ; (Ⅱ)证明:平面1A CD ⊥平面11A ABB ; (Ⅲ)求直线BC 与平面1A CD 所成角的正弦值.18.(本小题满分13分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,,过点F 且与x 轴垂直的直(Ⅰ)求椭圆的方程;(Ⅱ)设A 、B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若8AC DB AD CB +=,求k 的值.19.(本小题满分14分)已知首项为32的等比数列{}n a 的前n 项和为*()n S n ∈N ,且22S -,3S ,44S 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)证明1136n n S S +≤(*n ∈N ). 20.(本小题满分14分)设[2,0]a ∈-,已知函数332(5),0,()3,0.2x a x x f x a x x ax x ⎧-+⎪=⎨+-+>⎪⎩≤(Ⅰ)证明()f x 在区间(1,1)-内单调递减,在区间()1,+∞内单调递增;(Ⅱ)设曲线()y f x =在点(,())i i i P x f x (1,2,3)i =处的切线相互平行,且1230x x x ≠. 证明12313x x x ++>-.{=∈RA B x,再利用数轴进行集合的交集运算.【解析】π0,2x ⎡∈⎢⎣π4=-时,【解析】12log f a ⎛ ⎝又上单调递增,【解析】()e f x '=是(0,)+∞上的增函数(1)2g =-【提示】先判定出零点【考点】利用导数解决不等式问题【解析】由已知得AC =AD AB +,12BE AD AB =-, ∴AC BE =221122AD AB AD AB AD AB -+-2111||22AB AD AB =+-211cos60||12AB AD AB ︒-=.1AB=.||【提示】用AB与AD用AC与BE表示,然后进行向量的数量积运算【考点】平面向量的应用15BE EC=+4(4,所以ABE△数学试卷第16页(共30页)ac B,cos cos5,进而得3数学试卷 第22页(共30页)所以AC DB +AD CB12222113,)(3,)(3,)3,y x y x y x y +--++--()122y y3 1. 2n数学试卷第28页(共30页)。
2013年天津市高考数学试卷(文科)答案与解析

2013年天津市高考数学试卷(文科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.共8小题,每小题5分,共40分.2.(5分)(2013•天津)设变量x,y满足约束条件,则目标函数z=y﹣2x的,3.(5分)(2013•天津)阅读如图所示的程序框图,运行相应的程序,则输出n的值为()25.(5分)(2013•天津)已知过点P(2,2)的直线与圆(x﹣1)2+y2=5相切,且与直线axB=26.(5分)(2013•天津)函数f(x)=sin(2x﹣)在区间[0,]上的最小值是()取值范围,再由正弦函数的性质即可求出所求的最小值.∈,[在区间的最小值为7.(5分)(2013•天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a满足f(log2a)+f(log a)≤2f(1),则a的取值范围是(),即≤8.(5分)(2013•天津)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)(,∴二.填空题:本大题共6小题,每小题5分,共30分.9.(5分)(2013•天津)i是虚数单位.复数(3+i)(1﹣2i)=5﹣5i.10.(5分)(2013•天津)已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为.,所以正方体的体对角线长为:a,.故答案为:11.(5分)(2013•天津)已知抛物线y2=8x的准线过双曲线的一个焦点,且双曲线的离心率为2,则该双曲线的方程为.,可得的一个焦点为(﹣曲线的离心率的计算公式可得=2,可得由题意可得双曲线的一个焦点为(﹣,∴∴双曲线的方程为.故答案为.12.(5分)(2013•天津)在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若,则AB的长为.,=+﹣,,∴故答案为13.(5分)(2013•天津)如图,在圆内接梯形ABCD中,AB∥DC,过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.,.故答案为:.14.(5分)(2013•天津)设a+b=2,b>0,则的最小值为.由题意得,,1的最小值为故答案为:.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 15.(13分)(2013•天津)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作(Ⅱ)在该样品的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.件,故样本的一等品率为=16.(13分)(2013•天津)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3,.(Ⅰ)求b的值;(Ⅱ)求的值.中,有正弦定理,b=(Ⅱ)由sinB=﹣=17.(13分)(2013•天津)如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.ACD=BG==,所成角的正弦值18.(13分)(2013•天津)设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若=8,求k的值.代入求出弦长使其等于,由,再由韦达定理进行求解.求得(Ⅰ)根据椭圆方程为,得±,=∵离心率为,∴=b=;﹣(﹣(,,(k=19.(14分)(2013•天津)已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且﹣2S2,S3,4S4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明.(Ⅱ)根据(Ⅰ)求出,代入,,∴;为奇数时,=,=,,且综上,有20.(14分)(2013•天津)设a∈[﹣2,0],已知函数(Ⅰ)证明f(x)在区间(﹣1,1)内单调递减,在区间(1,+∞)内单调递增;(Ⅱ)设曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明.(Ⅰ)令,)内单调递减,在区间单调递减,在区间利用导数的几何意义可得根据以上等式可得,从而,解得,于是可得t=,已知,①②时,时,,即函数在区间内单调递减,在区间互不相等,且.,解得,从而,则,解得,t=,则,,∴。
2013年普通高等学校招生全国统一考试文科数学(无误版)

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1} (2)错误!未找到引用源。
=( )(A)-1 - 错误!未找到引用源。
i(B)-1 + 错误!未找到引用源。
i (C)1 + 错误!未找到引用源。
i(D)1 - 错误!未找到引用源。
i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()(A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
(4)已知双曲线C:错误!未找到引用源。
= 1(a>0,b>0)的离心率为错误!未找到引用源。
,则C的渐近线方程为()(A)y=±错误!未找到引用源。
x (B)y=±错误!未找到引用源。
x (C)y=±错误!未找到引用源。
x (D)y=±x(5)已知命题p:,则下列命题中为真命题的是:()(A) p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q (6)设首项为1,公比为错误!未找到引用源。
的等比数列{an}的前n项和为Sn,则()(A)Sn =2an-1 (B)Sn=3an-2 (C)Sn=4-3an(D)Sn=3-2an(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于(A)[-3,4](B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=4x的焦点,P为C上一点,若丨PF丨=4,则△POF的面积为(A)2 (B)2(C)2(D)4(9)函数f(x)=(1-cosx)sinx在[-π,π]的图像大致为(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π(B)8+8π(C)16+16π(D)8+16π(12)已知函数f(x)= 若|f(x)|≥ax,则a的取值范围是(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考真题——文科数学(天津卷)赵老师解析版

高考学习网-中国最大高考学习网站 | 我们负责传递知识! 赵老师2013年普通高等学校招生全国统一考试(天津卷)文 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分. 参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V = Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B =·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, B = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] 【答案】D【解析】因为{22}A x x =-≤≤,所以{21}B Ax x =-≤≤,选D.(2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数2z y x =-的最小值为(A) -7 (B) -4 (C) 1 (D) 2【答案】A【解析】由2z y x =-得2y x z =+。
作出可行域如图,平移直线2y x z =+,由图象可知当直线2y x z =+经过点D 时,直线2y x z =+的截距最小,此时z最小,由2030x y y --=-=⎧⎨⎩,得53x y ==⎧⎨⎩,即(5,3)D 代入2z y x =-得3257z =-⨯=-,选A.(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的值为(A) 7 (B) 6 (C) 5 (D) 4【答案】D【解析】第一次循环,1,2S n =-=;第二次循环,21(1)21,3S n =-+-⨯==;第三次循环,31(1)32,4S n =+-⨯=-=;第四次循环,42(1)42S =-+-⨯=,满足条件输出4n =,选D.(4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A【解析】若2()0a b a -<,则0a b -<,即a b <。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(天津卷)
文 科 数 学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.
祝各位考生考试顺利!
第Ⅰ卷
注意事项:
1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.
2. 本卷共8小题, 每小题5分, 共40分.
参考公式:
·如果事件A , B 互斥, 那么
)()()(B P A P A P B ⋃=+
·棱柱的体积公式V = Sh ,
其中S 表示棱柱的底面面积, h 表示棱柱的高.
·如果事件A , B 相互独立, 那么
)()(()B P A A P P B =
·球的体积公式34.3
V R π= 其中R 表示球的半径.
一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.
(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=
(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]
(2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩
则目标函数z
= y -2x 的最小值为
(A) -7 (B) -4
(C) 1 (D) 2
(3) 阅读右边的程序框图, 运行相应的程序, 则输出n 的
值为
(A) 7 (B) 6
(C) 5 (D) 4
(4) 设,a b ∈R , 则 “2()0a b a -<”是“a b <”的
(A) 充分而不必要条件
(B) 必要而不充分条件
(C) 充要条件
(D) 既不充分也不必要条件
(5) 已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =
(A) 12
- (B) 1
(C) 2 (D) 12
(6) 函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦
上的最小值是
(A) 1- (B)
(C) (D) 0 (7) 已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212
(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是
(A) [1,2] (B) 10,2⎛⎤ ⎥⎝⎦ (C) 1,22⎡⎤⎢⎥⎣⎦
(D) (0,2] (8) 设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则
(A) ()0()g a f b << (B) ()0()f b g a <<
(C) 0()()g a f b << (D) ()()0f b g a <<
2013年普通高等学校招生全国统一考试(天津卷)
文 科 数 学
第Ⅱ卷
注意事项:
1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.
2. 本卷共12小题, 共110分.
二.填空题: 本大题共6小题, 每小题5分, 共30分.
(9) i 是虚数单位. 复数(3 + i )(1-2i ) = .
(10) 已知一个正方体的所有顶点在一个球面上. 若球的体积为
92
π, 则正方体的棱长为 .
(11) 已知抛物线28y x =的准线过双曲线22
221(0,0)x y a b a b
-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·
1AC BE = , 则AB 的长为 .
(13) 如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆
的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4,
则弦BD 的长为 .
(14) 设a + b = 2, b >0, 则1||2||a a b +的最小值为 .
三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.
(15) (本小题满分13分)
某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则
:
(Ⅰ) (Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(⒈) 用产品编号列出所有可能的结果;
(⒉) 设事件B 为 “在取出的2件产品中, 每件产品的综合指标S 都等于4”, 求事件B 发生的概率.
(16) (本小题满分13分)
在△ABC 中, 内角A , B , C 所对的边分别是a , b , c
. 已知sin 3sin b A c B =, a = 3,
2cos 3
B =. (Ⅰ) 求b 的值;
(Ⅱ) 求sin 23B π⎛⎫- ⎪⎝
⎭的值.
(17) (本小题满分13分)
如图, 三棱柱ABC -A 1B 1C 1中, 侧棱A 1A ⊥底面ABC ,且各棱长均相等. D , E , F 分别为棱AB , BC , A 1C 1的中点.
(Ⅰ) 证明EF //平面A 1CD ;
(Ⅱ) 证明平面A 1CD ⊥平面A 1ABB 1;
(Ⅲ) 求直线BC 与平面A 1CD 所成角的正弦值.
(18) (本小题满分13分)
设椭圆22
221(0)x y a b a b
+=>>的左焦点为F , 离心率为, 过点F 且与x (Ⅰ) 求椭圆的方程;
(Ⅱ) 设A ,
B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于
C ,
D 两点. 若··8AC DB AD CB += , 求k 的值.
(19) (本小题满分14分)
已知首项为32
的等比数列{}n a 的前n 项和为(*)n S n ∈N , 且234,2,4S S S -成等差数列. (Ⅰ) 求数列{}n a 的通项公式;
(Ⅱ) 证明13*)6
1(n n S n S +≤∈N .
(20) (本小题满分14分)
设[2,0]a ∈-, 已知函数332(5),03,0(,).2
x f a x x a x x x x x a -+≤+-+>⎧⎪=⎨⎪⎩
(Ⅰ) 证明()f x 在区间(-1,1)内单调递减, 在区间(1, + ∞)内单调递增; (Ⅱ) 设曲线()y f x =在点(,())(1,2,3)i i i x f x i P =处的切线相互平行, 且1230,x x x ≠ 证明
12313
x x x ++>.。