等差数列求和公式

合集下载

等差数列求和公式有七种方法,还有一些特殊性质,你都知道吗?

等差数列求和公式有七种方法,还有一些特殊性质,你都知道吗?

等差数列求和公式有七种方法,还有一些特殊性质,你都知道吗?(一)等差数列求和公式1.公式法2.错位相减法3.求和公式4.分组法有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

5.裂项相消法适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。

只剩下有限的几项。

注意:余下的项具有如下的特点1、余下的项前后的位置前后是对称的。

2、余下的项前后的正负性是相反的。

6.数学归纳法一般地,证明一个与正整数n有关的命题,有如下步骤:(1)证明当n取第一个值时命题成立;(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

【例】求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3)=[n(n+1)(n+2)(n+3)(n+4)]/5证明:当n=1时,有:1×2×3×4 = 24 = 2×3×4×5/5假设命题在n=k时成立,于是:1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = [k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1×2×3×4 + 2×3×4×5 + 3×4×5×6+ …… + (k+1)(k+2)(k+3)(k+4)= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… +k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)= [k(k+1)(k+2)(k+3)(k+4)]/5 +(k+1)(k+2)(k+3)(k+4)= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证7.并项求和法(常采用先试探后求和的方法)例:1-2+3-4+5-6+……+(2n-1)-2n方法一:(并项)求出奇数项和偶数项的和,再相减。

等差数列求和公式有哪些

等差数列求和公式有哪些

等差数列求和公式有哪些等差数列求和公式及推论公式:Sn=n(a1+an)/2Sn=na1+n(n-1)d/2=dn /2+(a1-d/2)n等差数列基本公式:末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)×公差和=(首项+末项)×项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和推论:(1)从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)==a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。

=p(k)+p(n-k+1)),k∈{1,2,,n}。

(3)若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),,S(n)*k-S(n-1)*k成等差数列,等等。

若m+n=2p,则a(m)+a(n)=2*a(p)。

证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

2等差数列求和常用方法分组求和:把一个数列分成几个可以直接求和的数列.拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.倒序相加:例如,等差数列前n项和公式的推导.。

等差数列的求和公式

等差数列的求和公式

等差数列的求和公式等差数列是数学中一个常见的数列类型,其中相邻的两个数之间差值固定。

求和公式是用来计算该数列中的所有数值之和的公式。

在本文中,我们将介绍等差数列的求和公式以及如何使用它进行计算。

1.等差数列的定义和性质等差数列是指数列中的每一项与它的前一项之差保持相等的数列。

假设等差数列的首项为a,公差为d,则第n项表示为an = a + (n-1)d。

其中n为项数,a为首项,d为公差。

等差数列的性质包括:- 任意两个项之和与其平均数的关系:an + a(1) = an-1 + a(2) = ... = a(1) + an- 等差数列的前n项和与后n项和的关系:S(n) = n/2 * (a(1) + an) - n项和与首项和末项的关系:S(n) = n/2 * (a + an)2.等差数列的求和公式等差数列的求和公式是用来计算该数列中的所有数值之和的公式。

根据等差数列的性质,我们可以得到以下两个求和公式:- 等差数列前n项和的求和公式:Sn = n/2 * (a + an)- 等差数列首项至第n项和的求和公式:Sn = n/2 * (a(1) + an)这两个公式可以根据具体的问题来选择使用,通常情况下我们更常用的是第一个公式。

下面我们将用实例来说明如何使用等差数列的求和公式。

3.求和公式的应用实例假设有一个等差数列,首项为3,公差为5,要求计算该数列的前10项之和以及前15项之和。

根据求和公式Sn = n/2 * (a + an),我们可以计算得到:- 前10项之和:S(10) = 10/2 * (3 + a(10)) = 10/2 * (3 + (10-1)5) =10/2 * (3 + 45) = 10/2 * 48 = 10 * 24 = 240- 前15项之和:S(15) = 15/2 * (3 + a(15)) = 15/2 * (3 + (15-1)5) =15/2 * (3 + 70) = 15/2 * 73 = 15 * 36.5 = 547.5因此,该等差数列的前10项之和为240,前15项之和为547.5。

等差数列求和公式

等差数列求和公式

等差数列求和公式等差数列的和=(首相+末项)÷2×项数注:(首相+末项)÷2可以看做是等差数列的中间项,即把等差数列的每一项都变成中间项a,就可以把等差数列看成求a+a+a+…+a+a+a+a的和。

末项=首项+公差×(项数-1)首项=末项-公差×(项数-1)公差=(末项-首项)÷(项数-1)项数=(末项-首项)÷公差+1后面三个式子可以用第二个式子推得,推出公式如下:把第二个式子:末项=首项+公差×(项数-1)移项,把“公差×(项数-1)”从等号右面移到左面,并变符号(加号变成减号),等式左面就变成“末项-公差×(项数-1)”,等式右面还剩下“首项”,写成等式就是:末项-公差×(项数-1)=首项即第三个式子就推出来了:“首项=末项-公差×(项数-1)”把第二个式子:末项=首项+公差×(项数-1)移项,把“首项”从等式右面移到等式左面,并变符号,等式左面就变成“末项-首项”,等式右面还剩下“公差×(项数-1)”写成等式就是“末项-首项=公差×(项数-1)”再把等式右面的“(项数-1)“移到等式左面,并变号(乘号变成除号),等式左面变成“(末项-首项)÷(项数-1)”,等式左面只剩下“公差”写成等式就是:(末项-首项)÷(项数-1)=公差即第四个式子就推出来了:“公差=(末项-首项)÷(项数-1)”把第二个式子:末项=首项+公差×(项数-1)移项,把“首项”从等式右面移到等式左面,并变符号,等式左面就变成“末项-首项”,等式右面还剩下“公差×(项数-1)”写成等式就是“末项-首项=公差×(项数-1)”再把等式右面的“公差”移到等式左面,并变号(乘号变成除号),等式左面变成“(末项-首项)÷公差”,等式右面还剩下“项数-1”写成等式:(末项-首项)÷公差=项数-1再把等式右面的“1”移到等式左面,并变符号(减号变加号)等式左面就变成“(末项-首项)÷公差+1”,右面只剩下“项数”写成等式就是:(末项-首项)÷公差+1=项数即第五个式子就推出来了:“项数=(末项-首项)÷公差+1”。

等差数列的求和公式

等差数列的求和公式

等差数列的求和公式等差数列是数学中常见的数列类型,它的每个相邻项之间的差值是相等的。

在解决等差数列相关问题时,求和公式是一个重要的工具。

本文将介绍等差数列的求和公式以及如何推导得到,并给出相关例题进行说明。

一、等差数列的定义和通项公式等差数列是指数列中的每个项之间的差值都是相等的。

设等差数列的首项为a₁,公差为d,则等差数列的通项公式为:aₙ = a₁ + (n-1)d其中,aₙ表示等差数列的第n项,n表示项数。

二、等差数列的部分和公式在等差数列中,若要求前n项的和Sₙ,可以利用部分和公式进行计算。

设前n项和为Sₙ,则部分和公式为:Sₙ = (a₁ + aₙ) * n / 2三、等差数列求和公式的推导过程为了得到等差数列求和公式,我们可以利用等差数列的通项公式进行推导。

首先,代入部分和公式中的n,得到:Sₙ = (a₁ + (a₁ + (n-1)d)) * n / 2化简得到:Sₙ = (2a₁ + (n-1)d) * n / 2继续化简得到:Sₙ = (n * (2a₁ + (n-1)d)) / 2最终,我们得到等差数列的求和公式:Sₙ = n * (a₁ + aₙ) / 2四、等差数列求和公式的应用现在我们通过一个例题来说明等差数列求和公式的应用。

例题:求等差数列5,8,11,14,17的前10项和。

解:根据题目可知,等差数列的首项a₁为5,公差d为3,项数n 为10。

我们可以利用求和公式计算:Sₙ = n * (a₁ + aₙ) / 2代入已知条件得到:S₁₀ = 10 * (5 + (5 + (10-1) * 3)) / 2化简计算得到:S₁₀ = 10 * (5 + (5 + 27)) / 2S₁₀ = 10 * (5 + 32) / 2S₁₀ = 10 * 37 / 2S₁₀ = 185所以,等差数列5,8,11,14,17的前10项和为185。

五、总结通过本文的介绍,我们了解了等差数列的求和公式以及推导过程。

等差求和的两个公式

等差求和的两个公式

等差求和的两个公式
等差数列是数学中的一种基本数列,它的每一项与前一项之差相等,这个差值称为公差。

等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的前n项和。

等差数列的求和公式有两种,一种是通项公式,另一种是差分公式。

通项公式是指等差数列的第n项公式,它可以用来求出等差数列中任意一项的值。

通项公式的表达式为:an=a1+(n-1)d,其中an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示等差数列的项数。

差分公式是指等差数列的前n项和公式,它可以用来计算等差数列的前n项和。

差分公式的表达式为:Sn=n/2[2a1+(n-1)d],其中Sn 表示等差数列的前n项和,a1表示等差数列的首项,d表示等差数列的公差,n表示等差数列的项数。

例如,对于等差数列1,3,5,7,9,11,13,15,17,19,其中首项a1=1,公差d=2,项数n=10,可以使用通项公式计算出第10项的值为an=1+(10-1)2=19,也可以使用差分公式计算出前10项的和为Sn=10/2[2×1+(10-1)2]=100。

在实际应用中,等差数列的求和公式经常被用来计算数列的总和,例如在计算等额本息贷款的还款总额时,就可以使用等差数列的求和公式来计算每期还款的本金和利息之和。

等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的前n项和,对于实际应用中的问题求解具有重要的意义。

等差求和公式

等差求和公式

等差求和公式
等差求和公式是数学中一个重要的概念,它是用来求出等差数列中所有项的和。

等差数列是指一组数字,每一项都比上一项多一定的数,它可以是负数或者正数。

等差求和公式就是用来计算等差数列中所有数的和,它可以帮助我们更快捷地计算等差数列中所有数的和。

等差求和公式的具体形式如下:Sn = n*(a1+an)/2,其中,Sn表示等差数列的和,n表示等差数列的项数,a1表示等差数列的第一项,an表示等差数列的最后一项。

举个例子,假设等差数列是1,3,5,7,9,那么它的项数n就是5,第一项a1就是1,最后一项an就是9,根据等差求和公式,我们可以得到这个等差数列的和Sn = 5*(1+9)/2 = 25。

另外,等差求和公式也可以用于计算等差数列的前n项和,公式为Sn = n*(a1+an)/2。

假设等差数列是1,3,5,7,9,我们想求出前3项的和,那么我们可以把n改为3,得到S3 = 3*(1+5)/2 = 9,即前3项的和为9。

等差求和公式是一个非常有用的公式,它可以让我们更快速地求出等差数列的和,也可以计算等差数列的前n项和。

学习等差求和公式有助于我们更好地理解等差数列,也有助于我们更好地掌握数学
中的知识。

等差求和的计算公式

等差求和的计算公式

等差求和的计算公式
等差数列是数学中的一种基本数列,它的每一项与前一项之差相等,这个差值称为公差。

等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的和。

等差数列的求和公式为:Sn = n(a1 + an) / 2,其中Sn表示等差数列的前n项和,a1表示等差数列的首项,an表示等差数列的第n 项,n表示等差数列的项数。

这个公式的推导过程比较简单,我们可以通过数学归纳法来证明它的正确性。

首先,当n=1时,Sn=a1,显然成立。

接着,假设当n=k时公式成立,即Sk = k(a1 + ak) / 2,那么当n=k+1时,我们可以将等差数列的前k+1项分成两部分,前k项的和为Sk,第k+1项为ak+1,那么前k+1项的和为Sk+ak+1,根据等差数列的性质,ak+1 = a1 + k*d,其中d为等差数列的公差,代入公式得到Sk+ak+1 = k(a1 + ak) / 2 + (a1 + k*d),化简得到Sk+ak+1 = (k+1)(a1 + ak+1) / 2,即公式在n=k+1时也成立。

通过这个公式,我们可以很方便地计算等差数列的和。

例如,对于等差数列1, 3, 5, 7, 9,它的首项a1=1,公差d=2,项数n=5,那么它的和为S5 = 5(1+9) / 2 = 25。

这个公式在数学中有着广泛的应用,例如在物理学中,可以用它来计算匀加速直线运动的位移;在经济学中,可以用它来计算等比数列的复利和等等。

等差数列的求和公式是数学中的一个重要公式,它可以用来计算等差数列的和,具有广泛的应用价值。

我们可以通过数学归纳法来证明它的正确性,掌握这个公式可以帮助我们更好地理解和应用等差数列的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 : 求集合M m m 7n, n N ,且m 100
中元素的个数,并求这些元素的和.
例3:已知一个等差数列的前10项的和是310, 前20项的和是1220,由此可以确定求其前n项和 的公式吗?
1.同步作业本第81页。 2.研究性作业:等差数列求和性质的研究。
引例一:1 2 3 100 5050
德国数学家高斯 (数学王子)
1+100=101
2+99=101
3+98=101
••••••
50+51=101
S100
100(1 100) 2
引例二: 如图,从上到下的钢管数分别是 多少,如何求钢管的总数?
思考:如果在这堆钢管的旁边堆放着同样 一堆钢管,如何求两堆钢管总数?
2.联想:
Sn
n(a1 a n ) 2
(补成平行四边形)
a1
an
n
an
a1
问题: 设等差数列an的前n项和为Sn,
即Sn a1 a2 a3 an ,求Sn
例1: 根据下列各题中的条件,
求等差数列中另两个量.
a1 an n
5 95 10
d Sn
10 500
100 2
50 -2 2550
Sn
na1
n(n 1) 2
d
我国数列求和的概念起源很早, 到南北朝时,张丘建始创等差 数列求和解法。他在《张丘建 算经》中给出等差数列求和问题: 例如:今有女子不善织布,每天所 织的布以同数递减,初日织五尺,
末一日织一尺,共织三十日,问共织几何? 原书的解法是:“并初、末日织布数,半之
பைடு நூலகம்再乘以织日数,即得”
14.5 32 26 0.7 604.5
五个元素 : a1, an, n, d, Sn “知三求二”
Sn
na 1
n(n 1) d 2
(分割成一个平行四 边形及一个三角形)
a1
n
a1
(n 1)d
an a1 (n 1)d
等差数列的前 n项和公式
Sn
na1
2
an
特点:该公式与梯形面积公式
(上底+下底)高 2 相似
相关文档
最新文档