概率的基本性质4
合集下载
概率的基本性质

(2)从6名学生中选出4人参加数学竞赛, 共有15种可能情况;
(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),
(3)“A没被选中”包含下列5个基本事 件: (B,C,D,E ),(B,C,D,F ), (B,C,E,F ),(B,D,E,F ),
(C,D,E,F )
有关集合知识:
1、集合之间的包含关系:
A B
BA
2、集合之间的运算: (1)交集: A∩B
(2)投掷一颗骰子,掷出的点数不为3, 5.
5、互斥事件
若A∩B为不可能事件( A∩B = ),那么称事 件A与事件B互斥。
事件A与事件B互斥的含义是:这两个事件在任 何一次试验中都不会同时发生,可用图表示为:
A={出现4点} B={出现6点} M={出现的点数为偶数}
B
A
N={出现的点数为奇数}
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反),
(反,正,反),(反,反,正),(反,反,反)};
解:(1)Ω ={(正,正,正), (反,正,正),
(正,反,正), (正,正,反), (正,反,反), (反,正,反),(反,反,正),(反,反,反)};
基本事件空间:所有基本事件构成的集合 称为基本事件空间。基本事件空间常用大 写希腊字母Ω表示。
例如,掷一枚硬币,观察落地后哪一 面向上,这个试验的基本事件空间就是 集合{正面向上,反面向上}。
即 Ω = {正面向上,反面向上}.
或简记为Ω ={正,反}.
掷一颗骰子,观察掷出的点数,这个事 件的基本事件空间是
解:(1)这个试验的基本事件空间是: Ω={(A,B,C,D ),(A,B,C,E ),(A,B,C,F ),
(A,B,D,E ),(A,B,D,F ),(A,B,E,F ),
概率定义与性质

确定先验概率。先验概 率是指在进行观察或实 验之前,对某个事件或 某个参数的估计概率。
第二步
收集证据。收集与目标 事件或参数相关的证据 或数据。
第三步
计算后验概率。根据贝 叶斯定理,利用先验概 率和证据,计算出目标 事件或参数的后验概率。
第四步
做出决策。根据后验概 率的大小,做出相应的 决策或推断。
独立性的数学表达
如果两个事件A和B满足$P(A cap B) = P(A) times P(B)$,则称事件A和B是独立的。
3
独立性的性质
独立性具有传递性,即如果A与B独立,B与C独 立,那么A与C也独立。
独立事件的概率
独立事件的概率计算
条件概率与独立性
对于两个独立事件A和B,其同时发生 的概率是各自概率的乘积,即$P(A cap B) = P(A) times P(B)$。
如果两个事件A和B在给定第三个事件 C的条件下是独立的,那么A和B本身 也是独立的。
独立事件的性质
如果两个事件是独立的,那么其中一 个事件的发生不会影响到另一个事件 的概率。
独立试验与大数定律
01
独立试验
在相同的条件下进行多次试验, 每次试验的结果之间相互独立, 这样的试验称为独立试验。
大数定律
02
全概率公式如下:P(A) = Σ P(Bi) * P(A | Bi),其中Bi是所有可能的基本事件,P(Bi)是基本事件Bi发生的概率,P(A | Bi)是在基本事 件Bi发生的条件下事件A发生的概率。
04
独立性
独立性的定义
1 2
独立性定义
如果一个事件的结果不会影响到另一个事件的结 果,那么这两个事件就是独立的。
学习、决策理论等。
第二步
收集证据。收集与目标 事件或参数相关的证据 或数据。
第三步
计算后验概率。根据贝 叶斯定理,利用先验概 率和证据,计算出目标 事件或参数的后验概率。
第四步
做出决策。根据后验概 率的大小,做出相应的 决策或推断。
独立性的数学表达
如果两个事件A和B满足$P(A cap B) = P(A) times P(B)$,则称事件A和B是独立的。
3
独立性的性质
独立性具有传递性,即如果A与B独立,B与C独 立,那么A与C也独立。
独立事件的概率
独立事件的概率计算
条件概率与独立性
对于两个独立事件A和B,其同时发生 的概率是各自概率的乘积,即$P(A cap B) = P(A) times P(B)$。
如果两个事件A和B在给定第三个事件 C的条件下是独立的,那么A和B本身 也是独立的。
独立事件的性质
如果两个事件是独立的,那么其中一 个事件的发生不会影响到另一个事件 的概率。
独立试验与大数定律
01
独立试验
在相同的条件下进行多次试验, 每次试验的结果之间相互独立, 这样的试验称为独立试验。
大数定律
02
全概率公式如下:P(A) = Σ P(Bi) * P(A | Bi),其中Bi是所有可能的基本事件,P(Bi)是基本事件Bi发生的概率,P(A | Bi)是在基本事 件Bi发生的条件下事件A发生的概率。
04
独立性
独立性的定义
1 2
独立性定义
如果一个事件的结果不会影响到另一个事件的结 果,那么这两个事件就是独立的。
学习、决策理论等。
概率的基本性质 课件 高中数学新人教A版必修第二册

,乙夺得冠军的概率为
1 ,那么中国队夺得女子乒乓球单打冠军的概率为 4
_ቤተ መጻሕፍቲ ባይዱ2_8__.
解析 由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和 “乙夺得冠军”, 但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件的概率加法公式 进行计算, 即中国队夺得女子乒乓球单打冠军的概率为37+14=1298.
典例 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字 外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记 为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率;
解 由题意知,(a,b,c)所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2), (1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3), (2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1), (3,3,2),(3,3,3),共27种. 设“抽取的卡片上的数字满足a+b=c”为事件A, 则事件A包含的样本点有(1,1,2),(1,2,3),(2,1,3),共3个. 所以 P(A)=237=19. 即“抽取的卡片上的数字满足 a+b=c”的概率为19.
反思 感悟
求复杂事件的概率通常有两种方法 (1)将所求事件转化成几个彼此互斥的事件的和事件. (2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多, 而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则 反”,它常用来求“至少……”或“至多……”型事件的概率.
高中数学必修二课件:概率的基本性质

一次购物 1至4件 5至8件
量
9至 12件
13至 16件
顾客数(人)
x
30
25
ቤተ መጻሕፍቲ ባይዱ
y
结算时间
1
1.5
2
2.5
(分钟/人)
已知这100位顾客中一次购物量超过8件的顾客占55%.
17件 及以上
10
3
①确定x,y的值,并求顾客一次购物的结算时间的平均值;
②求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).
错解:因为P(A)=36=12,P(B)=36=12, 所以P(A∪B)=P(A)+P(B)=1. 错因分析:由于事件A与事件B不是互斥事件,更不是对立事件,因此 P(A∪B)=P(A)+P(B)不成立.因此解答此题应从“A∪B”这一事件出发求解. 答:因为A∪B包含4种结果,即出现1,2,3和5,所以P(A∪B)=46=23.
②由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小 明”为事件A′+C′,根据互斥事件的概率加法公式,得P(A′+C′)=P(A′) +P(C′)=0.28+0.08=0.36.
(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集
了在该超市购物的100名顾客的相关数据,如下表所示.
(2)某商场在元旦举行购物抽奖促销活动,规定顾客从装有编号为0,1,2, 3,4的五个相同小球的抽奖箱中一次任意摸出两个小球,若取出的两个小球的 编号之和等于7,则中一等奖,等于6或5,则中二等奖,等于4,则中三等奖, 其余结果不中奖.
①求中二等奖的概率; ②求不中奖的概率.
【解析】 从五个小球中一次任意摸出两个小球,不同的结果有(0,1), (0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共 10种.记两个小球的编号之和为x.
4概率加法公式

n −1
返回主目录
例3 小王参加“智力大冲浪”游戏, 他能答 出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题 (1) P(AB) = P(A) − P(AB) = 0.7 −0.1= 0.6 (2) P(A∪B) = P(A) + P(B) − P(AB) = 0.8 (3) P(AB) = P(A∪B) = 0.2
例4 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在何条件下, P(AB) 取得最大(小)值? 最大(小)值是多少? 解
P(A∪B) = P(A) + P(B) − P(AB)
P(AB) = P(A) + P(B) − P(A∪B) ≥ P(A) + P(B) −1= 0.3 —— 最小值
加法公式的推广
(5) P(A∪ B∪C) = P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC) + P(ABC)
(6) 对任意 n 个事件 A1 ,
A2 , ⋯,
An , 有
n n P ∪ Ai = ∑ P( Ai ) − ∑ P (Ai A j ) + ∑ P (Ai A j Ak ) 1≤ i < j ≤ n 1≤ i < j < k ≤ n i =1 i =1 − ⋯ + (− 1) P( A1 A2 ⋯ An )
⊛
式是“ 有去路,没回路 ⊛式是“羊肉包子打狗 ”——有去路 没回路 有去路 为什么呢?学了几何概型便会明白.
概率的基本性质(经典)

一次硬币正面朝上的概率是0.498.
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
温故知新
当几个集合是有限集时,常用列举法列出集 合中的元素,求集合A∪B与A∩B中的元素个 数.A∩B中的元素个数即为集合A与B中____ 公共___元素的个数;而当A∩B=Ø时, A∪B中的元素个数即为两个集合中元素个数 __之和____;而当A∩B≠Ø时,A∪B中的元 素个数即为A、B中元素个数之和_____减去 __A∩B中的元素个数.本节要学习的互斥事 件和对立事件与集合之间的运算有着密切的 联系,学习中要仔细揣摩、认真体会
上 页
下 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 • 某班有50名同学,其中男女各25名,今有这个班的一个学 生在街上碰到一个同班同学,则下列结论正确的是( ) 概 • A.碰到异性同学比碰到同性同学的概率大 率 上 • B.碰到同性同学比碰到异性同学的概率大 页 • C.碰到同性同学和异性同学的概率相等 • D.碰到同性同学和异性同学的概率随机变化 下
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
被调查者不必告诉调查人员自己回答的是哪一个问题,只需要 回答“是”或“不是”,因为只有被调查者本人知道回答了 哪个问题,所以都会如实回答.如果被调查者中的600人 (学号从1到600)中有180人回答了“是”,由此可以估计 在这600人中闯过红灯的人数是( ) 上 页 A.30 B.60 C.120 D.150 下 [答案] B 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
温故知新
当几个集合是有限集时,常用列举法列出集 合中的元素,求集合A∪B与A∩B中的元素个 数.A∩B中的元素个数即为集合A与B中____ 公共___元素的个数;而当A∩B=Ø时, A∪B中的元素个数即为两个集合中元素个数 __之和____;而当A∩B≠Ø时,A∪B中的元 素个数即为A、B中元素个数之和_____减去 __A∩B中的元素个数.本节要学习的互斥事 件和对立事件与集合之间的运算有着密切的 联系,学习中要仔细揣摩、认真体会
上 页
下 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 • 某班有50名同学,其中男女各25名,今有这个班的一个学 生在街上碰到一个同班同学,则下列结论正确的是( ) 概 • A.碰到异性同学比碰到同性同学的概率大 率 上 • B.碰到同性同学比碰到异性同学的概率大 页 • C.碰到同性同学和异性同学的概率相等 • D.碰到同性同学和异性同学的概率随机变化 下
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 三 章 概 率
被调查者不必告诉调查人员自己回答的是哪一个问题,只需要 回答“是”或“不是”,因为只有被调查者本人知道回答了 哪个问题,所以都会如实回答.如果被调查者中的600人 (学号从1到600)中有180人回答了“是”,由此可以估计 在这600人中闯过红灯的人数是( ) 上 页 A.30 B.60 C.120 D.150 下 [答案] B 页
概率的基本性质

(1)事件A发生,事件B不发生; (2)事件A不发生,事件B发生; (3)事件A,B同时发生. 即事件A,B中至少有一个发生.
例:C3={出现的点数大于3}; C4={出现4点}; 4.交(积)事件
D3={出现的点数小于5};
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事 件).
(2)C与D是互斥事件,
根据概率的加法公式,
1 2 又因为CD为必然事件,
所以C与D为对立事件。
P(D)=
1-P(C)
所以
1
练习:课本第121页1,2,3,4,5
2
本课小结
1、事件的关系与运算,区分互斥事件与对立事件 2、概率的基本性质
(1)对于任一事件A,有0≤P(A)≤1 (2)概率的加法公式 P(A∪B)= P(A)+ P(B) (3)对立事件的概率公式 P(B)=1-P(A)
概率的基本性质
知识回顾: 1. 必然事件、不可能事件、随机事件: 必然事件:在条件S下,一定会发生的事件,叫做必然事件. 不可能事件:在条件S下,一定不会发生的事件,叫做不可能事件.
随机事件:在条件S下可能发生也可能不发生的事件,叫做随机事件.
2.事件A的概率: 对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个 常数记作P(A),称为事件A的概率,简称为A的概率。
练习:
1.如果某士兵射击一次,未中靶的概率为0.05,求中靶概率。
解:设该士兵射击一次,“中靶”为事件A,“未中靶”为事件B, 则A与B互为对立事件,故P(A)=1-P(B)=1-0.05=0.95。
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
例:C3={出现的点数大于3}; C4={出现4点}; 4.交(积)事件
D3={出现的点数小于5};
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事 件).
(2)C与D是互斥事件,
根据概率的加法公式,
1 2 又因为CD为必然事件,
所以C与D为对立事件。
P(D)=
1-P(C)
所以
1
练习:课本第121页1,2,3,4,5
2
本课小结
1、事件的关系与运算,区分互斥事件与对立事件 2、概率的基本性质
(1)对于任一事件A,有0≤P(A)≤1 (2)概率的加法公式 P(A∪B)= P(A)+ P(B) (3)对立事件的概率公式 P(B)=1-P(A)
概率的基本性质
知识回顾: 1. 必然事件、不可能事件、随机事件: 必然事件:在条件S下,一定会发生的事件,叫做必然事件. 不可能事件:在条件S下,一定不会发生的事件,叫做不可能事件.
随机事件:在条件S下可能发生也可能不发生的事件,叫做随机事件.
2.事件A的概率: 对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个 常数记作P(A),称为事件A的概率,简称为A的概率。
练习:
1.如果某士兵射击一次,未中靶的概率为0.05,求中靶概率。
解:设该士兵射击一次,“中靶”为事件A,“未中靶”为事件B, 则A与B互为对立事件,故P(A)=1-P(B)=1-0.05=0.95。
2.甲,乙两人下棋,若和棋的概率是0.5,乙获胜的概率是0.3 求:(1)甲获胜的概率;(2)甲不输的概率。
概率的基本性质

描述事件发生的可能性大小的量度,记作 P(E),其中E为事件。
必然事件
不可能事件
指在一定条件下,一定发生的事件。其概 率为1。
指在一定条件下,一定不发生的事件。其 概率为0。
概率的公理化定义
公理化定义
基于公理体系的定义方式,通 过公理化方法,将概率定义为 一种满足特定性质的数学对象
。
可数性公理
所有的可能结果都是可数的, 即可以列出所有可能的结果。
04
CATALOGUE
概率的乘法规则
独立事件的乘法规则
定义
如果两个事件A和B相互独立,那么 P(A∩B) = P(A)P(B)。
解释
如果事件A和B是独立的,那么事件A 的发生与否不会影响事件B的发生,反 之亦然。因此,两个独立事件的概率 乘积等于它们各自的概率。
互斥事件的乘法规则
定义
如果两个事件A和B互斥,那么P(A∩B) = 0 。
02
CATALOGUE
概率的基本性质
非负性
总结词
所有概率值都是非负的。
详细描述
根据概率的定义,任何事件的概率值都是非负的,即大于等于零。这是因为概 率被定义为事件发生的次数除以所有可能事件的次数,因此其值不可能为负数 。
规范性
总结词
所有事件的概率总和为1。
详细描述
在一个有限概率空间中,所有事件的概率总和等于1。这是概率的规范性性质,它确保了所有可能的后果被完全 考虑在内,并且每个后果的概率都被正确地分配。
方差的性质
方差的大小取决于随机变量的取值范围和分布形状 ,方差越小,随机变量的取值越集中,分布越稳定 。
方差的计算公式
方差是每个样本点与均值的差的平方的平均 值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.3
概率的基本性质
二、概率的几个基本性质
(1)、对于任何事件的概率的范围是: 0≤P(A)≤1 其中不可能事件的概率是P(A)=0 必然事件的概率是P(A)=1 不可能事件与必然事件是一般事件的特殊情况
3.1.3
概率的基本性质
二、概率的几个基本性质
(2)、当事件A与事件B互斥时,A∪B的频率 fn(A∪B)= fn(A)+ fn(B) 由此得到概率的加法公式: 如果事件A与事件B互斥,则 P(A∪B)=P(A)+P(B)
A∩C= “有4件次品”
B∩C =
一次抽取8件共有9种抽取结果; 第一种: 有 第二种: 有 第三种: 有 第四种: 有 第五种: 有 第六种: 有 第七种: 有 第八种: 有 第九种: 有 0 件次品(全是合格品), 1 件次品(7件合格品), 2 件次品(6件合格品), 3 件次品(5件合格品), 4 件次品(4件合格品), 5 件次品(3件合格品), 6 件次品(2件合格品), 7 件次品(1件合格品), 8 件次品(0件合格品)。
A,B是对立事件 A,B是互斥(事件)
2、某人对靶射击一次,观察命中环数 A =“命中偶数环” B =“命中奇数环” C =“命中 o 数环”
A,B是互斥事件 A,B是对立事件
3、一名学生独立解答两道物理习题,考察这两道 习题的解答情况。 记 A = “该学生会解答第一题,不会解答第二题” B = “该学生会解答第一题,还会解答第二题” 试回答: 1. 事件A 与事件B 互斥吗?为什么? 2. 事件A 与事件B 互为对立事件吗?为什么?
请判断那种正确!
4、某检查员从一批产品中抽取8件进行检查,观察 其中的次品数 记:A =“次品数少于5件” ; B = “次品数恰有2件” C = “次品数多于3件” ; D = “次品数至少有1件” 试写出下列事件的基本事件组成: A∪ B , A ∩C, B∩ C ;
A∪B = A ( A,B 中至少有一个发生)
3.1.3
概率的基本性质
二、概率的几个基本性质
(3)、特别地,当事件A与事件B是对立事件时,有 P(A)=1- P(B)
利用上述的基本性质,可以简化概率的计算
例题
课本114页
例2、抛掷色子,事件A= “朝上一面的数是奇数”, 事件B = “朝上一面的数不超过3”, 求P(A∪B)
解法一: 因为P(A)=3/6=1/2,P(B)=3/6=1/2 所以P(A∪B)= P(A)+ P(B)=1 解法二: A∪B这一事件包括4种结果,即出现1,2,3和5 所以P(A∪B)= 4/6=2/3
概率的基本性质
事件 的关系 和运算 概率的 几个基 本性质
3.1.3
事件 关系
概率的基本性质
一、 事件的关系和运算
事件 运算
1.包含关系 2.相等关系
3.事件的并 (或和) 4.事件的交 (或积) 5.事件的互斥 6.对立事件
1、投掷一枚硬币,考察正面还是反面朝上。 A={正面朝上} ,B={反面朝上}