红外线光谱仪光谱图分析武功秘笈

合集下载

红外光谱分析法-58页文档资料

红外光谱分析法-58页文档资料

亚甲基
伸 缩 振 动
变 形 振 动
CO2分子 水分子
多原子分子振动总结
对同一基团,不对称伸缩振动频率稍高于对称 伸缩振动
变形振动的力常数比伸缩振动小,因此同一基 团的变形振动比伸缩振铎小
简正振动数目=振动自由度≠基频吸收峰数 每个振动自由度相应于红外光谱上一个基频吸收峰
分子由n个原子组成, 分子具有3n个自由度
I0:红外光入射强度;I: 红外光的透过强度。
4. 分子的吸收光谱。 分子的电子能级跃迁--UV-Vis 分子的振动-转动跃迁--IR
5. 偶极子和偶极矩
偶极子:分子由于构成它的各原子的电负性的不同而 显示不同的极性,称为偶极子。
偶极矩μ:描述分子极性的大小,它也可以用来判断 分子的空间构型。例如,同属于AB2型分子,CO2的 μ=0,可以判断它是直线型的;H2S的μ≠0,可判断它 是折线型的。
2. 波长 & 波数: 波长就是红外光区的波长范围,即0.78 mm ~ 1000 mm (780 nm~1000000 nm);
波数即波长的倒数。 (cm1 ) 10000 ( m)
3. 透过率(T%) & 吸光度(A)
T% I 100
…………………….(1)
I0
AlgI0 lg1lgT..……………….(2) IT
1429
双键 1667
叁键 大
2222
K (力常数)基本相同
公式
C–C
折合质量顺序
峰位置 (cm-1)
小 1430
C–O 大
1330
多原子分子的振动
简正振动 —— 分子质心保持不变,整体不转动,每
个原子都在其平衡位置作简谐振动,其振动频率和相 位相同,振幅不同。

红外光谱谱图分析PPT课件

红外光谱谱图分析PPT课件
4. -N=C=S n as 1990-2130; -C=C=C- n as 1950-1930;
.
22
• 图9
.
23
• 图10
.
24
• 图11
.
25
• 图9a IRtutor1.1 1-heptyne, 1-庚-炔 ,forth P.1 of 4
.
26
• 图10a IRTutor, IRTutor1.1, Heptylcyanide, 庚氰化物, 1st , p.2 of 4
振动频率 770-730(很强)710-690(强) 770-735(很强) 810-750(很强) 710-690 860-800(很强)
900-860(中等) 1,2,4 – 三取代还有820-805吸收带 1,3,5 – 三取代还有860-810 (强)
和730-650(强)吸收带 1,2,3,5 – 四取代还有850-840吸收带
红外光谱谱图分析(1)
.
1
• 一.几个基本概念 • 二.有关基团的特征频率 • 三.影响基团频率位移的因素
1.分子内部结构 2.分子外部环境的影响 3.同位素位移 • 四. 红外与拉曼关系 • 五.近红外 • 六.远红外
.
2
一 几个基本概念
1.红外及拉曼光谱基本原理, 基频
2.特征基团频率与指纹频率 3.基频、倍频、合频和费米
v0
E1
v2
电子能级跃迁
5
4 3 2 1 0
v1
振动能级跃迁
v0
E0
E = hn 其中 h 为普朗克常数 (6.626 × 10-34 焦耳·秒)
n 为频率
.
5
图2
Anti-stokes

红外光谱图分析口诀

红外光谱图分析口诀

红外光谱图分析口诀
红外光谱是一种分析物质结构及成分的分析技术,可以应用于从事化学、物理、药学和生物学研究的科学家、工程师、药剂师和技术员中非常流行。

下面介绍红外光谱图分析的口诀:
1、气相红外光谱(FTIR)口诀:气体分析用红外检测、波数-吸引度关系探究。

2、液相红外光谱(Raman)口诀:气相分析外,液体也可测量;频率-强度求极性、发乎谱图呈分离。

3、固体红外光谱(ATR)口诀:原理同空气耦合,以反射检测,样品分析使用,性质细节了解。

4、拉曼变化图(LCT)口诀:样品状态变化的快慢,拉曼光谱变化图说明。

红外光谱图分析可以准确诊断物体的性质和特别的特性,这样就可以找出含有不同有机成分的物质,例如,生物分子中必须存在化学振动,红外光谱分析能够精准识别每一个激发振动,以此了解不同物质的机理和过程,如酶反应调控、激素合成以及其他生命过程等。

通过分析可以揭示药物,抗体,醛,醚,脂肪酸等在无机化合物中的存在,有助于研究多种大分子的动态性质和相互作用。

可以说,红外光谱分析是一种重要的化学分析技术,对于物理,化学以及生物学都具有重要意义,可以帮助我们理解物质性质及其特性,推断出复杂反应的化学机械过程,也可以帮助我们分析活性物质的成分,为研究多种大分子的动态性质及其之间的相互作用提供关键的证据。

有了红外光谱分析,我们将能够有效的控制与对抗致病病原微生物,攻克多种疾病。

红外光谱谱图解析

红外光谱谱图解析
18:02:04
3、再根据谱带的位置、强度、宽度等特征,推测官能团可能与什么取 代基相连接。
=C-H C-H CC C=C
O-H O-H(氢键) S-H P-H
C=O C-C,C-N,C-O N-O N-N C-F C-X
N-H
CN C=N
3500
18:02:04
3000 2500 2000 特征区
—CH2—CO—O—
1735 cm-1 酯
—CH2—CO—NH— 1680 cm-1 酰胺
18:02:04
(四)从分子中减去己知基团所占用的原子,从分子的总不饱和度中 扣除已知基团占用的不饱和度。根据剩余原子的种类和数目以及剩余的 不饱和度,并结合红外光谱,对剩余部分的结构做适当的估计
在判断存在某基团时,要尽可能地找出其各种相关吸收带,切不可仅 根据某一谱带即下该基团存在的结论。
18:02:04
2、为什么红外光谱图纵坐标的范围为4000~400 cm-1?
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-
4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区 25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。
n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 722 cm-1 (中强 )
d) CH2和CH3的相对含量也可以由1460 cm-1和1380 cm-1的峰 强度估算强度
任务2-4
infrared absorption spec-

红外谱图解析口诀

红外谱图解析口诀

红外谱图解析口诀红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态液固气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烷。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强很大峰形尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特征,1600~1430。

1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔醇位不同。

1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,开链强宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽, 920,钝峰显,羧基可定二聚酸、酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰, 1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

红外光谱仪的操作方法和光谱解析技巧

红外光谱仪的操作方法和光谱解析技巧

红外光谱仪的操作方法和光谱解析技巧红外光谱仪作为一种常用的分析仪器,广泛应用于化学、生物、材料等领域的研究与实验中。

它通过检测物质分子吸收红外辐射的特征波长,可以获得物质的结构、组成以及化学键的类型等信息。

本文将介绍红外光谱仪的操作方法和光谱解析技巧,帮助读者更好地理解和应用这一重要的分析技术。

一、红外光谱仪的操作方法1. 样品制备在进行红外光谱测试前,首先需要将待测样品制备成适合于测试的形式。

常见的方法包括将样品制成固体片、涂在红外透明晶体上、溶解在透明溶剂中等。

制备好的样品应注意避免杂质污染和其他外界因素的干扰。

2. 仪器准备在使用红外光谱仪前,需要对仪器进行一系列的准备工作。

这包括检查光谱仪的光源、光学器件、检测器等部件是否正常,是否需要进行校准和调试。

此外,仪器所需的气体、溶剂和试剂也需要提前准备好,以确保测试的顺利进行。

3. 基线扫描在进行具体的样品测试前,需要进行基线扫描。

基线扫描是指在没有样品的情况下,检测仪器的背景信号并进行调整。

通过基线扫描可以消除仪器本身的漂移和背景噪声,确保后续测试的准确性和可靠性。

4. 样品测试样品测试是红外光谱仪的核心步骤。

在进行测试前,需要将待测样品放置在仪器的透明样品室中,并确保样品与光路的光线垂直相交。

然后,启动仪器进行光谱扫描。

在扫描过程中,可以选择适当的扫描速度和光谱范围,以满足实验的需求。

完成测试后,应将样品从样品室中取出,并妥善保存或处理。

5. 数据处理在测试结束后,需要对获得的红外光谱数据进行处理和分析。

常见的数据处理方法包括光谱峰位计算、光谱峰面积计算、光谱峰强度比较等。

这些分析方法可以帮助我们进一步了解样品的结构与组成信息,并提取关键的光谱特征。

二、光谱解析技巧1. 动态范围选择光谱的动态范围是指仪器可以测量的最大和最小吸光度差值。

在进行光谱测量时,应根据样品的吸光度水平选择合适的动态范围。

若动态范围过大,可能导致样品信号过饱和;而动态范围过小,则可能无法准确测量低吸光度物质的信号。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱谱图解析

红外光谱谱图解析
作判断有无甲基存在的依据。 烯烃的C—H弯曲振动在1000~800 cm-1范围,可以借以鉴别各种取代类
型的烯烃。 芳烃的C—H弯曲振动主要是900~650 cm-1处的面外弯曲振动,对确定
苯的取代类型很有帮助。
19:06:26
②C—O伸缩振动 这类振动产生的吸收带常常是该区中的最强峰。 醇的C—O在1260~1000 cm-1;酚的C—O1350~1200 cm-1; 醚的C—O在1250~1100 cm-1;饱和醚常在1125 cm-1出现; 芳香醚多靠近1250 cm-1。
19:06:26
酸酐的C=O
双吸收峰:1820~1750 cm-1 ,两个羰基振动偶合裂分; 线性酸酐:两吸收峰高度接近,高波数峰稍强; 环形结构:低波数峰强;
19:06:26
羧酸的C=O
1820~1750 cm-1 , 氢键,二分子缔合体;
19:06:26
(4)确定好可能基团后,对指纹区的谱带进行分析
19:06:26
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
19:06:26
3、再根据谱带的位置、强度、宽度等特征,推测官能团可能与什么取 代基相连接。
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紅外線光譜儀,光譜圖的解析經驗
應該對各官能團的特徵吸收熟記於心,因為官能團特徵吸收是解析譜圖的基礎。

對一張已經拿到手的紅外譜圖:
(1)首先依據譜圖推出化合物碳架類型:根據分子式計算不飽和度,公式:
不飽和度=F+1+(T-O)/2 其中:
F:化合價為4價的原子個數(主要是C原子),
T:化合價為3價的原子個數(主要是N原子),
O:化合價為1價的原子個數(主要是H原子),
(2)分析3300~2800cm^-1區域C-H伸縮振動吸收;以3000 cm^-1為界:高於3000cm^-1為不飽和碳C-H伸縮振動吸收,有可能為烯, 炔, 芳香化合物,而低於3000cm^-1一般為飽
和C-H伸縮振動吸收;
(3)若在稍高於3000cm^-1有吸收,則應在2250~1450cm^-1頻區,分析不飽和碳碳鍵的伸縮振動吸收特徵峰,其中:
炔2200~2100 cm^-1
烯1680~1640 cm^-1
芳環1600,1580,1500,1450 cm^-1
若已確定為烯或芳香化合物,則應進一步解析指紋區,即1000~650cm^-1的頻區,以
確定取代基個數和位置(順反,鄰、間、對);
(4)碳骨架類型確定後,再依據其他官能團,如C=O, O-H, C-N 等特徵吸收來判定化合物的官能團;
(5)解析時應注意把描述各官能團的相關峰聯繫起來,以準確判定官能團的存在,如2820 ,2720和1750~1700cm^-1的三個峰,說明醛基的存在。

1.烷烴:C-H伸縮振動(3000-2850cm^-1)
C-H彎曲振動(1465-1340cm^-1)
一般飽和烴C-H伸縮均在3000cm^-1以下,接近3000cm^-1的頻率吸收。

2.烯烴:烯烴C-H伸縮(3100~3010cm^-1)
C=C伸縮(1675~1640 cm^-1)
烯烴C-H面外彎曲振動(1000~675cm^1)。

3.炔烴:伸縮振動(2250~2100cm^-1)
炔烴C-H伸縮振動(3300cm^-1附近)。

4.芳烴:3100~3000cm^-1 芳環上C-H伸縮振動
1600~1450cm^-1 C=C 骨架振動
880~680cm^-1 C-H面外彎曲振動
芳香化合物重要特徵:一般在1600,1580,1500和1450cm^-1可能出現強度不等的4個峰。

880~680cm^-1,C-H面外彎曲振動吸收,依苯環上取代基個數和位置不同而發生變化,在
芳香化合物紅外譜圖分析中,常常用此頻區的吸收判別異構體。

5.醇和酚:主要特徵吸收是O-H和C-O的伸縮振動吸收,
O-H 自由羥基O-H的伸縮振動:3650~3600cm^-1,為尖銳的吸收峰,
分子間氫鍵O-H伸縮振動:3500~3200cm^-1,為寬的吸收峰;
C-O 伸縮振動: 1300~1000cm^-1
O-H 面外彎曲: 769-659cm^-1
6. 醚: 特徵吸收: 1300~1000cm^-1 的伸縮振動,
脂肪醚: 1150~1060cm^-1 一個強的吸收峰
芳香醚:兩個C-O伸縮振動吸收:1270~1230cm^-1(為Ar-O伸縮)
1050~1000cm^-1(為R-O伸縮)
7.醛和酮: 醛的主要特徵吸收: 1750~1700cm^-1(C=O伸縮)
2820,2720cm^-1(醛基C-H伸縮)
脂肪酮: 1715cm^-1,強的C=O伸縮振動吸收,如果羰基與烯鍵或芳環共軛會使吸收頻率降低
8.羧酸:羧酸二聚體: 3300~2500cm^-1 寬,強的O-H伸縮吸收
1720~1706cm^-1 C=O 吸收
1320~1210cm^-1 C-O伸縮
920cm^-1 成鍵的O-H鍵的面外彎曲振動
9.酯: 飽和脂肪族酯(除甲酸酯外)的C=O 吸收譜帶: 1750~1735cm^-1區域
飽和酯C-C(=O)-O譜帶:1210~1163cm^-1 區域,為強吸收
10.胺:3500~3100 cm^-1, N-H 伸縮振動吸收
1350~1000 cm^-1, C-N 伸縮振動吸收
N-H變形振動相當於CH2的剪式振動方式, 其吸收帶在:
1640~1560cm^-1, 面外彎曲振動在900~650cm^-1.
11.腈:腈類的光譜特徵:三鍵伸縮振動區域,有弱到中等的吸收
脂肪族腈2260-2240cm^-1
芳香族腈2240-2222cm^-1
12.醯胺: 3500-3100cm^-1 N-H伸縮振動
1680-1630cm^-1 C=O 伸縮振動
1655-1590cm^-1 N-H彎曲振動
1420-1400cm^-1 C-N伸縮
13.有機鹵化物: C-X 伸縮脂肪族C-F 1400-730 cm^-1
C-Cl 850-550 cm^-1
C-Br 690-515 cm^-1
C-I 600-500 cm^-1。

相关文档
最新文档