如何解析红外光谱图解读

合集下载

红外光谱图解析方法大全

红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Ω=n4+1+(n3-n1)/2其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n1:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H面外弯曲振动880~680cm-1。

红外光谱谱图解析

红外光谱谱图解析
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。
n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 722 cm-1 (中强 )
d) CH2和CH3的相对含量也可以由1460 cm-1和1380 cm-1的峰 强度估算强度
08:31:12
(六)确证解析结果 按以下几种方法验证 1、设法获得纯样品,绘制其光谱图进行对照,但必须考虑 到样品的处理技术与测量条件是否相同。 2、若不能获得纯样品时,可与标准光谱图进行对照。当谱 图上的特征吸收带位置、形状及强度相一致时,可以完全确 证。当然,两图绝对吻合不可能,但各特征吸收带的相对强 度的顺序是不变的。 常见的标准红外光谱图集有Sadtler红外谱图集、Coblentz 学会谱图集、API光谱图集、DMS光谱图集。
08:31:12
2、为什么红外光谱图纵坐标的范围为4000~400 cm-1?
红外光波波长位于可见光波和微波波长之间0.75~1000μm(1μm=10-
4 cm)范围。
0.75~2.5μm为近红外区 2.5~25μm为中红外区 25~1000μm为远红外区 2.5~15.4μm的中红外区应用最广
X—Y,X—H 变形振动区 < 1500 cm-1
指纹区(1350 650 cm-1 ) ,较复杂。C-H,N-H的变形振动; C-O,C-X的伸缩振动; C-C骨架振动等。精细结构的区分。 顺、反结构区分;
①C—H弯曲振动 饱和C—H弯曲振动包括甲基和次甲基两种。甲基1370~1380 cm-1处,可
CH2 对称伸缩2853cm-1±10 CH3 对称伸缩2872cm-1±10 CH2不对称伸缩2926cm-1±10 CH3不对称伸缩2962cm-1±10

如何解析红外光谱图

如何解析红外光谱图

碳氮伸展酰胺III,1400强峰显。胺尖常有干扰见,N-H伸展三千三, 叔胺无峰仲胺单,伯胺双峰小而尖。1600碳氢弯,芳香仲胺千五偏。 八百左右面内摇,确定最好变成盐。伸展弯曲互靠近,伯胺盐三千强峰 宽, 仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可 见。
硝基伸缩吸收大,相连基团可弄清。1350、1500,分为对称反对称。
6. 醚特征吸收:1300~1000cm-1 的伸缩振动,
脂肪醚:1150~1060cm-1 一个强的吸收峰
芳香醚:1270~1230cm-1(为Ar-O伸缩),1050~1000cm-1(为R-O伸
缩)
7.醛和酮:
醛的特征吸收:1750~1700cm-1(C=O伸缩),2820,2720cm-1(醛基C-
区 波数 域 (cm-1)
红外光谱的八个峰区
振动类 相关有机化合物中基团的

特征频率(cm-1)
O━H伸 缩 N━H 和 37500~ 3200(s,b) 酸 : 单体3560~
说明
无论单体还是缔 合体,νN━ 收都比νO━
O━H 伸缩 振动 区域
H伸缩)
脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共
轭会使吸收频率降低
8.羧酸:羧酸二聚体:3300~2500cm-1 宽而强的O-H伸缩吸收
1720~1706cm-1 C=O伸缩吸收
1320~1210cm-1 C-O伸缩吸收 ,
920cm-1 成键的O-H键的面外弯曲振动
反式取代: 970~
=C━H 面 960(s)
外弯曲
同碳二取代:895~885
三取代: 840~
面内 弯曲 振动 区域

红外光谱谱图解析完整版

红外光谱谱图解析完整版
双键伸缩振动区 (4)1500 670 cm-1
X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读

红外光谱图分析步骤解析:从谱图到化合物的信息解读红外光谱图是一种常用的分析工具,可以帮助科学家们确定化合物的结构和功能。

通过分析红外光谱图,我们可以了解化合物中的官能团和化学键的存在与类型。

本文将详细介绍红外光谱图分析的步骤,帮助读者更好地理解和解读红外光谱图。

1.步骤一:获取红外光谱图在进行红外光谱图分析之前,首先需要获取待分析化合物的红外光谱图。

这可以通过红外光谱仪来实现。

红外光谱仪会向待分析样品中发射红外光,然后测量样品对不同波长光的吸收情况。

通过这个过程,我们可以得到一张红外光谱图。

2.步骤二:观察谱图的整体形态在获得红外光谱图后,我们首先要观察谱图的整体形态。

红外光谱图通常以波数为横坐标,吸收强度为纵坐标。

我们可以注意到谱图中的吸收峰和吸收带。

吸收峰通常表示特定官能团的存在,而吸收带则表示化学键的存在。

3.步骤三:确定吸收峰的位置接下来,我们需要确定红外光谱图中各个吸收峰的位置。

不同官能团和化学键在红外光谱图中有特定的吸收位置。

通过比对已知化合物的红外光谱图和待分析化合物的红外光谱图,我们可以初步确定各个吸收峰的位置。

4.步骤四:解读吸收峰的强度除了吸收峰的位置,吸收峰的强度也是红外光谱图分析的重要信息之一。

吸收峰的强度可以反映化合物中特定官能团或化学键的含量。

通过比较吸收峰的强度,我们可以推断化合物中不同官能团或化学键的相对含量。

5.步骤五:分析吸收带的形态除了吸收峰,红外光谱图中的吸收带也提供了重要的信息。

吸收带的形态可以帮助我们判断化学键的类型。

例如,C=O键通常表现为一个尖锐的吸收带,而-OH键则表现为一个宽而平坦的吸收带。

6.步骤六:结合上述信息解析化合物通过观察红外光谱图中吸收峰和吸收带的位置、强度和形态,我们可以逐步解析化合物的结构和功能。

我们可以根据已知的红外光谱图数据库,对比待分析化合物的红外光谱图,找到相似的谱图,从而确定化合物的结构和功能。

7.结论红外光谱图分析是一种重要的化学分析方法,可以帮助科学家们确定化合物的结构和功能。

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。

辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。

3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。

图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。

N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。

为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。

U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。

泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。

特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。

红外光谱基本原理与谱图解析

红外光谱基本原理与谱图解析
对称性分子中,对于同核双原子分子而言,其振动中没有瞬时偶极矩的变化,因此,其不 具备红外活性,如 N2、O2 等;对于其他的对称性分子而言,有些振动会带来偶极矩的变化, 是具有红外活性的,如 HCl、CO2、CH4 等。
对于不对称分子而言,其分子振动必然能够带来偶极矩的变化,因此,其具有红外活性。
分子类型 同核双原子分子 非同核双原子对称性分子
O
C CH3
Q C=O
1663
O
C CH3
CH3 1693
(3) 偶极场效应 偶极场效应是互相靠近的基团之间通过空间起作用的,一般,基团之间的空间位置越靠 近,偶极场效应也越明显。
案例一
G-
G- O G-
Cl
Cl
C
H
H
HH
1755
G-
G- O
Cl
H
C
H
Cl
HH
1742
O
H
H
Байду номын сангаас
C
Cl
Cl
HH
1728
案例二
−CH3
−CH2
−CH = C − H Ph − H ≡ C − H
2960(νas);2870(νs) 2930(νas);2850(νs) 2850 3100 ∼ 3000 3030
3300
3.1.2 三键、累积三键伸缩振动区(2500 ∼ 1900 cm−1)
1、C ≡ C (1) RC ≡ CH : 2140 ∼ 2100 cm−1 (2) R1C ≡ CR2 : 2260 ∼ 2190 cm−1 R1 = R2 时,无红外活性。
通常,分子的跃迁方式和电磁波的能量相关,图 2所示的是分子在各光波区内的主要跃迁 方式:

如何进行红外光谱解析

如何进行红外光谱解析

如何进行红外光谱解析红外光谱解析是一种广泛应用于化学、生物、材料科学等领域的测试技术,通过分析物质在红外光波段的吸收和散射特性,可以获得物质的结构信息、成分组成以及其他相关性质。

本文将介绍红外光谱解析的基本原理、实验操作步骤以及数据分析方法,帮助读者了解如何进行红外光谱解析。

一、基本原理红外光谱解析的基本原理是物质分子在吸收红外光时,会发生振动和转动,并发生状态之间的转变。

这些振动和转动产生的谐振频率,与分子内部的键长、键角等结构参数有关,因此可以通过测量红外光谱图谱来了解物质的结构特征。

二、实验操作步骤1. 仪器准备:将红外光谱仪连接电源并打开。

根据待测物的性质,选择适当的样品盒(液态或固态)和检测模式(透射或反射)。

2. 样品处理:对于液态样品,取少量样品加入透射池中,移除气泡并将其密封;对于固态样品,将样品压制成片或粉碎并放置在反射盒中。

3. 启动仪器:根据仪器操作手册,进行光谱仪的启动和样品检测参数的设置。

4. 开始检测:点击仪器软件上的“开始”按钮,红外光谱仪开始发送红外光,并通过探测器接收返回的信号。

5. 数据采集:红外光谱仪会将接收到的信号转化为电信号,并通过数据采集软件记录下来。

采集过程通常需要数秒至数分钟。

6. 数据处理:获取红外光谱图谱后,使用特定的数据处理软件进行谱图展示和数据分析。

三、数据分析方法1. 谱图展示:使用数据处理软件将红外光谱图谱进行展示,在横轴上表示波数,纵轴表示吸收强度。

确保谱图的分辨率和信噪比足够高,以保证后续的数据分析准确性。

2. 峰值鉴定:根据谱图上的吸收峰,确定物质的各种官能团或键的存在。

通过比对已知物质的红外光谱数据库,寻找吸收峰的对应官能团或键。

3. 定量分析:利用谱图上的吸收峰的强度,可以进行物质的定量分析。

通过校正曲线或比色法等方法,计算物质的浓度或含量。

4. 结构确定:根据红外吸收峰的波数和强度,可以获得物质的结构信息。

通过对比不同官能团或键的红外吸收谱图,推测和确认物质的结构特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何解析红外光谱图
一、预备知识
(1)根据分子式计算不饱和度公式:
不饱和度Ω=n4+1+(n3-n1)/2其中:
:化合价为4价的原子个数(主要是C原子),
n
4
:化合价为3价的原子个数(主要是N原子),
n
3
n
:化合价为1价的原子个数(主要是H,X原子)
1
(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;
(3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);
(4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;
(5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。

二、熟记健值
1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1)
一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。

2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。

3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。

4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。

芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。

C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

5.醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收,
自由羟基O-H的伸缩振动:3650~3600cm-1,为尖锐的吸收峰,
分子间氢键O-H伸缩振动:3500~3200cm-1,为宽的吸收峰;
C-O 伸缩振动:1300~1000cm-1,O-H 面外弯曲:769-659cm-1
6. 醚特征吸收:1300~1000cm-1 的伸缩振动,
脂肪醚:1150~1060cm-1 一个强的吸收峰
芳香醚:1270~1230cm-1(为Ar-O伸缩),1050~1000cm-1(为R-O伸缩)
7.醛和酮:
醛的特征吸收:1750~1700cm-1(C=O伸缩),2820,2720cm-1(醛基C-H伸缩)脂肪酮:1715cm-1,强的C=O伸缩振动吸收,如果羰基与烯键或芳环共轭会使吸收频率降低
8.羧酸:羧酸二聚体:3300~2500cm-1 宽而强的O-H伸缩吸收
1720~1706cm-1 C=O伸缩吸收
1320~1210cm-1 C-O伸缩吸收,
920cm-1 成键的O-H键的面外弯曲振动
9.酯:饱和脂肪酸酯(除甲酸酯外)的C=O 吸收谱带:1750~1735cm-1区域
饱和酯C-O谱带:1210~1163cm-1 区域为强吸收
10.胺:N-H 伸缩振动吸收3500~3100 cm-1;C-N 伸缩振动吸收1350~1000 cm-1;N-H变形振动相当于CH2的剪式振动吸收:1640~1560cm-1;面外弯曲振动吸收900~650cm-1.
11.腈:三键伸缩振动区域,有弱到中等的吸收
脂肪族腈 2260-2240cm-1 芳香族腈 2240-2222cm-1
12.酰胺:3500-3100cm-1 N-H伸缩振动 1680-1630cm-1 C=O 伸缩振动 1655-1590cm-1 N-H弯曲振动 1420-1400cm-1 C-N伸缩
13.有机卤化物:脂肪族C-X 伸缩:
C-F 1400-730 cm-1,C-Cl 850-550 cm-1 ,C-Br 690-515 cm-1,C-I 600-500 cm-1
三、红外识谱歌
红外可分远中近,中红特征指纹区,1300来分界,注意横轴划分异。

看图要知红外仪,弄清物态固液气。

样品来源制样法,物化性能多联系。

识图先学饱和烃,三千以下看峰形。

2960、2870是甲基,2930、2850亚甲峰。

1470碳氢弯,1380甲基显。

二个甲基同一碳,1380分二半。

面内摇摆720,长链亚甲亦可辨。

烯氢伸展过三千,排除倍频和卤烃。

末端烯烃此峰强,只有一氢不明显。

化合物,又键偏,~1650会出现。

烯氢面外易变形,1000以下有强峰。

910端基氢,再有一氢990。

顺式二氢690,反式移至970;
单氢出峰820,干扰顺式难确定。

炔氢伸展三千三,峰强峰形大而尖。

三键伸展二千二,炔氢摇摆六百八。

芳烃呼吸很特别,1600~1430,1650~2000,取代方式区分明。

900~650,面外弯曲定芳氢。

五氢吸收有两峰,700和750;
四氢只有750,二氢相邻830;间二取代出三峰,700、780,880处孤立氢
醇酚羟基易缔合,三千三处有强峰。

C-O伸展吸收大,伯仲叔基易区别。

1050伯醇显,1100乃是仲, 1150叔醇在,1230才是酚。

1110醚链伸,注意排除酯酸醇。

若与π键紧相连,二个吸收要看准,
1050对称峰,1250反对称。

苯环若有甲氧基,碳氢伸展2820。

次甲基二氧连苯环,930处有强峰,环氧乙烷有三峰,1260环振动,
九百上下反对称,八百左右最特征。

缩醛酮,特殊醚,1110非缩酮。

酸酐也有C-O键,开链环酐有区别,开链峰宽一千一,环酐移至1250。

羰基伸展一千七,2720定醛基。

吸电效应波数高,共轭则向低频移。

张力促使振动快,环外双键可类比。

二千五到三千三,羧酸氢键峰形宽,920,钝峰显,羧基可定二聚酸,
酸酐千八来偶合,双峰60严相隔,链状酸酐高频强,环状酸酐高频弱。

羧酸盐,偶合生,羰基伸缩出双峰,1600反对称,1400对称峰。

1740酯羰基,何酸可看碳氧展。

1180甲酸酯,1190是丙酸,
1220乙酸酯,1250芳香酸。

1600兔耳峰,常为邻苯二甲酸。

氮氢伸展三千四,每氢一峰很分明。

羰基伸展酰胺I,1660有强峰;
N-H变形酰胺II,1600分伯仲。

伯胺频高易重叠,仲酰固态1550;
碳氮伸展酰胺III,1400强峰显。

胺尖常有干扰见,N-H伸展三千三,
叔胺无峰仲胺单,伯胺双峰小而尖。

1600碳氢弯,芳香仲胺千五偏。

八百左右面内摇,确定最好变成盐。

伸展弯曲互靠近,伯胺盐三千强峰宽,
仲胺盐、叔胺盐,2700上下可分辨,亚胺盐,更可怜,2000左右才可见。

硝基伸缩吸收大,相连基团可弄清。

1350、1500,分为对称反对称。

氨基酸,成内盐,3100~2100峰形宽。

1600、1400酸根展,1630、1510碳氢弯。

盐酸盐,羧基显,钠盐蛋白三千三。

矿物组成杂而乱,振动光谱远红端。

铵盐类,较简单,吸收峰,少而宽。

注意羟基水和铵,先记几种普通盐:1100是硫酸根,1380硝酸盐,
1450碳酸根,一千左右看磷酸。

硅酸盐,一宽峰,1000真壮观。

勤学苦练多实践,红外识谱不算难。

相关文档
最新文档