MAX3281EAUT中文资料
MAX3280EAUK+T中文资料

Features
o ESD Protection: ±15kV–Human Body Model ±6kV–IEC 1000-4-2, Contact Discharge ±12kV–IEC 1000-4-2, Air-Gap Discharge
o Guaranteed 52Mbps Data Rate o Guaranteed 15ns Receiver Propagation Delay o Guaranteed 2ns Receiver Skew o Guaranteed 8ns Package-to-Package Skew Time o VL Pin for Connection to FPGAs/ASICs o Allow Up to 128 Transceivers on the Bus
Receiver Output Voltage (RO)....................-0.3V to (VCC + 0.3V) Receiver Output Voltage
(RO) (MAX3284E) .....................................-0.3V to (VL + 0.3V) Receiver Output Short-Circuit Current .......................Continuous
ENABLE —
Active High Active Low
—
DATA RATE 52Mbps 52Mbps 52Mbps
52Mbps (Note 1)
PACKAGE 5-Pin SOT23 6-Pin SOT23 6-Pin SOT23 6-Pin SOT23
________________________________________________________________ Maxim Integrated Products 1
MAX038中文

MAX038芯片中文资料及在波形发生器中的应用(1)简介:波形发生器的应用范围很广。
在分析检测设备、超声设备、医疗设备及通讯设备中广泛应用。
函数发生器作为信号激励源,其参数精度是设计时应考虑的重要因素 ...波形发生器的应用范围很广。
在分析检测设备、超声设备、医疗设备及通讯设备中广泛应用。
函数发生器作为信号激励源,其参数精度是设计时应考虑的重要因素。
常用的波形产生电路有RC震荡电路、LC震荡电路、文氏震荡电路以及由555芯片构成的震荡电路等,但这些震荡电路由于核心芯片、选频及限幅元件特性的限制,在幅频精度方面或多或少的存在着不稳定或实现电路复杂等情况。
如果需要实现波形变换、幅频大小调整以及提高幅频的稳定度,设计的外围电路将会变得更为复杂。
由MAX038设计组成的波形产生电路能够输出幅频精度很高且易于调整的波形信号,在电路参数要求苛刻的工作场合能够得到较好的应用。
1 芯片功能介绍1.1 MAX038芯片的性能特点MAX038CPP芯片采用20引脚DIP封装,引脚图如图1所示。
各引脚功能简述如下:REF:芯片内部2.5 V参考电压输出;GND:模拟地;A1,A0:输出波形选择,TTL/CMOS兼容;COSC:内部震荡器外接电容;FADJ,DADJ:输出频率、占空比调节;IIN:震荡频率控制器电流输入;PDI,PDO:内部鉴相器输入、输出;SYNC:同步信号输出,允许内部震荡器与外电路同步;DGND,DV+:内部数字电路电源;V+,V-:MAX038电源(+5 V,-5 V);OUT:波形输出端。
MAX038芯片附加少许外围电路就能够产生三角波、锯齿波、正弦波、方波、矩形脉冲波形。
该芯片具有如下的功能特点:(1)输出频率范围:0.1~20 MHz,最高可达40 MHz:(2)输出波形占空比(15%~85%)独立可调,占空比可由DADJ端调整,如果DADJ 端接地,则输出占空比为50%;(3)具有低输出阻抗的输出缓冲器,输出阻抗的典型值为0.1 Ω;(4)备有TTL兼容的独立同步信号SYNC(方波输出,固定占空比为50%),方便组建频率合成器系统;(5)低温度漂移。
MAXIM 化数字电位器MAX5481, MAX5482, MAX5483, MAX548 说明书

ENGLISH•简体中文•日本語•概述状况状况:生产中。
下载Notes MAX5481Linear13-WireSerial SPINon-Volatile102410253519.6$1.95@1kMAX548250$1.95 @1kMAX548310$1.95 @1kMAX548450$1.95 @1k查看所有Digital Potentiometers (128)引脚配置相关产品MAX5494,MAX5495,MAX5496, ...10位、双路、非易失、线性变化数字电位器类似产品:浏览其它类似产品线查看所有Digital Potentiometers (128产品)顶标MAX5481顶标MAX5482顶标MAX5483顶标MAX5484新品发布[ 2005-08-03 ]应用工程师帮助选型,下个工作日回复参数搜索应用帮助概述技术文档定购信息概述关键特性应用/使用关键指标图表注释、注解相关产品数据资料应用笔记评估板设计指南可靠性报告软件/模型价格与供货样品在线订购封装信息无铅信息参考文献: 19-3708 Rev. 4; 2008-03-12本页最后一次更新: 2008-03-27联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 © 2010 Maxim Integrated Products版权所有General DescriptionThe MAX5481–MAX5484 10-bit (1024-tap) nonvolatile,linear-taper, programmable voltage-dividers and vari-able resistors perform the function of a mechanical potentiometer, but replace the mechanics with a pin-configurable 3-wire serial SPI™-compatible interface or up/down digital interface. The MAX5481/MAX5482 are 3-terminal voltage-dividers and the MAX5483/MAX5484are 2-terminal variable resistors.The MAX5481–MAX5484 feature an internal, non-volatile, electrically erasable programmable read-only memory (EEPROM) that stores the wiper position for ini-tialization during power-up. The 3-wire SPI-compatible serial interface allows communication at data rates up to 7MHz. A pin-selectable up/down digital interface is also available.The MAX5481–MAX5484 are ideal for applications requiring digitally controlled potentiometers. Two end-to-end resistance values are available (10k Ωand 50k Ω) in a voltage-divider or a variable-resistor configuration (see the Selector G uide ). The nominal resistor temperature coefficient is 35ppm/°C end-to-end, and only 5ppm/°C ratiometric, making these devices ideal for applications requiring low-temperature-coefficient voltage-dividers,such as low-drift, programmable gain-amplifiers.The MAX5481–MAX5484 operate with either a +2.7V to +5.25V single power supply or ±2.5V dual power sup-plies. These devices consume 400µA (max) of supply current when writing data to the nonvolatile memory and 1.0µA (max) of standby supply current. The MAX5481–MAX5484 are available in a space-saving (3mm x 3mm), 16-pin TQFN, or a 14-pin TSSOP pack-age and are specified over the extended (-40°C to +85°C) temperature range.ApplicationsFeatures♦1024 Tap Positions♦Power-On Recall of Wiper Position from Nonvolatile Memory♦16-Pin (3mm x 3mm x 0.8mm) TQFN or 14-Pin TSSOP Package♦35ppm/°C End-to-End Resistance Temperature Coefficient♦5ppm/°C Ratiometric Temperature Coefficient ♦10kΩand 50kΩEnd-to-End Resistor Values♦Pin-Selectable SPI-Compatible Serial Interface or Up/Down Digital Interface ♦1µA (max) Standby Current♦Single +2.7V to +5.25V Supply Operation ♦Dual ±2.5V Supply OperationMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers________________________________________________________________Maxim Integrated Products1Ordering InformationPin Configurations19-3708; Rev 5; 4/10For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Selector Guide appears at end of data sheet.SPI is a trademark of Motorola, Inc.temperature range.+Denotes a lead(Pb)-free/RoHS-compliant package.*EP = Exposed pad.Ordering Information continued at end of data sheet.Gain and Offset AdjustmentLCD Contrast Adjustment Pressure SensorsLow-Drift Programmable Gain AmplifiersMechanical Potentiometer ReplacementM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital PotentiometersABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND...........................................................-0.3V to +6.0V V SS to GND............................................................-3.5V to +0.3V V DD to V SS .............................................................-0.3V to +6.0V H, L, W to V SS ..................................(V SS - 0.3V) to (V DD + 0.3V)CS , SCLK(INC ), DIN(U/D ), SPI/UD to GND..-0.3V to (V DD + 0.3V)Maximum Continuous Current into H, L, and WMAX5481/MAX5483.........................................................±5mA MAX5482/MAX5484......................................................±1.0mA Maximum Current into Any Other Pin...............................±50mAContinuous Power Dissipation (T A = +70°C)16-Pin TQFN (derate 17.5mW/°C above +70°C).....1398.6mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C)..........727mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-60°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Soldering Temperature (reflow).......................................+260°CELECTRICAL CHARACTERISTICSMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V DD = +2.7V to +5.25V, V SS = V GND = 0V, V H = V DD , V L = 0V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V DD = +5.0V, T A = +25°C, unless otherwise noted.) (Note 1)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 4_______________________________________________________________________________________TIMING CHARACTERISTICSNote 2:The DNL and INL are measured with the device configured as a voltage-divider with H = V DD and L = V SS . The wiper termi-nal (W) is unloaded and measured with a high-input-impedance voltmeter.Note 3:The DNL_R and INL_R are measured with D.N.C. unconnected and L = V SS = 0V. For V DD = +5V, the wiper terminal is dri-ven with a source current of I W = 80µA for the 50k Ωdevice and 400µA for the 10k Ωdevice. For V DD = +3V, the wiper termi-nal is driven with a source current of 40µA for the 50k Ωdevice and 200µA for the 10k Ωdevice.Note 4:The wiper resistance is measured using the source currents given in Note 3.Note 5:The device draws higher supply current when the digital inputs are driven with voltages between (V DD - 0.5V) and (V GND +0.5V). See Supply Current vs. Digital Input Voltage in the Typical Operating Characteristics .Note 6:Wiper settling test condition uses the voltage-divider configuration with a 10pF load on W. Transition code from 00000 00000to 01111 01111 and measure the time from CS going high to the wiper voltage settling to within 0.5% of its final value.MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________5-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5483)CODED N L (L S B )V DD = 2.7V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5483)CODED N L (L S B )V DD = 5V-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 2.7V02563841285126407688961024CODE-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 3V2563841285126407688961024CODE-2.0-1.0-1.50-0.50.51.01.5 2.0INL vs. CODE (MAX5483)I N L (L S B )V DD = 5V02563841285126407688961024CODE-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5481)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5481)CODED N L (L S B )V DD = 5V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5481)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5481)CODEI N L (L S B )Typical Operating Characteristics(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 6_______________________________________________________________________________________-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5484)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5484)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5484)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5484)CODEI N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5482)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024DNL vs. CODE (MAX5482)CODED N L (L S B )-1.0-0.6-0.8-0.2-0.40.200.40.80.61.002563841285126407688961024INL vs. CODE (MAX5482)CODEI N L (L S B )V DD = 2.7V-1.0-0.6-0.8-0.2-0.40.200.40.80.61.02563841285126407688961024INL vs. CODE (MAX5482)CODEI N L (L S B )V DD = 5V02010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = -40°C)M A X 5481 t o c 18R W (Ω)2563841285126407688961024CODETypical Operating Characteristics (continued)(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)MAX5481–MAX5484Typical Operating Characteristics (continued)(V DD = 5.0V, V SS = 0V, T A = +25°C, unless otherwise noted.)10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers_______________________________________________________________________________________702010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = +25°C)M A X 5481 t oc 19R W (Ω)2563841285126407688961024CODE2010403050607080WIPER RESISTANCE vs. CODE (VARIABLE RESISTOR, T A = +85°C)M A X 5481 t o c 20R W (Ω)2563841285126407688961024CODE10302050604070W-TO-L RESISTANCE vs. CODE(MAX5484)R W L (k Ω)02563841285126407688961024CODE02641012814W-TO-L RESISTANCE vs. CODE(MAX5483)R W L (k Ω)2563841285126407688961024CODE18.018.519.019.520.020.521.021.522.0012345WIPER RESISTANCE vs. WIPER VOLTAGE(VARIABLE RESISTOR)WIPER VOLTAGE (V)R W (Ω)-2.0-1.5-1.0-0.500.51.01.52.0-40-1510356085END-TO-END (R HL ) % CHANGE vs. TEMPERATURE (VOLTAGE-DIVIDER)M A X 5481 t o c 24TEMPERATURE (°C)E N D -T O -E N D R E S I S T A N C E C H A N G E (%)-2.0-1.5-1.0-0.500.51.01.52.0-40-1510356085WIPER-TO-END RESISTANCE (R WL ) % CHANGE vs. TEMPERATURE (VARIABLE RESISTOR)TEMPERATURE (°C)W I P E R -T O -E N D R E S I S T A N C E C H A N G E (%)00.30.90.61.21.5-4010-15356085STANDBY SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)I D D (μA )DIGITAL SUPPLY CURRENT vs. DIGITAL INPUT VOLTAGEDIGITAL INPUT VOLTAGE (V)I D D (μA )4.54.03.53.02.52.01.51.00.5110100100010,0000.15.0M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Typical Operating Characteristics (continued)(Circuit of Figure 1, T A = +25°C, unless otherwise noted.)1μs/divTAP-TO-TAP SWITCHING TRANSIENTRESPONSE (MAX5481)V W(AC-COUPLED)20mV/divCS 2V/divH = V DD , L = GND C W = 10pFFROM CODE 01 1111 1111TO CODE 10 0000 00004μs/divTAP-TO-TAP SWITCHING TRANSIENTRESPONSE (MAX5482)V W(AC-COUPLED)20mV/divCS 2V/divH = V DD , L = GND C W = 10pFFROM CODE 01 1111 1111TO CODE 10 0000 0000WIPER RESPONSE vs. FREQUENCY(MAX5481)FREQUENCY (kHz)G A I N (d B )100101-20-15-10-5-250.11000WIPER RESPONSE vs. FREQUENCY(MAX5482)FREQUENCY (kHz)G A I N (d B )100101-20-15-10-50-250.11000THD+N vs. FREQUENCY(MAX5481)FREQUENCY (kHz)T H D +N (%)1010.10.0010.010.11100.00010.01100THD+N vs. FREQUENCY(MAX5482)FREQUENCY (kHz)T H D +N (%)1010.10.0010.010.11100.00010.0110004020806012010014018016020002563841285126407688961024RATIOMETRIC TEMPERATURE COEFFICIENT vs. CODECODER A T I O M E T R I C T E M P C O (p p m )100300200500600400700VARIABLE-RESISTOR TEMPERATURECOEFFICIENT vs. CODET C V R (p p m )02563841285126407688961024CODE10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersPin DescriptionMAX5481–MAX5484M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Pin Description (continued)(MAX5483/MAX5484 Variable Resistors)MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersFunctional DiagramsM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Detailed DescriptionThe MAX5481/MAX5482 linear programmable voltage-dividers and the MAX5483/MAX5484 variable resistors feature 1024 tap points (10-bit resolution) (see the Functional Diagrams ). These devices consist of multi-ple strings of equal resistor segments with a wiper con-tact that moves among the 1024 points through a pin-selectable 3-wire SPI-compatible serial interface or up/down interface. The MAX5481/MAX5483 provide a total end-to-end resistance of 10k Ω, and the MAX5482/MAX5484 have an end-to-end resistance of 50k Ω. The MAX5481/MAX5482 allow access to the high, low, and wiper terminals for a standard voltage-divider configuration.MAX5481/MAX5482 ProgrammableVoltage-DividersThe MAX5481/MAX5482 programmable voltage-dividers provide a weighted average of the voltage between the H and L inputs at the W output. Both devices feature 10-bit resolution and provide up to 1024 tap points between the H and L voltages. Ideally,the V L voltage occurs at the wiper terminal (W) when all data bits are zero and the V H voltage occurs at the wiper terminal when all data bits are one. The step size (1 LSB) voltage is equal to the voltage applied across terminals H and L divided by 210. Calculate the wiper voltage V Was follows:Functional Diagrams (continued)MAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometerswhere D is the decimal equivalent of the 10 data bits writ-ten (0 to 1023), V HL is the voltage difference between the H and L terminals:The MAX5481 includes a total end-to-end resistance value of 10k Ωwhile the MAX5482 features an end-to-end resistance value of 50k Ω. These devices are not intended to be used as a variable resistor . Wiper cur-rent creates a nonlinear voltage drop in series with the wiper. To ensure temperature drift remains within speci-fications, do not pull current through the voltage-divider wiper. Connect the wiper to a high-impedance node.Figures 1 and 2 show the behavior of the MAX5481’s resistance from W to H and from W to L. This does not apply to the variable-resistor devicesMAX5483/MAX5484 Variable ResistorsThe MAX5483/MAX5484 provide a programmable resistance between W and L. The MAX5483 features a total end-to-end resistance value of 10k Ω, while the MAX5484 provides an end-to-end resistance value of 50k Ω. The programmable resolution of this resistance is equal to the nominal end-to-end resistance divided by 1024 (10-bit resolution). For example, each nominal segment resistance is 9.8Ωand 48.8Ωfor the MAX5483and the MAX5484, respectively.wiper position from the 1024 possible positions, result-ing in 1024 values for the resistance from W to L.Calculate the resistance from W to L (R WL ) by using the where D is decimal equivalent of the 10 data bits writ-ten, R W-L is the nominal end-to-end resistance, and R Z is the zero-scale error. Table 1 shows the values of R WL at selected codes for the MAX5483/MAX5484.Digital InterfaceConfigure the MAX5481–MAX5484 by a pin-selectable,3-wire, SPI-compatible serial data interface or an up/down interface. Drive SPI/UD high to select the 3-wire SPI-compatible interface. Pull SPI/UD low to select the up/down interface.V FSE V andV ZSE V FSE HL ZSE HL =⎡⎣⎢⎤⎦⎥=⎡⎣⎢⎤⎦⎥10241024,Figure 1. Resistance from W to H vs. Code (10k ΩVoltage-Divider)Figure 2. Resistance from W to L vs. Code (10k ΩVoltage-Divider)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers SPI-Compatible Serial InterfaceDrive SPI/UD high to enable the 3-wire SPI-compatible serial interface (see Figure 3). This write-only interface contains three inputs: chip select (CS ), data in (DIN(U/D )), and data clock (SCLK(INC )). Drive CS low to load the data at DIN(U/D ) synchronously into the shift register on each SCLK(INC ) rising edge.The WRITE command (C1, C0 = 00) requires 24 clock cycles to transfer the command and data (Figure 4a).The COPY commands (C1, C0 = 10 or 11) use either eight clock cycles to transfer the command bits (Figure 4b) or 24 clock cycles with the last 16 data bits disre-garded by the device.After loading the data into the shift register, drive CS high to latch the data into the appropriate control regis-ter. Keep CS low during the entire serial data stream to avoid corruption of the data. Table 2 shows the com-mand decoding.Write Wiper RegisterData written to this register (C1, C0 = 00) controls the wiper position. The 10 data bits (D9–D0) indicate the position of the wiper. For example, if DIN(U/D ) = 00 00000000, the wiper moves to the position closest to L. If DIN(U/D ) = 11 1111 1111, the wiper moves closest to H.This command writes data to the volatile random access memory (RAM), leaving the NV register unchanged. When the device powers up, the data stored in the NV register transfers to the wiper register,moving the wiper to the stored position. Figure 5 shows how to write data to the wiper register.Table 2. Command Decoding*X = Don’t care.Figure 3. SPI-Compatible Serial-Interface Timing Diagram (SPI/UD = 1)10-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers ArrayMAX5481–MAX5484Figure4. Serial SPI-Compatible Interface FormatFigure5. Write Wiper Register OperationM A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Copy Wiper Register to NV RegisterThe copy wiper register to NV register command (C1,C0 = 10) stores the current position of the wiper to the NV register for use at power-up. Figure 6 shows how to copy data from wiper register to NV register. The oper-ation takes up to 12ms (max) after CS goes high to complete and no other operation should be performed until completion.Copy NV Register to Wiper RegisterThe copy NV register to wiper register (C1, C0 = 11)restores the wiper position to the current value stored in the NV register. Figure 7 shows how to copy data from the NV register to the wiper register.Digital Up/Down InterfaceFigure 8 illustrates an up/down serial-interface timing diagram. In digital up/down interface mode (SPI/UD =0), the logic inputs CS , DIN(U/D ), and SCLK(INC ) con-trol the wiper position and store it in nonvolatile memory (see Table 3). The chip-select (CS ) input enables the serial interface when low and disables the interface when high. The position of the wiper is stored in the nonvolatile register when CS transitions from low to high while SCLK(INC ) is high.When the serial interface is active (CS low), a high-to-low (falling edge) transition on SCLK(INC ) increments or decrements the internal 10-bit counter depending on the state of DIN(U/D ). If DIN(U/D ) is high, the wiper increments. If DIN(U/D ) is low, the wiper decrements.The device stores the value of the wiper position in the nonvolatile memory when CS transitions from low to high while SCLK(INC ) is high. The host system can disablethe serial interface and deselect the device without stor-ing the latest wiper position in the nonvolatile memory by keeping SCLK(INC ) low while taking CS high.Upon power-up, the MAX5481–MAX5484 load the value of nonvolatile memory into the wiper register, and set the wiper position to the value last stored.Figure 6. Copy Wiper Register to NV Register OperationFigure 7. Copy NV Register to Wiper Register OperationMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometersStandby ModeThe MAX5481–MAX5484 feature a low-power standby mode. When the device is not being programmed, it enters into standby mode and supply current drops to 0.5µA (typ).Nonvolatile MemoryThe internal EEPROM consists of a nonvolatile register that retains the last value stored prior to power-down.The nonvolatile register is programmed to midscale at the factory. The nonvolatile memory is guaranteed for 50 years of wiper data retention and up to 200,000wiper write cycles.Power-UpUpon power-up, the MAX5481–MAX5484 load the data stored in the nonvolatile wiper register into the volatile wiper register, updating the wiper position with the data stored in the nonvolatile wiper register.Applications InformationThe MAX5481–MAX5484 are ideal for circuits requiring digitally controlled adjustable resistance, such as LCD contrast control (where voltage biasing adjusts the dis-play contrast), or programmable filters with adjustable gain and/or cutoff frequency.Positive LCD Bias ControlFigures 9 and 10 show an application where a voltage-divider or a variable resistor is used to make an adjustable, positive LCD-bias voltage. The op amp pro-vides buffering and gain to the voltage-divider network made by the programmable voltage-divider (Figure 9) or to a fixed resistor and a variable resistor (see Figure 10).Programmable Gain and Offset AdjustmentFigure 11 shows an application where a voltage-divider and a variable resistor are used to make a programma-ble gain and offset adjustment.Figure 8. Up/Down Serial-Interface Timing Diagram (SPI/UD = 0)M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers 18______________________________________________________________________________________Programmable FilterFigure 12 shows the configuration for a 1st-order pro-grammable filter using two variable resistors. Adjust R2for the gain and adjust R3 for the cutoff frequency. Use the following equations to estimate the gain (G) and the 3dB cutoff frequency (f C):Figure 10. Positive LCD Bias Control Using a Variable ResistorFigure 12. Programmable FilterFigure 11. Programmable Gain/Offset AdjustmentFigure 9. Positive LCD Bias Control Using a Voltage-DividerMAX5481–MAX548410-Bit, Nonvolatile, Linear-Taper DigitalPotentiometers______________________________________________________________________________________19Chip InformationPROCESS: BiCMOSSelector GuidePin Configurations (continued)Ordering Information (continued)Note: All devices are specified over the -40°C to +85°C operating temperature range.+Denotes a lead(Pb)-free/RoHS-compliant package.*EP = Exposed pad.Package InformationFor the latest package outline information and land patterns, go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package draw-ings may show a different suffix character, but the drawing per-tains to the package regardless of RoHS status.M A X 5481–M A X 548410-Bit, Nonvolatile, Linear-Taper Digital Potentiometers Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2010 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.。
AMAX-3285IO 用户手册说明书

用户手册AMAX-3285IO版权声明随附本产品发行的文件为研华公司2019年版权所有,并保留相关权利。
针对本手册中相关产品的说明,研华公司保留随时变更的权利,恕不另行通知。
未经研华公司书面许可,本手册所有内容不得通过任何途径以任何形式复制、翻印、翻译或者传输。
本手册以提供正确、可靠的信息为出发点。
但是研华公司对于本手册的使用结果,或者因使用本手册而导致其它第三方的权益受损,概不负责。
认可声明Intel®和Pentium®为Intel Corporation的商标。
所有其它产品名或商标均为各自所属方的财产。
符合性声明CE本设备已通过CE 测试,符合以屏蔽电缆进行外部接线的环境规格标准。
建议用户使用屏蔽电缆,此种电缆可从研华公司购买。
如需订购,请与当地分销商联系。
料号:2003X32811第二版中国印刷2019年11月AMAX-3285IO用户手册ii产品质量保证(两年)从购买之日起,研华为原购买商提供两年的产品质量保证。
但对那些未经授权的维修人员维修过的产品不予提供质量保证。
研华对于不正确的使用、灾难、错误安装产生的问题有免责权利。
如果研华产品出现故障,在质保期内我们提供免费维修或更换服务。
对于出保产品,我们将会酌情收取材料费、人工服务费用。
请联系相关销售人员了解详细情况。
如果您认为您购买的产品出现了故障,请遵循以下步骤:1.收集您所遇到的问题信息(例如,CPU主频、使用的研华产品及其它软件、硬件等)。
请注意屏幕上出现的任何不正常信息显示。
2.打电话给您的供货商,描述故障问题。
请借助手册、产品和任何有帮助的信息。
3.如果您的产品被诊断发生故障,请从您的供货商那里获得RMA (ReturnMaterial Authorization) 序列号。
这可以让我们尽快地进行故障产品的回收。
4.请仔细地包装故障产品,并在包装中附上完整的售后服务卡片和购买日期证明(如销售发票)。
我们对无法提供购买日期证明的产品不提供质量保证服务。
MAX3232EEAE中文资料

MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
General Description
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E +3.0V-powered EIA/TIA-232 and V.28/V.24 communications interface devices feature low power consumption, high data-rate capabilities, and enhanced electrostatic-discharge (ESD) protection. The enhanced ESD structure protects all transmitter outputs and receiver inputs to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge (±9kV for MAX3246E), and ±15kV using the Human Body Model. The logic and receiver I/O pins of the MAX3237E are protected to the above standards, while the transmitter output pins are protected to ±15kV using the Human Body Model.
MAX490EEPA中文资料

元器件交易网
MAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E
19-0410; Rev 4; 10/03
±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers
Ordering Information
PART MAX481ECPA MAX481ECSA MAX481EEPA MAX481EESA MAX483ECPA MAX483ECSA MAX483EEPA MAX483EESA
TEMP RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C
MAX3221-MAX3243芯片手册

_____________________Selector Guide
PART MAX3221 MAX3223 MAX3243 Tx 1 2 3 Rx 1 2 5 VCC RANGE (V) AutoShutdown 3.0 to 5.5 3.0 to 5.5 3.0 to 5.5 Yes Yes Yes
ABSOLUTE MAXIMUM RATINGS
VCC ...........................................................................-0.3V to +6V V+ (Note 1) ...............................................................-0.3V to +7V V- (Note 1) ...............................................................+0.3V to -7V V+ + |V-| (Note 1).................................................................+13V Input Voltages T_IN, FORCEOFF, FORCEON, EN (MAX3223) ......-0.3V to +6V R_IN ...................................................................................±25V Output Voltages T_OUT.............................................................................±13.2V R_OUT, INVALID ......................................-0.3V to (VCC + 0.3V) Short-Circuit Duration T_OUT ......................................................................Continuous Continuous Power Dissipation (TA = +70°C) 16-Pin SSOP (derate 7.14mW/°C above +70°C) ...........571mW 16-Pin TSSOP (derate 6.70mW/°C above +70°C) .........533mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 20-Pin SSOP (derate 8.00mW/°C above +70°C) ...........640mW 20-Pin TSSOP DIP (derate 7.00mW/°C above +70°C).....559mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) ............1W 28-Pin SSOP (derate 9.52mW/°C above +70°C) ...........762mW 28-Pin TSSOP (derate 8.70mW/°C above +70°C) .........696mW Operating Temperature Ranges MAX32_ _C_ _.......................................................0°C to +70°C MAX32_ _E_ _ ....................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C
MAX3226EAE中文资料

1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
_______________Ordering Information
PART MAX3224CPP MAX3224CAP MAX3224CTP MAX3224CUP MAX3224EPP MAX3224EAP MAX3224ETP MAX3224EUP TEMP RANGE PIN-PACKAGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 20 Plastic DIP 20 SSOP 20 Thin QFN-EP* 20 TSSOP 20 Plastic DIP 20 SSOP 20 Thin QFN-EP* 5mm x 5mm 20 TSSOP PKG CODE — T4477-3 T2055-5 — — — T2055-5 —
_____________________ Selector Guide
PART NO. OF GUARANTEED AUTOREADY DRIVERS/ DATA RATE SHUTDOWN OUTPUT RECEIVERS (bps) PLUS 2/2 2/2 1/1 1/1 3/5 3/5 250k 1M 250k 1M 250k 1M ✔ ✔ ✔ ✔ — — ✔ ✔ ✔ ✔ ✔ ✔
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
General DescriptionThe MAX3280E/MAX3281E/MAX3283E/MAX3284E are single receivers designed for RS-485 and RS-422 com-munication. These devices guarantee data rates up to 52Mbps, even with a 3V power supply. Excellent propa-gation delay (15ns max) and package-to-package skew time (8ns max) make these devices ideal for mul-tidrop clock distribution applications.The MAX3280E/MAX3281E/MAX3283E/MAX3284E have true fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are opened or shorted. The receiver output will be a logic high if all transmitters on a terminated bus are disabled (high impedance). These devices feature 1/4-unit-load receiver input impedance, allowing up to 128 receivers on the same bus.The MAX3280E is a single receiver available in a 5-pin SOT23 package. The MAX3281E/MAX3283E single receivers have a receiver enable (EN or EN ) function and are offered in a 6-pin SOT23 package. The MAX3284E features a voltage logic pin that allows com-patibility with low-voltage logic levels, as in digital FPGAs/ASICs. On the MAX3284E, the voltage threshold for a logic high is user-defined by setting V L in the range from 1.65V to V CC . The MAX3284E is also offered in a 6-pin SOT23 package.ApplicationsClock Distribution Telecom Racks Base Stations Industrial Control Local Area NetworksFeatureso ESD Protection:±15kV–Human Body Model±6kV–IEC 1000-4-2, Contact Discharge ±12kV–IEC 1000-4-2, Air-Gap Discharge o Guaranteed 52Mbps Data Rateo Guaranteed 15ns Receiver Propagation Delay o Guaranteed 2ns Receiver Skewo Guaranteed 8ns Package-to-Package Skew Time o V L Pin for Connection to FPGAs/ASICs o Allow Up to 128 Transceivers on the Bus (1/4-unit-load)o Tiny SOT23 Package o True Fail-Safe Receivero -7V to +12V Common-Mode Range o 3V to 5.5V Power-Supply Rangeo Enable (High and Low) Pins for Redundant Operation o Three-State Output Stage (MAX3281E/MAX3283E)o Thermal Protection Against Output Short CircuitMAX3280E/MAX3281E/MAX3283E/MAX3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers________________________________________________________________Maxim Integrated Products1Ordering Information19-2320; Rev 0; 1/02For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Pin Configurations appear at end of data sheet.M A X 3280E /M A X 3281E /M A X 3283E /M A X 3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe ReceiversABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = 3V to 5.5V, V L = V CC , T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = 5V and T A = +25°C.) (Notes 2, 3)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.(All Voltages Referenced to GND)Supply Voltage (V CC )...............................................-0.3V to +6V Control Input Voltage (EN, EN ).................................-0.3V to +6V V L Input Voltage.......................................................-0.3V to +6V Receiver Input Voltage (A, B)..............................-7.5V to +12.5V Receiver Output Voltage (RO)....................-0.3V to (V CC + 0.3V)Receiver Output Voltage(RO) (MAX3284E).....................................-0.3V to (V L + 0.3V)Receiver Output Short-Circuit Current.......................ContinuousContinuous Power Dissipation (T A = +70°C)5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 6-Pin SOT23 (derate 8.7mW/°C above +70°C)............696mW Operating Temperature RangeMAX328_EA__..............................................-40°C to +125°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature......................................................+150°C Lead Temperature (soldering, 10s).................................+300°CMAX3280E/MAX3281E/MAX3283E/MAX3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers_______________________________________________________________________________________3SWITCHING CHARACTERISTICSTypical Operating Characteristics(V CC = 3.3V, T A = +25°C, unless otherwise noted.)0132450201030405060RECEIVER OUTPUT LOW VOLTAGEvs. OUTPUT CURRENTOUTPUT CURRENT (mA)O U T P U T V O L T A G E (V )013245-50-30-40-20-10RECEIVER OUTPUT HIGH VOLTAGEvs. OUTPUT CURRENTOUTPUT CURRENT (mA)O U T P U T V O L T A G E (V )2.53.04.03.54.55.0-50-25255075100125RECEIVER OUTPUT HIGH VOLTAGEvs. TEMPERATURETEMPERATURE (°C)R E C E I V E R O U T P U T H I G H V O L T A G E (V )ground, unless otherwise noted.Note 4:V CM is the common-mode input voltage. V ID is the differential input voltage.Note 5:Not production tested. Guaranteed by design.Note 6:See Table 2 for MAX3284E data rates with V L < V CC .M A X 3280E /M A X 3281E /M A X 3283E /M A X 3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers 4_______________________________________________________________________________________050100150200-50-25255075100125RECEIVER OUTPUT LOW VOLTAGEvs. TEMPERATURETEMPERATURE (°C)R E C E I V E R O U T P U T L O W V O L T A G E (m V)457689-50-25255075100125RECEIVER PROPAGATION DELAY (t PLH )vs. TEMPERATURETEMPERATURE (°C)t P L H (n s)678910-50-25255075100125RECEIVER PROPAGATION DELAY (t PHL )vs. TEMPERATURETEMPERATURE (°C)t P H L (n s )56789SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (m A )-502550-257510012560504030201.53.52.54.55.5MAX3284E MAXIMUM DATA RATEvs. VOLTAGE LOGIC LEVELM A X 3280/1/3/4E t o c 08VOLTAGE LOGIC LEVEL (V)D A T A R A TE (M b p s )0264810SUPPLY CURRENT vs. DATA RATEDATA RATE (kbps)S U P P L Y C U R R E N T (m A )10100010010,000100,0000.0010.010.1110V L SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)V L S U P P L Y C U R R E N T (m A )-502550-2575100125Typical Operating Characteristics (continued)(V CC = 3.3V, T A = +25°C, unless otherwise noted.)Detailed Description The MAX3280E/MAX3281E/MAX3283E/MAX3284E are single, true fail-safe receivers designed to operate at data rates up to 52Mbps. The fail-safe architecture guar-antees a high output signal if both input terminals are open or shorted together. See the True Fail-Safe section. This feature assures a stable and predictable output logic state with any transmitter driving the line. These receivers function with a 3.3V or 5V supply voltage and feature excellent propagation delay times (15ns).The MAX3280E is a single receiver available in a 5-pin SOT23 package. The MAX3281E (EN, active high) and MAX3283E (EN, active low) are single receivers that also contain an enable pin. Both the MAX3281E and MAX3283E are available in a 6-pin SOT23 package. The MAX3284E is a single receiver that contains a V L pin, which allows communication with low-level logic included in digital FPGAs. The MAX3284E is available in a 6-pin SOT23 package.The MAX3284E’s low-level logic application allows users to set the logic levels. A logic high level of 1.65V will limit the maximum data rate to 20Mbps.±15kV ESD Protection ESD-protection structures are incorporated on the receiver input pins to protect against ESD encountered during handling and assembly. The MAX3280E/ MAX3281E/MAX3283E/MAX3284E receiver inputs (A, B) have extra protection against static electricity found in normal operation. Maxim’s engineers developed state-of-the-art structures to protect these pins against family of parts continues working without latchup.ESD protection can be tested in several ways. The receiver inputs are characterized for protection to the following:•±15kV using the Human Body Model•±6kV using the Contact Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)•±12kV using the Air-Gap Discharge method speci-fied in IEC 1000-4-2 (formerly IEC 801-2)ESD Test ConditionsESD performance depends on a number of conditions. Contact Maxim for a reliability report that documentstest setup, methodology, and results.Human Body Model Figure 3a shows the H uman Body Model, and Figure3b shows the current waveform it generates when dis-charged into a low impedance. This model consists ofa 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the device through a1.5kΩresistor.IEC 1000-4-2Since January 1996, all equipment manufacturedand/or sold in the European community has been required to meet the stringent IEC 1000-4-2 specifica-tion. The IEC 1000-4-2 standard covers ESD testingand performance of finished equipment; it does not specifically refer to integrated circuits. TheMAX3280E/MAX3281E/MAX3283E/MAX3284E help MAX3280E/MAX3281E/MAX3283E/MAX3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V, SOT23 RS-485/RS-422 True Fail-Safe Receivers_______________________________________________________________________________________5M A X 3280E /M A X 3281E /M A X 3283E /M A X 3284Eusers design equipment that meets Level 3 of IEC 1000-4-2, without additional ESD-protection components.The main difference between tests done using the H uman Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 4a),the ESD-withstand voltage measured to this standard is generally lower than that measured using the H uman Body Model. Figure 4b shows the current waveform for the ±8kV IEC 1000-4-2 Level 4 ESD Contact Discharge test. The Air-Gap test involves approaching the device with a charger probe. The Contact Discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD testing uses a 200pF stor-age capacitor and zero-discharge resistance. It mimics the stress caused by handling during manufacturing and assembly. All pins (not just the RS-485 inputs)require this protection during manufacturing. Therefore,the Machine Model is less relevant to the I/O ports than are the Human Body Model and IEC 1000-4-2.True Fail-SafeThe MAX3280E/MAX3281E/MAX3283E/MAX3284E guarantee a logic-high receiver output when the receiv-er inputs are shorted or open, or when they are connect-ed to a terminated transmission line with all drivers disabled. This guaranteed logic high is achieved by set-ting the receiver threshold between -50mV and -200mV.If the differential receiver input voltage (A-B) is greater than or equal to -50mV, RO is logic high. If (A-B) is less than or equal to -200mV, RO is logic low.In the case of a terminated bus with all transmitters dis-abled, the receiver ’s differential input voltage is pulled to ground by the termination. This results in a logic high with a 50mV minimum noise margin. Unlike previous fail-safe devices, the -50mV to -200mV threshold com-plies with the ±200mV EIA/TIA-485 standard.Receiver Enable(MAX3281E and MAX3283E only)The MAX3281E and MAX3283E feature a receiver out-put enable (EN, MAX3281E or EN , MAX3283E) input that controls the receiver. The MAX3281E receiver enable (EN) pin is active high, meaning the receiver outputs are active when EN is high. The MAX3283E receiver enable (EN ) pin is active low. Receiver outputs are high impedance when the MAX3281E ’s EN pin is low and when the MAX3283E ’s EN pin is high.(MAX3284E only)An increasing number of applications now operate at low-voltage logic levels. To enable compatibility with these low-voltage logic level applications, such as digi-tal FPGAs, the MAX3284E V L pin is a user-defined sup-ply voltage that designates the voltage threshold for a logic high.At lower V L voltages, the data rate will also be lower. A logic-high level of 1.65V will receive data at 20Mbps.Table 2 gives data rates at various voltages at V L .Applications InformationPropagation Delay MatchingThe MAX3280E/MAX3281E/MAX3283E/MAX3284E (V CC = V L ) exhibit propagation delays that are closely matched from one device to another, even between devices from different production lots. This feature allows multiple data lines to receive data and clock sig-nals with minimal skew with respect to each other.Figure 5 shows the typical propagation delays. Small receiver skew times, the difference between the low-to-high and high-to-low propagation delay, help maintain a symmetrical ratio (50% duty cycle). The receiver skewtime | t PLH - t PHL | is under 2ns for either a 3.3V supply or a 5V supply.Multidrop Clock DistributionLow package-to-package skew (8ns max) makes the M A X 3280E /M A X 3281E /M A X 3283E /M A X 3284E (V CC = V L )ideal for multidrop clock distribution. When distributing a clock signal to multiple circuits over long transmission lines, receivers in separate locations, and possibly at two different temperatures, would ideally±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers 6_______________________________________________________________________________________Table 1. MAX3281E/MAX3283E Enable TableTable 2. MAX3284E Data Rate Tableprovide the same clock to their respective circuits.Thus, minimal package-to-package skew is critical. The skew must be kept well below the period of the clock signal to ensure that all of the circuits on the network are synchronized.128 Receivers on the BusThe standard RS-485 input impedance is 12k Ω(one-unit load). The standard RS-485 transmitter can drive 32 unit loads. The MAX3280E/MAX3281E/MAX3283E/MAX3284E present a 1/4-unit-load input impedance(48k Ω), which allows up to 128 receivers on the bus.Any combination of these RS-485 receivers with a total of 32 unit loads can be connected to the same bus.Thermal ProtectionThe MAX3280E/MAX3281E/MAX3283E/MAX3284E fea-ture thermal protection. Thermal protection sets the out-put stage in high-impedance mode when a short circuit occurs at the output, limiting both the power dissipation and temperature. The thermal temperature threshold is +165°C, with a hysteresis of 20°C.MAX3280E/MAX3281E/MAX3283E/MAX3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers_______________________________________________________________________________________7Test Circuits/Timing DiagramsFigure 2. MAX3281E/MAX3283E Receiver Enable/Disable TimingM A X 3280E /M A X 3281E /M A X 3283E /M A X 3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers 8_______________________________________________________________________________________Test Circuits/Timing Diagrams (continued)Figure 3a. Human Body ESD Test ModelFigure 3b. Human Body Model Current WaveformFigure 4a. IEC 1000-4-2 ESD Test ModelFigure 4b. IEC 1000-4-2 ESD Generator Current Waveform10nsB = GNDFigure 5. Receiver Propagation Delay Driven by External RS-485 DeviceMAX3280E/MAX3281E/MAX3283E/MAX3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers_______________________________________________________________________________________9Typical Operating CircuitPin ConfigurationsChip InformationTRANSISTOR COUNT: 233PROCESS: BiCMOSM A X 3280E /M A X 3281E /M A X 3283E /M A X 3284E±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe Receivers 10______________________________________________________________________________________Package InformationMAX3280E/MAX3281E/MAX3283E/MAX3284E ±15kV ESD-Protected 52Mbps, 3V to 5.5V , SOT23RS-485/RS-422 True Fail-Safe ReceiversMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________11©2002 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.Package Information (continued)元器件交易网。