初三数学二次函数单元测试题及答案(2)
九年级上册数学《二次函数》单元检测题(附答案)

人教版数学九年级上学期《二次函数》单元测试[考试时间:90分钟分数:100分]一.选择题(每题3分,共30分)1.抛物线y=(x+1)2+(m2+1)(m为常数)的顶点在()A .第一象限B .第二象限C .第三象限D .第四象限2.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A .图象与y轴的交点坐标为(0,13)B .图象的对称轴在y轴的右侧C .当x>0时,y的值随x值的增大而增大D .当x=2时,函数有最小值为53.将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A .y=2(x﹣6)2B .y=2(x﹣6)2+4C .y=2x2D .y=2x2+44.设函数y=A (x﹣h)2+k(A ,h,k是实数,A ≠0),当x=1时,y=1;当x=8时,y=8,()A .若h=4,则A <0B .若h=5,则A >0C .若h=6,则A <0D .若h=7,则A >05.已知抛物线y=A x2+B x+C (A <0)经过点(﹣1,0),且满足4A +2B +C >0,有下列结论:①A +B >0;②﹣A +B +C >0;③B 2﹣2A C >5A 2.其中,正确结论的个数是()A .0B .1C .2D .36.二次函数y=A x2+B x+C ,自变量x与函数y的对应值如表:x﹣3 ﹣2 ﹣1y﹣2 ﹣2 0下面四个说法正确的有()①抛物线的开口向上②当x>﹣3时,y随x的增大而增大③二次函数的最小值是﹣2 ④﹣4是方程A x2+B x+C =0的一个根.A .1个B .2个C .3个D .4个7.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若A B =4,D E=3,则杯子的高C E为()A .14B .11C .6D .38.二次函数y=x2﹣2x﹣2与x轴的交点个数是()A .0个B .1个C .2个D .3个9.在同一平面直角坐标系中,函数y=A x2+B x(A ≠0)与y=B x+A (B ≠0)的图象可能是()A .B .C .D .10.对于二次函数y=A x2﹣(2A ﹣1)x+A ﹣1(A ≠0),有下列结论:①其图象与x轴一定相交;②若A <0,函数在x>1时,y随x的增大而减小;③无论A 取何值,抛物线的顶点始终在同一条直线上;④无论A 取何值,函数图象都经过同一个点.其中所有正确的结论是()A .①②③B .①③④C .①②④D .①②③④二.填空题(每题4分,共20分)11.抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是.12.抛物线y=x2+B x+C 经过点A (0,3),B (2,3),抛物线所对应的函数表达式为.13.已知非负实数x,y,z满足x+y+z=1,则t=2xy+yz+2zx的最大值为.14.如图是二次函数y=A x2+B x+C (A ≠0)的图象的一部分,对称轴为直线x=,抛物线与x轴的交点分别为A 、B ,则A 、B 两点间的距离是.15.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A 、B 、C 三点,D 为顶点,连结AC ,B C .点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交B C 于点E,连结A P交B C 于点F,则的最大值为.三.解答题(每题10分,共50分)16.如图,抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点,与y轴交于点C .(1)求抛物线的解析式;(2)点P是抛物线上的动点,且满足S△PA O =2S△PC O,求出P点的坐标;(3)连接B C ,点E是x轴一动点,点F是抛物线上一动点,若以B 、C 、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.17.某农场拟用总长为60m的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm,总占地面积为ym2.(1)求y关于x的函数解析式和自变量的取值范围;(2)当x为何值时,三间饲养室占地总面积最大?最大面积为多少?18.如图①,已知抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3),直线l经过B 、C 两点.抛物线的顶点为D .(1)求抛物线和直线l的解析式;(2)判断△B C D 的形状并说明理由.(3)如图②,若点E是线段B C 上方的抛物线上的一个动点,过E点作EF⊥x轴于点F,EF 交线段B C 于点G,当△EC G是直角三角形时,求点E的坐标.19.春节前夕,万果园超市从厂家购进某种礼盒,已知该礼盒每个成本价为32元.经市场调查发现,该礼盒每天的销售量y(个)与销售单价x(元)之间满足一次函数关系.当该款礼盒每个售价为50元时,每天可卖出200个;当该款礼盒每个售价为60元时,每天可卖出100个.(1)求y与x之间的函数解析式(不要求写出x的取值范围);(2)若该超市想达到每天不低于240个的销售量,则该礼盒每个售价定为多少元时,每天的销售利润最大,最大利润是多少元?20.如图,抛物线y=﹣x2+B x+C 与x轴交于点A ,B ,与y轴交于点C ,其中点B 的坐标为(3,0),点C 的坐标为(0,3),直线l经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作C D ∥x轴交抛物线于点D ,过线段C D 上方的抛物线上一动点E作EF ⊥C D 交线段B C 于点F,求四边形EC FD 的面积的最大值及此时点E的坐标;(3)点P是在直线l上方的抛物线上一动点,点M是坐标平面内一动点,是否存在动点P,M,使得以C ,B ,P,M为顶点的四边形是矩形?若存在,请直线写出点P的横坐标;若不存在,请说明理由.答案与解析一.选择题1. B .2. C .3. C .4. C .5. D .6. B .7. B .8. C .9. C .10. B .二.填空11. 2.12. y=x2﹣2x+3.13..14. 3.15..三.解答题16.解:(1)∵抛物线y=A x2+B x+3与x轴交于A (﹣3,0),B (1,0)两点, ∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C ,∴点C (0,3)∴OA =OC =3,设点P(x,﹣x2﹣2x+3)∵S△PA O =2S△PC O,∴×3×|﹣x2﹣2x+3|=2××3×|x|,∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若B C 为边,且四边形B C FE是平行四边形,∴C F∥B E,∴点F与点C 纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若B C 为边,且四边形B C EF是平行四边形,∴B E与C F互相平分,∵B E中点纵坐标为0,且点C 纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若B C 为对角线,则四边形B EC F是平行四边形,∴B C 与EF互相平分,∵B C 中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).17.解:(1)根据题意得,y=x•(60﹣x)=﹣x2+15x,自变量的取值范围为:0<x≤40;(2)∵y=﹣x2+15x=﹣(x﹣30)2+225,∴当x=30时,三间饲养室占地总面积最大,最大为225(m2).18.解:(1)∵抛物线y=﹣x2+B x+C 与x轴交于点A 、B (3,0),与y轴交于点C (0,3), ∴y=﹣x2+B x+3,将点B (3,0)代入y=﹣x2+B x+3,得0=﹣9+3B +3,∴B =2,∴抛物线的解析式为y=﹣x2+2x+3;∵直线l经过B (3,0),C (0,3),∴可设直线l的解析式为y=kx+3,将点B (3,0)代入,得0=3k+3,∴k=﹣1,∴直线l的解析式为y=﹣x+3;(2)△B C D 是直角三角形,理由如下:如图1,过点D 作D H ⊥y 轴于点H ,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点D (1,4),∵C (0,3),B (3,0),∴HD =HC =1,OC =OB =3,∴△D HC 和△OC B 是等腰直角三角形,∴∠HC D =∠OC B =45°,∴∠D C B =180°﹣∠HC D ﹣∠OC B =90°,∴△B C D 是直角三角形;(3)∵EF ⊥x 轴,∠OB C =45°,∴∠FGB =90°﹣∠OB C =45°,∴∠EGC =45°,∴若△EC G 是直角三角形,只可能存在∠C EG =90°或∠EC G =90°,①如图2﹣1,当∠C EG =90°时,∵EF ⊥x 轴,∴EF ∥y 轴,∴∠EC O =∠C OF =∠C EF =90°,∴四边形OFEC 为矩形,∴y E =y C =3,在y =﹣x 2+2x +3中,当y =3时,x 1=0,x 2=2,∴E (2,3);②如图2﹣2,当∠EC G =90°时,由(2)知,∠D C B =90°,∴此时点E 与点D 重合,∵D (1,4),∴E (1,4),综上所述,当△EC G 是直角三角形时,点E 的坐标为(2,3)或(1,4).19.解:(1)设y与x之间的函数解析式为y=kx+B ,由题意得,,解得:,∴y与x之间的函数解析式为y=﹣10x+700;(2)设每天的销售利润为W元,由如图得,W=(x﹣32)(﹣10x+700)=﹣10x2+1020x﹣22400=﹣10(x﹣51)2+3610, ∵﹣10x+700≥240,解得:x ≤46,∴32<x ≤46,∵A =﹣10<0,∴当x <51时,W 随x 的增大而增大,∴当x =46时,W 有最大值,最大利润是﹣10×(46﹣51)2+3610=3360,答:该礼盒每个售价定为46元时,每天的销售利润最大,最大利润是3360元.20.解:(1)将点B (3,0),点C (0,3)代入y =﹣x 2+B x +C 中, 则有, ∴, ∴y =﹣x 2+2x +3;(2)∵y =﹣x 2+2x +3,∴对称轴为x =1,∵C D ∥x 轴,∴D (2,3),∴C D =2,∵点B (3,0),点C (0,3),∴B C 的直线解析式为y =﹣x +3,设E (m ,﹣m 2+2m +3),∵EF ⊥C D 交线段B C 于点F ,∴F (m ,﹣m +3),∴S 四边形EC FD =S △C D E +S △C D F =×2×(﹣m 2+2m )+×2×m =﹣m 2+3m , 当m =时,四边形EC FD 的面积最大,最大值为;此时E (,);(3)设P (n ,﹣n 2+2n +3),①当C P ⊥PB 时,设B C 的中点为J (,),则有PJ = B C =,∴(n ﹣)2+(﹣n 2+2n +3﹣)2=()2,解得整理得到n(n﹣3)(n2﹣n﹣1)=0, ∴n=0或3或,∵P在第一象限,∴P点横坐标为;②当C P⊥C B 时,P(1,4).∴P点横坐标为1;综上所述:P点横坐标为或1.。
(人教版数学)初中9年级上册-单元检测-22 二次函数 单元检测题3 含答案

人教版九年级数学上册第22章《二次函数》单元测试及答案 (2)一.选择题(每小题3分,共30分)1.下列函数关系中,可以看做二次函数y =ax 2 +bx +c (a ≠0)模型的是( ) A .在一定的距离内汽车的行驶速度与行驶时间的关系B .我国人口年自然增长率1%,这样我国人口总数随年份的关系C .竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D .圆的周长与圆的半径之间的关系.2.抛物线y =x 2 –2x –3 的对称轴和顶点坐标分别是( )A .x =1,(1,-4)B .x =1,(1,4)C .x =-1,(-1,4)D .x =-1,(-1,-4)3.对称轴平行于y 轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A .y =-2x 2 + 8x +3B .y =-2x -2 –8x +3C .y = -2x 2 + 8x –5D .y =-2x -2 –8x +24.已知二次函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .ab >0,c >0B .ab >0,c <0C .ab <0,c >0D .ab <0,c <05.把二次函数y =213212---x x 的图象向上平移3个单位,再向右平 移4个单位,则两次平移后的图象的解析式是( )A .x y (21-=- 1)2 +7 B .x y (21-=+7)2 +7 C .x y (21-=+3)2 +4 D .x y (21-=-1)2 +16.下列各点中是抛物线3)4(312--=x y 图像与x 轴交点的是( )A . (5,0)B . (6,0)C . (7,0)D . (8,0)7. 在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )8. 已知二次函数y =2x 2+8x +7的图象上有有点A 1(2)y -,,B 21(5)3y -,,C 31(1)5y -,,则 y 1、y 2、y 3的大小关系为( )A . y 1 > y 2> y 3B . y 2> y 1> y 3C . y 2> y 3> y 1D . y 3> y 2> y 1 9.二次函数y =ax 2+bx +c的图象如图所示,则点M c b a ⎛⎫⎪⎝⎭,在( )Oyx9题x yO x yO xyOxyOA .第一象限B .第二象限C .第三象限D .第四象限 10.关于二次函数y =ax 2+bx +c 图像有下列命题:(1)当c =0时,函数的图像经过原点;(2)当c >0时,函数的图像开口向下时,方程ax 2 +bx + c =0 必有两个不等实根; (3)当b =0时,函数图像关于原点对称.其中正确的个数有( )A .0个B .1个C .2个D .3个 二.填空题(每题3分,共21分)11.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.12.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.13.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______.14.当m=_________时,函数y = (m 2 -4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.15.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________16.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.17.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线x =4乙:与x 轴两个交点的横坐标都是整数.丙:与y 轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式__________________.三.解答题(共52分)18.(6分) (1)如果二次函数y =x 2 - x + c 的图象过点(1,2),求这个二次函数的解析式,并写出该函数图象的对称轴.19.(10分)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象,并根据图象写出当输出值y 为正数时输入值x 的取值范围.20.(10分) 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:yO 331 yO xx (元) 15 20 30 … y (件)252010…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元? 21.(12分) 某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图象回答:⑴第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?⑵第三天12时这头骆驼的体温是多少?⑶兴趣小组又在研究中发现,图中10时到22时的曲线是抛物线,求该抛物线的解析式.22.(12分)在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.参考答案: 1.C 2.A3.C 点拨:使用待定系数法求解二次函数解析式. 4.C5.A 点拨:此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.(平移含两个方向:一是左右平移,二是上下平移.左右平移时,对应点纵坐标不变;上下平移时,对应点横坐标不变.) 6.C 7.B8.C (本题涉及到比较坐标值大小的问题,可先将一般式y =2x 2+8x +7化成顶点式22(2)1y x =+-便得顶点(-2,-1).因为抛物线开口向上,故当x =-2时,y 1=-1为最小值;又因为115135-> ,由函数图象分布规律,易知对应的y 2>y 3.综上得y 2>y 3>y 1 ) 9.D10.C 11.y =252212++-x x 12.y = 2(x –1)2 –3 , (1,-3), x = 113.①,0,114. 3 , y =5x 2+3 ,y 轴(或x =0) ,(0,3) x =0时y 有最小值3 15.y =-x 2 –2x + 3 (满足条件即可)16. y =x 2+4x +3 点拨:这是一道很容易出错的题目.根据对称点坐标来解.因为点(1,0),(3,0),(0,3)关于y 轴的对称点是(-1,0),(-3,0),(0,3).所以关于y 轴对称的抛物线就经过点(-1,0),(-3,0),(0,3)然后利用待定系数法求解即可. 17.抛物线的解析式为:222218181818113377775555y x x y x x y x x y x x =-+=-+-=-+=-+-或或或(从四个答案中填写一个即可) 点拨:本题是一个开放性题目,主要考查数形结合法,待定系数法以及抛物线与x 轴y 轴的交点坐标等有关性质.根据题意中二次函数图象的特点,用数形结合法画出其示意图,对称轴x =4.可由面积来求.18. (1)y = x 2–x + 2, x = 21;19.解:(1)设所求二次函数的解析式为c bx ax y ++=2,则⎪⎪⎩⎪⎪⎨⎧-=++-=+⋅+⋅=+-+-43005)2()2(22c b a c b a c b a ,即⎪⎩⎪⎨⎧-=+=--=1423b a b a c ,解得⎪⎩⎪⎨⎧-=-==321c b a 故所求的解析式为:322--=x x y . 2)函数图象如图所示.由图象可得,当输出值y 为正数时, 输入值x 的取值范围是1-<x 或3>x . 20.解:一次函数的解析式为 y =k x +b 则y O x15252020k b k b +=⎧⎨+=⎩解的K=-1 b =40 即:一次函数解析式为y =-x +40(2)设每件产品的销售价应定为x 元,所获销售利润为w 元 w=(x -10)(40-x )=-x 2+50x -400=-(x -25)2+225产品的销售价应定为25元,此时每日获得的最大销售利润为225元.21、⑴第一天中,从4时到16时这头骆驼的体温是上升的它的体温从最低上升到最高需要12小时⑵第三天12时这头骆驼的体温是39℃ ⑶()()的取值范围不写不扣分x x x x y 22102421612≤≤++-= 22.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ;③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC . (2)在(1)中存在抛物线DBC ,它与直线AE 不相交设抛物线DBC 的解析式为y =ax 2+bx +c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得:4a -2b +c =29,a +b +c =0,16a +4b +c =0.解这个方程组,得:a =41,b =-45,c =1.∴抛物线DBC 的解析式为y =41x 2-45x +1【另法:设抛物线为y =a (x -1)(x -4),代入D (-2,29),得a =41也可.】 又设直线AE 的解析式为y =m x +n .将A (-2,0),E (0,-6)两点坐标分别代入,得: -2m+n=0,解这个方程组,得m=-3,n=-6. n=-6.∴直线AE 的解析式为y =-3x -6.。
九年级数学《二次函数》单元测试卷(含答案)

正确;∵ b2- 4ac>0,且对称轴在 y 轴左侧,故图象与 x 轴的交点有一个在 y 轴的右侧,∴
①③正确.
10. C
11. - 5 12.4 13. y=- 2x2- 4x+ 5 14.(2 ,- 1) 15.四
16. y=- 12x2+ 4x
解析: S△AEF = S 正方形 ABCD -S△ABE- S△ADF - S△ECF ,即
25.已知,如图 22-11 抛物线 y=ax2+ 3ax+ c(a>0) 与 y 轴交于点 C,与 x 轴交于 A, B 两点,点 A 在点 B 左侧.点 B 的坐标为 (1,0), OC=3OB.
(1)求抛物线的解析式; (2)若点 D 是线段 AC 下方抛物线上的动点,求四边形 ABCD 面积的最大值; (3)若点 E 在 x 轴上,点 P 在抛物线上.是否存在以 A, C, E, P 为顶点且以 AC 为一 边的平行四边形?若存在,求点 P 的坐标;若不存在,请说明理由.
5 23.解: (1) 把 (-5,0), 0, 2 ,(1,6)分别代入抛物线,解得
a=
12,b=
3,
c=
52,∴
y=
1 2
x2+
3
x+
5 .
2
(2)
令
1 2
x2+
3x+
5 2
=
2x-
3,整理后,得
12x2+ x+ 121= 0,∵ Δ<0 ,∴抛物线与直线无交点.
(3)
令
1 2
x2+
3x+
5 2
《二次函数》检测题
(满分: 120 分 时间: 100 分钟 )
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分 )
第一章-二次函数单元测试卷(二)及答案

第一章 二次函数单元测试卷(二)(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个9.已知二次函数y =ax 2+bx +c 的图象如图,①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )O O O O O y y yy y xxxxx-11A .B .C .D .二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m .14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 . 16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相 同,则此函数关系式______.17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm +ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点, 且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。
人教版九年级数学上册《第22章二次函数》单元测试卷(含答案)

人教版九年级上册第22章二次函数单元测试卷一、选择题(共8题;共24分)1.二次函数y=x 2-2x+3顶点坐标是( )A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2) 2.已知抛物线y=13(x−4)2-3与y 轴交点的坐标是( )A. (0,3)B. (0,-3)C. (0,73)D. (0, -73) 3.二次函数y= -2x 2+4x +1的图象如何移动就得到y =-2x 2的图象( )A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位 4.在平面直角坐标系xOy 中,将抛物线y=2x 2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为( )A. y=2(x-1)2-3B. y=2(x-1)2+3C. y=2(x+1)2-3D. y=2(x+1)2+35.已知二次函数y =ax 2+bx +c 的图象如下图所示,则四个代数式abc ,b 2−4ac ,2a +b ,a −b +c 中,值为正数的有( )A. 4个B. 3个C. 2个D. 1个6.如图,二次函数y=ax 2+bx+c 的图象与x 轴交于点A (﹣1,0),B (3,0).下列结论:①2a ﹣b=0;②(a+c )2<b 2;③当﹣1<x <3时,y <0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x ﹣2)2﹣2.其中正确的是( )A. ①③B. ②③C. ②④D. ③④ 7.已知一次函数y=ax 2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②b 2﹣4ac=0;③a >2;④4a ﹣2b+c >0.其中正确结论的个数是( )A. 1B. 2C. 3D. 48.如图,已知顶点为(-3,-6)的抛物线y=ax 2+bx+c 经过点(-1,-4),则下列结论中错误的是( )A. b 2>4acB. ax 2+bx+c≥-6C. 若点(-2,m ),(-5,n )在抛物线上,则m >nD. 关于x 的一元二次方程ax 2+bx+c=-4的两根为-5和-1二、填空题(共10题;共30分)9.若抛物线y =(a −2)x 2的开口向上,则a 的取值范围是________.10.抛物线y =2x 2−1的顶点坐标是________.11.若A (−134,y 1),B (−54,y 2),C (1,y 3)为二次函数y= x 2 +4x ﹣5的图象上的三点,则y 1、y 2、y 3的大小关系是________.12.抛物线与x 轴交于点(1,0),(﹣3,0),则该抛物线可设为:________.13.把二次函数y=﹣2x 2+4x+3化成y=a (x ﹣m )2+k 的形式是________.14.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.15.将二次函数y =x 2-2x 化为y =(x -h)2+k 的形式,结果为________16.二次函数y=x 2+(2m+1)x+(m 2﹣1)有最小值﹣2,则m=________.17.若二次函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是________.18.抛物线y=ax 2+bx+c 满足下列条件:(1)4a ﹣b=0;(2)a ﹣b+c >0;(3)与x 轴有两个交点,且两交点的距离小于2.以下有四个结论:①a <0;②c >0;③ac=b 2;④ <a <.则其中正确结论的序号是________. 三、解答题(共9题;共66分)19.如图,一块矩形草地的长为100m ,宽为80m ,欲在中间修筑两条互相垂直的宽为x (m )的小路,这时草坪的面积为y (m 2).求y 与x 的函数关系式,并求出x 的取值范围.20.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,21.直线l:y=﹣34(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.22.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.23.某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?24.已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线y=a x2+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F 的坐标;若不存在,请说明理由.25.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 √2DQ,求点F的坐标.26.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.已知如图,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在AB上(不同于A、B),将△ANM 绕点M逆时针旋转90°得△A1PM(1)画出△A1PM(2)设AN=x,四边形NMCP的面积为y,直接写出y关于x的函数关系式,并求y的最大或最小值.参考答案一、单选题1.B2.C3.C4.C5.A6.D7.C8.C二、填空题9.a>2 10.(0,-1)11.y2<y1<y312.y=a(x﹣1)(x+3)(a≠0)17.1 18.①13.y=﹣2(x﹣1)2+5 14.直线x=2 15.y=(x−1)2−116.34三、解答题19.解:设中间修筑两条互相垂直的宽为x(m)的小路,草坪的面积为y(m2),根据题意得出:y=100﹣80﹣80x﹣100x+x2=x2﹣180x+8000(0<x<80)20.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.21.解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a= ,∴抛物线m的解析式为y= (x﹣3)(x﹣8),即y= x2﹣x+6;函数图像如下:当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.22.解:(1)∵抛物线的顶点坐标为(1,4),∴可设抛物线解析式为y=a (x ﹣1)2+4,∵与x 轴交于点A (3,0),∴0=4a+4,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+4=﹣x 2+2x+3,令y=0,可得﹣x 2+2x+3=0,解得x=﹣1或x=3,令x=0,可得y=3∴B 点坐标为(﹣1,0),D 点坐标为(0,3);(2)∵A (3,0),D (0,3),C (1,4),∴AD=√32+32=3√2,CD=√(1−0)2+(4−3)2=√2,AC=√(1−3)2+(4−0)2=2√5,∴AD 2+CD 2=(3√2)2+(√2)2=20=(2√5)2=AC 2,∴△ACD 是以AC 为斜边的直角三角形,∴S △ACD =12AD•CD=12×3√2×√2=3.23.解:(1)当30<x≤40时,设此段的函数解析式为:y=kx+b ,{30k +b =6640k +b =36解得,k=﹣3,b=156∴当30<x≤40时,函数的解析式为:y=﹣3x+156;当40<x≤80时,设此段函数的解析式为:y=mx+n ,{40m +n =3680m +n =16解得,m=−12,n=56,∴当40<x≤80时,函数的解析式为:y=−12x +56;当80<x≤83时,y=16;由上可得,y 与x 之间的函数关系式是:y={−3x +15630<x ≤40−12x +5640<x ≤801680<x ≤83;(2)当30<x≤40时,w=(x ﹣28)y=(x ﹣28)(﹣3x+156)=﹣3x 2+240x ﹣4368=﹣3(x ﹣40)2+432∴当x=40时取得最大值,最大值为w=432元;当40<x≤80时,w=(x ﹣28)y=(x ﹣28)(−12x +56)=−12x 2+70−1586=−12(x −70)2+882,∴当x=70时,取得最大值,最大值为w=882元;当80<x≤83时,w=(x ﹣28)×16∴当x=83时,取得最大值,最大值为w=880元;由上可得,当x=70时,每日点的销售利润最大,最大为882元,即要使每日的销售利润w 最大,每件产品的日销售价应定为70元,此时每日销售利润是882元. 24.(1)由A (-3,0)和B (2,0),得:y =a (x +3)(x −2)即y =ax 2+ax −6a = ax²+bx+4∴ −6a =−4∴ a =−23∴ y =−23x 2−23ax −4 .(2)易得C (0,4),则BC= √42+22=2√5 .由y =−23x 2−23ax −4可对称轴为x= −−232×(−23)=−12 , 则可设点G 的坐标为(−12,y),∵点D 是BC 的中点∴点D 的坐标为(1,2),DB =12CB =√5由旋转可得,DG =DB∴ (1+12)2+(y −2)2=(√5)2 ……………∴ y =2±√112 ……… ∴点G 的坐标为(−12,2+√112)或(−12,2−√112) (3)①当BE 为对角线时,因为菱形的对角线互相垂直平分,所以此时D 即为对称轴与AC 的交点或对称轴对BC 的交点,F 为点D 关于x 轴的对称点,设y AC =kx +b ,∵C (0,4),A (−3,0),∴ {b =4−3k +b =0, ∴ {b =4k =43,∴ y AC =43x +4,∴当x =−12时,y =103,∴D (−12,103),∴F(−12,−103);易得y BC=−2x+4∴当x=−12时,y=5,∴D(−12,5),∴F(−12,−5);②当BE为菱形的边时,有DF∥BEI)当点D在直线BC上时y BC=−2x+4设D(a,−2a+4),则点F(−12,−2a+4)∵四边形BDFE是菱形∴FD=DB根据勾股定理得,(a+12)2=(a−2)2+(−2a+4)2整理得:4a2−21a+794=0,解得:a1=21+5√58,a2=21−5√58∴F(−12,−5−5√54)或(−12,−5+5√54)II)当点D在直线AC上时设D(a,43a+4),则点F(−12,43a+4)∵四边形BFDE是菱形,∴FD=FB ,根据勾股定理得,(a+12)2=(2+12)2+(43a+4)2整理得:7a2+87a+198=0,解得:a1=−3(舍去),a2=−667∴F(−12,−607),综上所述,点F的坐标分别为:(−12,−103),(−12,−5),(−12,−5−5√54),(−12,−5+5√54),(−12,−607).25.(1)解:当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,则A(﹣3,0),B(1,0);当x=0时,y=﹣x2﹣2x+3=3,则C(0,3);(2)解:抛物线的对称轴为直线x=﹣1,设M(x,0),则点P(x,﹣x2﹣2x+3),(﹣3<x<﹣1),∵点P 与点Q 关于直线=﹣1对称,∴点Q (﹣2﹣x ,﹣x 2﹣2x+3),∴PQ=﹣2﹣x ﹣x=﹣2﹣2x ,∴矩形PMNQ 的周长=2(﹣2﹣2x ﹣x 2﹣2x+3)=﹣2x 2﹣8x+2=﹣2(x+2)2+10, 当x=﹣2时,矩形PMNQ 的周长最大,此时M (﹣2,0),设直线AC 的解析式为y=kx+b ,把A (﹣3,0),C (0,3)代入得{−3k +b =0b =3,解得{k =1b =3, ∴直线AC 的解析式为y=3x+3,当x=﹣2时,y=x+3=1,∴E (﹣2,1),∴△AEM 的面积= 12 ×(﹣2+3)×1= 12;(3)解:当x=﹣2时,Q (0,3),即点C 与点Q 重合,当x=﹣1时,y=﹣x 2﹣2x+3=4,则D (﹣1,4),∴DQ= √12+(3−4)2 = √2,∴FG=2 √2 DQ=2 √2 × √2 =4,设F (t ,﹣t 2﹣2t+3),则G (t ,t+3),∴GF=t+3﹣(﹣t 2﹣2t+3)=t 2+3t ,∴t 2+3t=4,解得t 1=﹣4,t 2=1,∴F 点坐标为(﹣4,﹣5)或(1,0).26.解:由题意得:C (0,1),D (6,1.5),抛物线的对称轴为直线x=4, 设抛物线的表达式为:y=ax 2+bx+1(a≠0),则据题意得:{−b 2a =41.5=36a +6b +1, 解得:{a =−124b =13, ∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124 x 2+ 13 x+1, ∵y=﹣124(x ﹣4)2+ 53, ∴飞行的最高高度为53米 27.(1)解:如图所示:△A 1PM ,即为所求;(2)解:过点M 作MD ⊥AB 于点D , ∵AB=BC=4,∠ABC=90°,M 是AC 的中点, ∴MD=2,设AN=x ,则BN=4﹣x ,故四边形NMCP 的面积为: y= 12 ×4×4﹣12 x×2﹣12 x×(4﹣x ) = 12 x 2﹣3x+8= 12(x ﹣3)2+ 72,故y 的最小值为:72。
九年级数学二次函数测试题含答案(精选5套)

九年级数学 二次函数 单元试卷(一)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=1 5.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题)3.05m xyx y o二、填空题(本大题共4小题,每小题3分,共12分)11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
人教版九年级数学第二十二章《二次函数》单元测试题(含答案)

人教版九年级数学第二十二章《二次函数》单元测试题(含答案)(时间:100分钟 总分:120分)一、选择题(每题3分,共24分)1.下列各式中,y 是关于x 的二次函数的是 ( )A .y =4x +2B .21y ax +=C .2354y x x +=﹣D .y =21x2.把抛物线22y x =-向上平移1个单位,向右平移2个单位,得到( )A .22(1)2y x =-+-B .22(2)2y x =-++C .22(2)1y x =--D .22(2)1y x =--+ 3.抛物线()2235y x =--的顶点坐标是 ( )A .(3,5)--B .(3,5)-C .(3,5)-D .(3,5)4.二次函数2y ax bx c =++(a ≠0)中x ,y 的部分对应值如下表: x … ﹣2 ﹣1 01 2 … y … 0 ﹣4 ﹣6 ﹣6 ﹣4 …则该二次函数图象的对称轴为 ( )A .y 轴B .直线x =12C .直线x =1D .直线x =325.抛物线21y x x =--经过点(m ,3),则代数式21m m --的值为( )A .0B .1C .2D .36.已知抛物线223y x x -=--过A (-2,1y ),B (-3,2y ),C (2,3y )三点,则y 1、y 2、y 3大小关系是 ( )A .123y y y >>B .213y y y >>C .132y y y >>D .321y y y >>7.已知函数y =a 2x ﹣2ax ﹣1(a 是常数,a ≠0),下列结论正确的是( )A .若a >0,则当x ≥1时,y 随x 的增大而减小B .若a <0,则当x ≤1时,y 随x 的增大而增大C .当a =1时,函数图像过点(﹣1,1)D .当a =﹣2时,函数图像与x 轴没有交点8.如图,抛物线y =ax 2+bx +1的顶点在直线y =kx +1上,对称轴为直线x =1,有以下四个结论:①ab <0,②b <13,③a =﹣k ,④当0<x <1时,ax +b >k ,其中正确的结论是 ( )A .①②③B .①③④C .①④D .②③二、填空题(每题3分,共24分)9.抛物线y =4(x ﹣3)2+7的对称轴是直线x =_____.10.抛物线221y x x =--与y 轴的交点的坐标为________.11.已知函数()212y x =--+,当1x >时,y 随x 的增大而______(填写“增大”或“减小”).12.已知抛物线2y x bx c =++的部分图像如图所示,则方程20x bx c ++=的解是___________13.已知二次函数26y x x k =--的图象与x 轴有两个不同的交点,求k 的取值范围______.14.如图,过点D (1,3)的抛物线y =-x 2+k 的顶点为A ,与x 轴交于B 、C 两点,若点P 是y 轴上一点,则PC +PD 的最小值为____.15.已知二次函数2y ax bx c ++=的图像如图所示,则当0≤x ≤3时,函数值y 的取值范围是______.16.如图,点A 、B 的坐标分别为 ()1,4 和 ()4,4,抛物线2()y a x m n =++的顶点在线段AB 上,与x 轴交于C ,D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为____.三、解答题(每题8分,共72分)17.已知二次函数y =x 2+bx +c ,当x =1时y =3;当x =﹣1时,y =1,求这个二次函数的解析式.18.已知二次函数223y x x =--.(1)将223y x x =--化成2()y a x h k =-+的形式;(2)写出该二次函数图象的顶点坐标.19.如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.20.已知二次函数2224y x x k =++-与x 轴有两个交点.(1)求实数k 的取值范围.(2)若此二次函数有最小值3-,求k 的值.21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x 元,平均月销售量为y 件.(1)求出y 与x 的函数关系式.(2)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?22.平面直角坐标系xOy 中,已知抛物线y =2x +bx +c 经过(﹣1,2m +2m +1)、(0,2m +2m +2)两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线y =2x +bx +c 与x 轴有公共点,求m 的值;(3)设(a ,1y )、(a +2,2y )是抛物线y =2x +bx +c 上的两点,请比较2y ﹣1y 与0的大小,并说明理由.23.如图,在平面直角坐标系中,抛物线2y ax bx =+(a≠0)经过原点,并交x轴正半轴于点A.已知OA=6,且方程29ax bx +=恰好有两个相等的实数根.(1)求该抛物线的表达式;(2)若将图象在x 轴及其上方的部分向右平移m 个单位交于点P ,B ,1B 是该图象两个顶点,若1PBB 恰好为等腰直角三角形,求m 的值.24.如图,抛物线213222y x x =-++与x 轴交于点A 、点B ,与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)求直线BD 的解析式;(3)当点P 在x 轴上运动时,直线l 交BD 于点M ,试探究m 为何值时,使得以C 、Q 、M 、D 为顶点的四边形是平行四边形.25.已知抛物线2y ax bx =+过点A (1,4)、B (3-,0),过点A 作直线AC ∥x 轴,交抛物线于另一点C ,在x 轴上有一点D (4,0),连接CD .(1)求抛物线的表达式;(2)若在抛物线上存在点Q ,使得CD 平分∠ACQ ,请求出点Q 的坐标;(3)在直线CD 的下方的抛物线上取一点N ,过点N 作NG ∥y 轴交CD 于点G ,以NG 为直径画圆在直线CD 上截得弦GH ,问弦GH 的最大值是多少?参考答案1.C .2.D .3.C .4.B .5.D .6.A .7.B .8.B .9.3.10.(01)-,.11.减小.12.11x =-或23x =13.9k >-.14.3215.13y -≤≤16.8.17.解:将点(1,3),(﹣1,1)代入函数解析式得:1311b c b c ++=⎧⎨-+=⎩ ,解得11b c =⎧⎨=⎩ ;故此函数的解析式为y =x 2+x +1.18.解:(1)223y x x =--,2214y x x =-+-,2(1)4y x=--;(2)∵二次函数顶点式为2(1)4y x=--,∴二次函数图象的顶点坐标为(14),-.19.(1)解:∵抛物线的顶点为C(1,9),∴设抛物线的解析式为y=a(x-1)2+9,∵抛物线与x轴交于点B(4,0),∴a(4-1)2+9=0,解得:a=-1,∴抛物线的解析式为y=-(x-1)2+9=-x2+2x+8;(2)解:过点C作CE⊥y轴于点E,∵抛物线与y轴交点为D,∴D(0,8),∵B(4,0),C(1,9),∴CE=1,OE=9,OD=8,OB=4,∴S△BCD= S梯形OBCE-S△ECD-S△OBD=12(1+4)×9-12×1×1-12×4×8=6.20.(1)解:∵二次函数与x轴有两个交点,∴Δ0>,即224(24)0k -->, 解得52k <.(2)解:2224y x x k =++-,整理得:2(1)25y x k =++-,∵10>,∴1x =-时,y 有最小值25k -,∵此二次函数有最小值3-,∴253k -=-,解得1k =.21.(1)解:∵单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元,设销售单价为x 元,∴3060x ≤≤, 平均月销售量为y 件,则602080220010x y x -=⨯+=-+, ∴2200y x =-+()3060x ≤≤;(2)解:设销售这种童装每月获得的利润为W ,根据题意得()30450W x y =--()30(2200)450x x =--+-222606450x x =-+-()32652000x =--+3060x ≤≤,20-<,∴W 随x 增大而增大,∴当x =60时,W 最大,最大为()22606520001950-⨯-+=(元),答:当销售单价为60元时,销售这种童装每月获得的利润最大,最大为1950元.22.(1)∵抛物线y =x 2+bx +c 经过(﹣1,m 2+2m +1)、(0,m 2+2m +2)两点,∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =222m m ++,(2)由(1)得y =22222x x m m ++++,令y =0,得222x x m +++2m +2=0,∵抛物线与x 轴有公共点,∴∆=4﹣4(2m +2m +2)≥0,∴()21m +≤0,∵()21m +≥0,∴m +1=0,∴m =﹣1;(3)由(1)得,y =22222x x m m ++++,∵(a ,1y )、(a +2,2y )是抛物线的图象上的两点,∴221222y a a m m =++++,()()22222222y a a m m ++++++=,∴()()222221222222[]22y y a a m m a a m m +++++++++=-+⎡⎤-⎣⎦ =4(a +2)当a +2≥0,即a ≥﹣2时,210y y -≥,当a +2<0,即a <﹣2时,210y y -<.23.(1)解:6OA =,()6,0A ∴,将()6,0A 代入2y ax bx =+得:3660a b +=,解得6b a =-,26y ax x a ∴-=,方程29ax bx +=恰好有两个相等的实数根, ∴这个方程根的判别式2360b a =+∆=,即236360a a +=, 解得1a =-或0a =(不符题意,舍去), 则抛物线的解析式为26y x x =-+.(2)解:抛物线()22639y x x x =-+=--+向右平移m 个单位后的抛物线的解析式为()239y x m =---+,()()13,9,3,9B B m ∴+,1BB m ∴=, 1PBB 恰好为等腰直角三角形,∴只能是1190,BPB BP B P ∠=︒=, 如图,过点P 作1PH BB ⊥于点H ,1122m PH BH BB ∴===, 3,922m m P ⎛⎫∴+- ⎪⎝⎭, 将点3,922m m P ⎛⎫+- ⎪⎝⎭代入抛物线()239y x =--+得:2339922m m ⎛⎫-+-+=- ⎪⎝⎭, 解得2m =或0m =(不符题意,舍去), 即m 的值为2.24.(1)令y =0,则有:2132022x x -++=,解方程得:11x =-,24x =,根据图形可知:点A 的坐标为(-1,0),B 点坐标为(4,0),令x =0,则有2132222y x x =-++=,则C 点坐标为:(0,2),即点A 的坐标为(-1,0),B 点坐标为(4,0),C 点坐标为:(0,2);(2)∵C 点坐标为:(0,2),点C 与点D 关于x 轴对称,∴D 点坐标为:(0,-2),设直线BD 的解析式为y kx b =+,∵B 点坐标为(4,0),D 点坐标为:(0,-2),∴402k b b +=⎧⎨=-⎩,解得122k b ⎧=⎪⎨⎪=-⎩, ∴直线BD 的解析式为122y x =-,即直线BD 的解析式为122y x =-;(3)∵C 点坐标为:(0,2),D 点坐标为:(0,-2),∴CD =2-(-2)=4,∵根据题意有:MQ ⊥x 轴,CD ⊥x 轴,∴CD QM ∥,即当CD =QM 时,即可得以点C 、D 、M 、Q 四点围成的四边形是平行四边形, ∵P 点坐标为:(m ,0),则根据题意可知,点Q 、点P 、点M 三点的横坐标均为m ,又∵点M 在直线122y x =-上,点Q 在抛物线213222y x x =-++上, ∴设M 点坐标为:1,22m m ⎛⎫- ⎪⎝⎭,Q 点坐标为:213,222⎛⎫-++ ⎪⎝⎭m m m , ∴2213112242222MQ m m m m m ⎛⎫=-++--=-++ ⎪⎝⎭, 当CD =QM 时,即2142m m -++=4时,以点C 、D 、M 、Q 四点围成的四边形是平行四边形,分情况讨论:当24124m m -++=时,即有2102m m -+=,解得:m =2或者m =0,当m =0时,CD 与QM 重合不符合题意,舍去,即此时m =2,满足要求;当24124m m -++=-时,即有21802m m -++=, 解得:117m =+或者117m =-,综上所述:满足条件的m 值为:2,117+,117-.25.(1)∵抛物线2y ax bx =+过点A (1,4)、B (3-,0),∴4930a b a b +=⎧⎨-=⎩,解得13a b =⎧⎨=⎩,∴抛物线的表达式为23y x x =+;(2)当y =4时,234x x +=,解得14x =-,21x =,∴C 点的坐标为(4,4)C -, ∵A (1,4),∴1(4)5AC =--=,∵D (4,0),∴()()2241045AD =-+-=,过点C 作CE ∥AD ,交x 轴于E ,交二次函数于点Q ,如图1,∵CE ∥AD ,AC ∥ED ,∴四边形CEDA 是平行四边形,∵5AC AD ==,∴四边形CEDA 是菱形,∴CD 平分∠ACQ ,∴5ED AD ==,∴(1,0)E -,设直线CE 的解析式为y mx n =+,∴044m n m n -+=⎧⎨-+=⎩,解得4343m n ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线CE 的解析式为4433y x =--,联立直线CE 与抛物线表达式成方程组,得:244333y x y x x⎧=--⎪⎨⎪=+⎩,解得1144x y =-⎧⎨=⎩,221389x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴18(,)39Q --; (3)设直线CD 的表达式为y kx c =+,将(4,4)C -,(4,0)D 代入得:4440k c k c -+=⎧⎨+=⎩,解得:122k c ⎧=-⎪⎨⎪=⎩,∴直线CD 的表达式为122y x =-+,设2(,3)N t t t +,则1(,2)2G t t -+,∴222177812(3)2()22416NG t t t t t t =-+-+=--+=-++,∵10<-,∴当74t =-时,NG 取得最大值,最大值为8116,以NG 为直径画⊙O ',取GH 的中点F ,连接O F ',则O F CD '⊥,如图2所示,∵直线CD 的表达式为122y x =-+,NG ∥y 轴,O F CD '⊥,∴tan ´12GF GO F O F '∠==,∴22512G G F O =+',∴2552G GH GF '===,∴弦GH 的最大值为58181516=。
初三数学二次函数单元测试题及答案(2)

初三数学⼆次函数单元测试题及答案(2)⼆次函数单元测评1. 如图所⽰,已知⼆次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB 的长是()A. 4+mB. mC. 2m-8D. 8-2m2. 若⼀次函数y=ax+b的图象经过第⼆、三、四象限,则⼆次函数y=ax2+bx的图象只可能是()3. 已知抛物线和直线在同⼀直⾓坐标系中的图象如图所⽰,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1系是()A. y1B. y2C. y3D. y24.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A. B.C. D.⼆、填空题(每题4分,共32分)5. ⼆次函数y=x2-2x+1的对称轴⽅程是______________.6. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.7. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.8. 已知⼆次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直⾓三⾓形,请写出⼀个符合要求的⼆次函数解析式________________.9. 在距离地⾯2m⾼的某处把⼀物体以初速度v0(m/s)竖直向上抛物出,在不计空⽓阻⼒的情况下,其上升⾼度s(m)与抛出时间t(s)满⾜:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最⾼点距地⾯_________m.10. 试写出⼀个开⼝⽅向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.11. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.12. 若⼆次函数的图象的对称轴⽅程是,并且图象过A(0,-4)和B(4,0)(1)求此⼆次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此⼆次函数的解析式;13.在直⾓坐标平⾯内,点O为坐标原点,⼆次函数y=x2+(k-5)x-(k+4) 的图象交x 轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8.(1)求⼆次函数解析式;(2)将上述⼆次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的⾯积.⼀、选择题1、⼆次函数y =(x -1)2 +2的最⼩值是()A.-2B.2C.-1D.12、已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是() A.(-2,1)B.(2,1)C.(2,-1)D.(1,2)3、函数2+y ax b y ax bx c =+=+与在同⼀直⾓坐标系内的图象⼤致是()4、在⼀定条件下,若物体运动的路程s (⽶)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为()A.2 8⽶B.48⽶C.68⽶D.88⽶ 56、⼆次函数y =ax 2+bx+c 的图象如图3所⽰,若M =4a+2b+c ,N =a -b+c ,P =4a+2b ,则() A.M >0,N >0,P >0 B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <0图3Oyx图78、⽤列表法画⼆次函数y =x 2+bx+c 的图象时先列⼀个表,当表中对⾃变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有⼀个值不正确,这个不正确的值是( )A. 506B.380C.274D.189、⼆次函数y =x的图象向上平移2个单位,得到新的图象的⼆次函数表达式是() A. y =x 2-2 B. y =(x -2)2 C. y =x 2+2 D. y =(x+2)2 10、如图6,⼩敏在今年的校运动会跳远⽐赛中跳出了满意⼀跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重⼼⾼度的变化,则他起跳后到重⼼最⾼时所⽤的时间是()A.0.71sB.0.70sC.0.63sD.0.36s11.函数y=ax 2+bx+c 的图象如图8所⽰,那么关于⼀元⼆次⽅程ax 2+bx+c-3=0的根的情况是()A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根图8图612.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 3)都在函数y=x 2的图象上,则()A .y 1B .y 1C .y 3D .y 213、当k 取任意实数时,抛物线的顶点所在曲线是()A .y=x 2B .y=-x 2C .y=x 2(x>0)D .y= -x 2(x>0) 14、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x+5,则有() A ,3=b ,7=c B ,9-=b ,15-=c C ,3=b ,3=c D ,9-=b ,21=c15、已知函数y=ax 2+bx+c 的图像如图所⽰,则下列关系成⽴且能最精确表述的是( ) A .012b a <-< B .022b a <-< C.122b a <-< D .12ba-=16.已知⼆次函数y=ax 2+bx+c (a ≠0)的图象如图所⽰,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是() A .③④ B .②③ C .①④ D .①②③⼆、填空题17,形如y =___ (其中a ___,b 、c 是_______ )的函数,叫做⼆次函数. 18,抛物线y =(x –1)2–7的对称轴是直线 . 19,如果将⼆次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .20,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的⼀个解析式______ .21,若⼆次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =____(只要求写出⼀个).22,现有A 、B 两枚均匀的⼩⽴⽅体(⽴⽅体的每个⾯上分别标有数字1,2,3, 4,5,6).⽤⼩莉掷A ⽴⽅体朝上的数字为x 、⼩明掷B ⽴⽅体朝上的数字为y22)(54k k x y +-=02xy15题16题图来确定点P (x ,y ),那么它们各掷⼀次所确定的点P 落在已知抛物线y =-x 2+4x 上的概率为___.23,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x =,满⾜y <0的x 的取值范围是 .24,若⼆次函数c bx ax y ++=2的图象经过点(-2,10),且⼀元⼆次⽅程02=++c bx ax 的根为21-和2,则该⼆次函数的解析关系式为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数单元测评7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A. B.C. D.二、填空题(每题4分,共32分)11. 二次函数y=x2-2x+1的对称轴方程是______________.13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式为______________. 18. 已知抛物线y=x 2+x+b 2经过点,则y 1的值是_________.19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0)(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标;(2)求此二次函数的解析式;在直角坐标平面内,点 O 为坐标原点,二次函数 y=x 2+(k-5)x-(k+4) 的图象交 x轴于点A(x 1,0)、B(x 2,0),且(x 1+1)(x 2+1)=-8.(1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积.一、选择题1、二次函数y =(x -1)2+2的最小值是( )A.-2B.2C.-1D.12、已知抛物线的解析式为y =(x -2)2+1,则抛物线的顶点坐标是( ) A.(-2,1) B.(2,1) C.(2,-1) D.(1,2)3、函数2+y ax b y ax bx c =+=+与在同一直角坐标系内的图象大致是 ()4、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s =5t 2+2t ,则当t =4时,该物体所经过的路程为( )A.28米B.48米C.68米D.88米 56、二次函数y =ax 2+bx+c 的图象如图3所示,若M =4a+2b+c ,N =a -b+c ,P =4a+2b ,则( ) A.M >0,N >0,P >0 B. M >0,N <0,P >0C. M <0,N >0,P >0D. M <0,N >0,P <07、如果反比例函数y =k x的图象如图4所示,那么二次函数y =kx 2-k 2x -1的图象大致为( )8、用列表法画二次函数y =x 2+bx+c 的图象时先列一个表,当表中对自变量x 的值以相等间隔的值增加时,函数y 所对应的函数值依次为:20,56,110,182,274,380,506,650.其中有一个值不正确,这个不正确的值是( )A. 506B.380C.274D.189、二次函数y =x的图象向上平移2个单位,得到新的图象的二次函数表达式是( ) A. y =x 2-2 B. y =(x -2)2 C. y =x 2+2 D. y =(x+2)210、如图6,小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数h =3.5t -4.9t 2(t 的单位:s ,h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( )A.0.71sB.0.70sC.0.63sD.0.36s图1x-11yO图2图8图6Oyx图7y xO图4y xO A .y xO B .y xO C .y xO D .11.函数y=ax 2+bx+c 的图象如图8所示,那么关于一元二次方程ax 2+bx+c-3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根 12.已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 3)都在函数y=x 2的图象上,则( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 313、当k 取任意实数时,抛物线 的顶点所在曲线是 ( )A .y=x 2B .y=-x 2C .y=x 2(x>0)D .y= -x 2(x>0) 14、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x 2-3x+5,则有( ) A ,3=b ,7=c B ,9-=b ,15-=c C ,3=b ,3=c D ,9-=b ,21=c15、已知函数y=ax 2+bx+c 的图像如图所示,则下列关系成立且能最精确表述的是( ) A .012b a <-< B .022b a <-< C .122b a <-< D .12ba-=16.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论: ①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③二、填空题17,形如y =___ (其中a ___,b 、c 是_______ )的函数,叫做二次函数. 18,抛物线y =(x –1)2–7的对称轴是直线 .19,如果将二次函数y =2x 2的图象沿y 轴向上平移1个单位,那么所得图象的函数解析式是 .20,平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式______ .21,若二次函数y =x 2-4x +c 的图象与x 轴没有交点,其中c 为整数,则c =22)(54k k x y +-=02xy15题 16题图____(只要求写出一个).22,现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3, 4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点P (x ,y ), 那么它们各掷一次所确定的点P 落在已知抛物线y =-x 2+4x 上的概率为___.23,已知抛物线y =x 2-6x +5的部分图象如图8,则抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 .24,若二次函数c bx ax y ++=2的图象经过点(-2,10),且一元二次方程02=++c bx ax 的根为21-和2,则该二次函数的解析关系式为 。
25、老师给出一个函数,甲、乙、丙、丁四位同学各指出这个函数的一个性质,甲:函数的图象不经过第三象限;乙:函数的图象不过第四象限;丙:当x<2时,y 随x 的增大而减小;丁:当x<2时,y>0。
已知这四位同学的描述都正确,请构造出满足上述所有性质的一个二次函数 。
26、已知抛物线C 1、C 2关于x 轴对称,抛物线C 1、C 3关于y 轴对称,如果C 2的解析式为1)2(432+--=x y ,则C3的解析式为______________________27.如图,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,AB ⊥BC ,且点C 在x 轴上,若抛物线y=ax 2+bx+c 以C 为顶点,且经过点B ,则这条抛物线的关系式为 。
28、已知二次函数y kx k x =+--2211()与x 轴交点的横坐标为x x x x 1212、()<,则对于下列结论:①当x =-2时,y =1;②当时,y >0;③方程kx k x 22110+--=()有两个不相等的实数根x x 12、;④x x 1211<->-,;⑤x x k k21214-=+,其中所有正确的结论是_________(只需填写序号) 三、解答题29,某农户计划利用现有的一面墙再修四面墙,建造如图9所示的长方体游泳池,培育不同品种的鱼苗,他已备足可以修高为1.5m ,长18m 的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm ,即AD =EF =BC =xm.(不考虑墙的厚度)第27题图(1)若想水池的总容积为36m3,x 应等于多少?(2)求水池的容积V 与x 的函数关系式,并直接写出x 的取值范围;(3)若想使水池的总容积V 最大,x 应为多少?最大容积是多少?32、 二次函数()y ax bx c a =++≠20的图像经过点A (3,0),B (2,-3),并且以x =1为对称轴。
(1)求此函数的解析式; (2)作出二次函数的大致图像;(3)在对称轴x =1上是否存在一点P ,使△PAB 中PA =PB ,若存在,求出P点的坐标,若不存在,说明理由。
35 已知抛物线c bx ax y ++=232, (1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;图9乙月月每千克成本(元)甲每千克售价(元)00123456712345123456712345。