第9章_凸轮机构及其设计

合集下载

09凸轮机构及其设计

09凸轮机构及其设计

2、按推杆的形式 → 尖顶推杆、滚子推杆、平底推杆 尖顶推杆、滚子推杆、平底推杆 推杆 推杆 平底推杆:凸轮与平底接触面间易形成油膜,润滑较好, 平底推杆:凸轮与平底接触面间易形成油膜,润滑较好,常 推杆 用于高速传动中。 用于高速传动中。
尖顶推杆 滚子推杆 平底推杆 推杆、 推杆、 2、按推杆的形式 → 尖顶推杆、滚子推杆、平底推杆 平底推杆:凸轮与平底接触面间易形成油膜,润滑较好,常 平底推杆:凸轮与平底接触面间易形成油膜,润滑较好, 推杆 用于高速传动中。 用于高速传动中。
3
+ C 4δ
4
+ C 5δ
2
5 3
v = d s / d t = C 1ω + 2 C 2 ωδ + 3 C 3 ωδ
2
+ 4 C 4 ωδ
2
+ 5 C 5 ωδ
3
4
+ 6 C 3 ω 2 δ + 12 C 4 ω 2 δ
+ 20 C 5 ω 2 δ
可自行选择6个边界条件: 可自行选择6个边界条件: δ = 0 时, s = 0 , v = 0 , a = 0 ; δ = δ 0时,s = h , v = 0 , a = 0
沟槽凸轮
等宽凸轮
等径凸轮
共轭凸轮
§ 9-2
一、推杆的运动规律
r0 →基圆半径
起始、 A点→起始、ϖ 转动 接触点: 接触点:
推杆常用的运动规律
基圆 :以凸轮最小矢径 r0 为半径所作的圆
推程角→ 行程→ A → B ⇒ 推程 ,推程角→ δ 0 、行程→ h 远休程,远休止角→ B → C ⇒ 远休程,远休止角→ δ 01 回程, 回程角→ C → D ⇒ 回程, 回程角→ δ ´0 近休程,近休止角→ D → A ⇒ 近休程,近休止角→ δ02

第九章凸轮机构及其设计

第九章凸轮机构及其设计

第九章凸轮机构及其设计第一节凸轮机构的应用、特点及分类1.凸轮机构的应用在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。

例1内燃机的配气机构当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。

至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。

例2自动机床的进刀机构当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。

至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。

2.凸轮机构及其特点(1)凸轮机构的组成凸轮是一个具有曲线轮廓或凹槽的构件。

凸轮通常作等速转动,但也有作往复摆动或移动的。

推杆是被凸轮直接推动的构件。

因为在凸轮机构中推杆多是从动件,故又常称其为从动件。

凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。

(2)凸轮机构的特点1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。

2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

3.凸轮机构的分类凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。

(1)按凸轮的形状分1)盘形凸轮(移动凸轮)2)圆柱凸轮盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。

移动凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。

圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。

盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种空间凸轮机构。

盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。

(2)按推杆的形状分1)尖顶推杆。

这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。

第九章凸轮机构及其设计

第九章凸轮机构及其设计

第九章凸轮机构及其设计1 什么是凸轮的理论轮廓曲线、实际轮廓曲线?两者之间有什么关系?2 在凸轮机构设计中有哪几种常用的从动件运动规律?这些运动规律各有什么特点以及适用场合?在选择从动件运动规律时应考虑哪些主要因素?3 发生刚性冲击的凸轮机构,其运动线图上有什么特征?如发生柔性冲击时又有什么特征?4 用反转法设计盘形凸轮的廓线时,应注意哪些问题?移动从动件盘形凸轮机构和摆动从动件盘形凸轮机构的设计方法各有什么特点?4 何谓凸轮机构的“失真”现象?失真现象在什么情况下发生?如何避免失真现象的发生?6 一凸轮机构滚子从动件已损坏,要调换一个新的滚子从动件,但没有与原尺寸相同的滚子。

试问用该不同尺寸的滚子行吗?为什么?7 何谓凸轮机构的压力角?其在凸轮机构的设计中有何重要意义?一般是怎样处理的?8 设计直动推杆盘形凸轮机构时,在推杆运动规律不变的条件下,要减小推程压力角,可采用哪两种措施?9 图中两图均为工作廓线为圆的偏心凸轮机构,试分别指出它们的理论廓线是圆还是非圆,运动规律是否相同。

10 凸轮机构从动件按余弦加速度规律运动时,在运动开始和终止的位置,有突变,会产生冲击。

11根据从动件凸轮廓线保持接触方法的不同,凸轮机构可分为力封闭和几何形状封闭两大类型。

写出两种几何形状封闭的凸轮机构和。

12为了使凸轮廓面与从动件底面始终保持接触,可以利用,,或依靠凸轮上的来实现。

13 凸轮机构的主要优点为,主要缺点为。

14为减小凸轮机构的推程压力角,可将从动杆由对心改为偏置,正确的偏置方向是将从动杆偏在凸轮转动中心的侧。

15凸轮机构的从动件按等加速等减速运动规律运动,在运动过程中,将发生突变,从而引起冲击。

16 当凸轮机构的最大压力角超过许用压力角时,可采取以下措施来减小压力角。

17凸轮基圆半径是从到的最短距离。

18平底垂直于导路的直动杆盘形凸轮机构,其压力角等于。

19在凸轮机构推杆的四种常用运动规律中,运动规律有刚性冲击;运动规律有柔性冲击;运动规律无冲击。

凸轮机构及其设计试题

凸轮机构及其设计试题

第9章凸轮机构及其设计I.填空题1凸轮机构中的压力角是和所夹的锐角。

2凸轮机构中,使凸轮与从动件保持接触的方法有和两种。

3在回程过程中,对凸轮机构的压力角加以限制的原因是。

4在推程过程中,对凸轮机构的压力角加以限制的原因是。

5在直动滚子从动件盘形凸轮机构中,凸轮的理论廓线与实际廓线间的关系是。

6凸轮机构中,从动件根据其端部结构型式,一般有、、等三种型式。

7设计滚子从动件盘形凸轮机构时,滚子中心的轨迹称为凸轮的廓线;与滚子相包络的凸轮廓线称为廓线。

8盘形凸轮的基圆半径是上距凸轮转动中心的最小向径。

9根据图示的ϕϕ-22dd s运动线图,可判断从动件的推程运动是________,从动件的回程运动是_________。

10从动件作等速运动的凸轮机构中,其位移线图是线,速度线图是线。

11当初步设计直动尖顶从动件盘形凸轮机构中发现有自锁现象时,可采用、、等办法来解决。

12在设计滚子从动件盘形凸轮轮廓曲线中,若出现时,会发生从动件运动失真现象。

此时,可采用方法避免从动件的运动失真。

13用图解法设计滚子从动件盘形凸轮轮廓时,在由理论轮廓曲线求实际轮廓曲线的过程中,若实际轮廓曲线出现尖点或交叉现象,则与的选择有关。

14在设计滚子从动件盘形凸轮机构时,选择滚子半径的条件是。

15在偏置直动从动件盘形凸轮机构中,当凸轮逆时针方向转动时,为减小机构压力角,应使从动件导路位置偏置于凸轮回转中心的侧。

16平底从动件盘形凸轮机构中,凸轮基圆半径应由来决定。

17凸轮的基圆半径越小,则凸轮机构的压力角越,而凸轮机构的尺寸越。

18凸轮基圆半径的选择,需考虑到、,以及凸轮的实际廓线是否出现变尖和失真等因素。

19当发现直动从动件盘形凸轮机构的压力角过大时,可采取:,等措施加以改进;当采用滚子从动件时,如发现凸轮实际廓线造成从动件运动规律失真,则应采取,等措施加以避免。

20在许用压力角相同的条件下,从动件可以得到比从动件更小的凸轮基圆半径。

机械原理-第9章凸轮机构及其设计

机械原理-第9章凸轮机构及其设计
③等加速回程段:(见书上) ④等减速回程段:(见书上)
①等加速推程段:
s = 2hδ2/δ02 v = 4hω δ /δ02 a = 4h ω 2/ δ02
②等减速推程段: s = h-2h(δ0-δ)2/δ02 v = 4hω(δ0-δ)/ δ02 a = -4hω2/δ02
由图知,有柔性冲击。
凸轮机构的适用场合: 广泛用于各种机械,特别是自动机械、自动控制装置
和装配生产线。
2.凸轮机构的分类
盘形凸轮 (1)按凸轮的形状分:移动凸轮 (板凸轮 )
圆柱凸轮
尖端推杆 (2)按从动件端部型式分 滚子推杆
平底推杆
直动推杆 (3)按从动件的运动方式分 摆动推杆
凸轮机构的命名:
从动件
原动件
对心
• 沿-w方向将基圆作相应等分;
• 沿导路方向截取相应的位移, 得到一系列点;
• 光滑联接。
2)对心直动滚子推杆盘形凸轮机构
s
h
h/2
w
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
4
89
13 14
14 1
取长度比例尺l绘图
13
2
12 w
3
实际廓线
11
4
10
5
9
6
7
A5
C
6
2
B B180°B
6 5
4C
C
5
4φ3
C
φ3 2
A1Leabharlann R(3)按-w 方向划分圆R得 A0、A1、A2等点; 即得机架 反转的一系列
位置;
A4 A3
A2
(4)找从动件反转后的一系

第9章 凸轮机构及其设计(有答案)

第9章 凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。

如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。

(1) 由等速运动规律和等加速等减速运动规律组合而成。

(2) 有冲击。

(3) ABCD 处有柔性冲击。

2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。

(1) 运动规律发生了变化。

(见下图 )(2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度'='v O P 2111ω,由于O P O P v v 111122≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60︒时从动件的位置及从动件的位移s。

总分5分。

(1)3 分;(2)2 分(1) 找出转过60︒的位置。

(2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h,说明推程运动角和回程运动角的大小。

总分5分。

(1)2 分;(2)1 分;(3)1 分;(4)1 分(1) 从动件升到最高点位置如图示。

(2) 行程h如图示。

(3)Φ=δ0-θ(4)Φ'=δ'+θ120时是渐开线,5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=︒从动件行程h=30 mm,要求:(1)画出推程时从动件的位移线图s-ϕ;(2)分析推程时有无冲击,发生在何处?是哪种冲击?-总分10分。

(1)6 分;(2)4 分(1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0⋅ω,其位移为直线,如图示。

(2) 推程时,在A 、B 处发生刚性冲击。

6. 在图示凸轮机构中,已知:AO BO ==20mm ,∠AOB =60ο;CO =DO =40mm ,∠=COD 60ο;且A B (、CD (为圆弧;滚子半径r r =10mm ,从动件的推程和回程运动规律均为等速运动规律。

第9章凸轮机构及其设计

第9章凸轮机构及其设计
• 2 凸轮机构的分类 • (1)按凸轮形状分 • 1) 盘形凸轮( Plate camor disc cam) : 这种凸轮
是一个具有变化向径的盘形构件。当它绕固定轴转 动时,可推动推杆在垂直于凸轮轴的平面内运动。 如 图1所示。当转轴在无穷远处时,可转化为移动 凸轮(Translating cam) 。
不过这一突变值为有限值。因而引起的冲击是有限的。
称为柔性冲击。回程时的等加速等减速运动规律,由
于在起示点处推杆处于最高位置(s=h)。随着凸轮的转 动,推杆逐渐下降。故推杆的位移s因等于行程h减去 式(9-5)中的s,从而可得回程时的运动方程如下:
• 等加速时:s=h-2hδ2/δ´02

v=-4hωδ/δ´0² (δ=0~δ0´/2)
O
v
a
h /20
O
O
0/2
0
0/2 22 h /202
0
0/2 -22 h /202
0
• (2)正弦加速度运动规律 • 当推杆的加速度按正弦规律变化时,其推程时的运动方程为:
s=h[(δ/δ0)-sin(2πδ/δ0)/2π] v=hω[1-cos(2πδ/δ0)]/δ0 a=2πhω²sin(2πδ/δ0)/δ²0
过,因我们规定推杆的
位移由其最地位置开始,
故在回程时推杆的位移
是逐渐减小的。于是推 杆的回程方程为:
• s=h(1-δ/δ0’) • v=-hω/δ0’ • a=0
(9-3,b)
• 式中δ0 ’为回程的凸轮运 动角;而凸轮转角δ应从 此段运动的起始位计量 起。由上述可知,当推 杆采用一次多项式运动 规律时,推杆为等速运 动,称为等速运动规律。 下图为其运动线图。
★组合运动规律示例

第九章凸轮机构

第九章凸轮机构

第九章 凸轮机构一.学习指导与提示凸轮机构由凸轮、从动件和机架组成,是点或线接触的高副机构。

它主要用于对从动件运动规律有特定要求的场合。

读者应了解它和面接触的低副连杆机构的区别,比较他们的优缺点和适用场合。

按凸轮的形状和运动形式来分,有盘形回转凸轮、平板移动凸轮和圆柱回转凸轮;按从动件形状不同有尖顶从动件、滚子从动件和平底从动件;按从动件运动形式不同有直动从动件和摆动从动件;而直动从动件又可以根据其导路轴线是否通过凸轮轴线,分为对心直动从动件和偏直直动从动件。

建议读者熟练掌握偏置直动滚子从动件盘形凸轮机构的原理,用反转作图法进行运动分析和廓线设计,启迪理解其它类型的凸轮机构。

1.从动件的常用运动规律及其选择(1)对直动从动件而言,从动件的运动规律是指当凸轮以等角速度1ω转动时,从动件的位移2s 、速度2v 和加速度2a 随时间t 或凸轮转角1δ变化的规律,可用各自的表达式或线图表示。

用反转作图法进行从动件运动分析或凸轮廓线设计时,常以12δ-s 线图表示从动件的运动规律,而12δ-s 线图的一阶、二阶微分线图便是12δ-v 线图和12δ-a 线图。

(2)从动件常见的运动规律有等速运动、等加速等减速运动和简谐运动。

读者应掌握其位移、速度、加速度线图的变化、绘制方法、特点及其适用的场合。

(3)根据运动线图中速度线图和加速度线图的特征可判断机构是否存在刚性冲击和柔性冲击:凡在速度线图的尖点处,加速度线图阶跃变化(加速度值突然改变),必产生柔性冲击;凡加速度线图阶跃变化,加速度值趋向无穷大,必产生刚性冲击。

(4)选择从动件运动规律时需考虑的问题很多,核心是应满足凸轮在机械中执行工作的要求,要分清工作行程和回程,要考虑从动件只需实现一定的位移还是有特殊的运动规律;还应该考虑使凸轮有良好的动力特性以及使得所设计的凸轮便于制造等。

2.凸轮机构的运动分析及廓线设计(1)凸轮机构的运动分析是指按给定的凸轮廓线和机构配置求从动件的运动规律(即求12δ-s 线图),而廓线设计是指按给定的从动件运动规律(即给定12δ-s 线图)和机构配置求凸轮廓线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是在圆柱面上开有曲线凹 槽或在圆柱端面上具有曲线轮 廓的构件。 它是一种空间凸轮机构。 行程可较大,但结构较复杂。e
ω
V
V
ω
ω
2、按推杆末端(the follower end)形状分:(如图9-5) 1)尖顶(knife-edge)推杆(图a、b): (a) (a) 结构简单,因是点接触,又是滑动 (d 摩擦,故易磨损。只宜用在受力不 (a)(a) ( (a) 大的低速凸轮机构中,如仪表机构。 图a) 图b)
▲ 注意:
1)所有运动过程的推杆位 移s是从行程的最近位臵 开始度量。回程时,推 杆的位移s是逐渐减小的。 2)凸轮的转角δ是从各个 运动过程的开始来度量。 如:在推程时,δ是从推程开始时进行度量;
在回程时,δ是从回程开始时进行度量。
3)有的凸轮δ01=0° (无远休),有的δ02=0°(无近休), 有的同时无远休和无近休。 e
2)运动线图——用于图解法
s = s(δ)—位移线图;如图9-8b所示。 v = v(δ)—速度线图; a = a(δ)—加速度线图。
图9-8
推杆的运动规律可分为基本运动规律和组合运动规律。 e
一)基本(Basic)运动规律
1、等速运动规律(一次多项式运动规律) v=常数。 s 1)方程: s=hδ/δ0 推程 v=hω/δ0 a=0 (9-3a) (δ:0~δ0)
对心直动尖顶 推杆盘形凸轮 机构
偏臵直动尖顶 推杆盘形凸轮 机构
对心直动滚子 直动平底推杆 推杆盘形凸轮 盘形凸轮机构 机构
摆动尖顶推杆 盘形凸轮机构
摆动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
上面介绍的是一些传统的凸轮机构,目前还研究出了 一些新型的凸轮机触,增加了接触面积, 提高了凸轮机构的承载能力。
冲击称为刚性冲击。
4)适用场合:低速运动。
e
2、等加等减速运动规律(二次多项式运动规律)
a=常数。为了保证凸轮运动的平稳性,通常应使推 杆先作等加速、后作等减速运动。常假设在加速段与减速 段凸轮的运动角及推杆的行程各占一半,即各为δ0/2、h/2 (也可以不作等分)。 1)方程: s=2hδ2/δ02 等加速段 v=4hωδ/δ02 a=4hω2/δ02 推程 s=h-2h(δ0-δ)2/δ02 等减速段 v=4hω(δ -δ)/δ 2 (9-5a) (δ:0~δ0/2)
推杆的运动规律可用两种方法来表示: 1)方程——用于解析法
s f ( ) ds ds d v f ( ) dt d dt a f ( ) 2 f ( ) d f ( ) 2 dt
v δ a
+∞
h δ
0
δ
(9-3b) s=h(1-δ/δ0′) 回程 v=-hω/δ0′ (δ:0~δ0′) a=0 注意:回程时,推杆的位移仍由其
最低位臵算起,所以s是逐渐
δ
-∞
减小的。 2)运动线图(推程):如图9-9所示。
e 图9-9
3)运动特点:产生刚性冲击
∵ 推杆在运动开始和终止的瞬时,因 速度有突变,则加速度a在理论上 出现瞬时的无穷大,导致推杆突 然产生非常大的惯性力,因而使 凸轮机构受到极大的冲击,这种
第九章 凸轮机构及其设计
(Cam Mechanisms and its Design) §9—1 概述(Introduction)
一、凸轮机构的组成和特点
1、组成 由凸轮、推杆、机架三 个基本构件(2个低副1个高 副)组成。
2 3
2
4
1
1
3
图9-2
图9-1
凸轮:是一个具有曲线轮廓或曲线凹槽的构件。 通常作为原动件,有时作为机架;一般作等速转 动,但也有作往复摆动和往复直线运动。 推杆(Follower)(从动件):被凸轮直接推动的构件。
(b) (b) 2)滚子(roller)推杆(图c、d): 线接触、滚动摩擦,所以耐磨,能承 (b)(b) (b) 受较大的载荷。应用最广。 (b)
(a)
(e
(
3)平底(flat-faced)推杆(图e、f): 图c) (c) (c) 传动角始终为90°,受力平稳,且 (c)(c) 平底与凸轮轮廓间有楔形空隙,易 (c) (c) 形成油膜,可减少摩擦,降低磨损。 常用于高速凸轮机构中。e 图e)
力也有突变,不过这一突变 是有限值,因而引起凸轮机 构的冲击是有限的,这种冲 击称为柔性冲击。 4)适用场合:中速运动。
e

δ
a
A
4hω 2/δ
B
2
0
C δ
柔性冲击
3、余弦加速度(Cosine Acceleration)(简谐Simple Harmonic)运动规律 推杆在运动过程中加速度呈余弦曲线规律变化。
图d)
(
图f)
3、按推杆运动形式(the motion type) 分: 1)直动(translating)推杆:推杆作往复直线运动 对心(in-line)直动: 推杆导路通过凸轮回转中心。
e
偏臵(offset)直动: 推杆导路不通过凸轮回转 中心,而有一偏距e。
e
2)摆动(oscillating)推杆:推杆作往复摆动
2)运动线图(推程):如图9-12所示。 s图作法: s
构或调节机构。
如图9-1所示的内燃机配气机 构,原动凸轮1连续等速转动,其 曲线轮廓使推杆3(气阀)作往复 移动,从而使气阀按预期的时间开
2 1
启或关闭(关闭是借助弹簧的作
用),来控制燃气在适当的时间进 入气缸或排出废气。
3
图9-1
如图9-2所示的自动机床的进 刀机构,当具有凹槽的圆柱凸轮1 转动时,与凹槽接触的滚子3迫使
凸轮机构的类型很多,常根据凸轮和推杆的形状及其 运动形式的不同来分类。 e
二、分类(Classifications) 1、按凸轮的形状(Shape)分: 1)盘形(disk)凸轮:
是一个绕固定轴线转动或为机架并具有 V 变化向径的盘形构件。 2)移动(translating)凸轮(图9-4b): 是相对机架作往复移动或为机架 3)圆柱 (cylindrical )凸轮(图9-4c): 且具有曲线轮廓的构件。
1)方程:
s= h[1-cos(π δ /δ 0)]/2
推程 v=π hω sin(π δ /δ 0) /(2δ 0) a=π 2 hω 2cos(π δ /δ 0)/(2δ 02)
(9-9a) (δ :0~δ 0)
s= h[1+cos(π δ / δ 0 )]/2 (9-9b) δ v= -π hω sin(π δ / δ )/(2 ) 0 0 回程 (δ :0~ δ 0) 2 2 2 a=-π hω cos(π δ / δ 0 )/(2 δ 0 )
2)嵌状圆柱凸轮:有一个圆柱母体,在母体上再嵌入几 个圆柱。在加工时,全是圆弧,加工方便。
3)其他新型凸轮还有:圆锥凸轮、弧面凸轮、球面凸轮 (属于空间凸轮)。
圆锥凸轮
弧面凸轮
球面凸轮
三、应用(Application) 凸轮机构是机械中的一种常用机构,在自动化和半自 动化机械中应用十分广泛。主要用于:受力不大的控制机
靠模车削机构
绕线机构
凸轮机构在其他工业生产中也得到了广泛的应用,如:
盘形凸轮机构在印刷机中的应用
等径凸轮机构在机械加工中的应用
利用分度凸轮机构实现转位
圆柱凸轮机构在机械加工中的应用
§9—2 推杆的运动规律(Law of Motions of Follower)
设计凸轮机构时,首先应根据工作要求 选定凸轮机构的形式 确定推杆的运动规律,然后按推杆所要求的运动规律来设计 设计凸轮廓线。 一、凸轮机构的运动循环(Motion Circulation )及有关术语
以图9-8所示的对心直动尖 顶推杆盘形凸轮机构为例来说明:
▲ 起始位臵:推杆刚开始要上
升的瞬时位臵,尖顶位于离凸轮 轴心O最近的位臵A点。 规定: 此时凸轮转角δ=0 °,推杆位移 s=0。 e
图9-8
基圆:以凸轮理论廓线的最小向径r0为半径所作的圆。 基圆半径:凸轮理论廓线的最小向径r0 1)推程:推杆由距凸轮转动中心最近位臵运动到最远位臵的过程。 推程运动角δ0 :与推程对应的凸轮转角 2)远休:推杆在最远位臵静止不动的这个过程 凸轮运动规律.swf 远休止角δ01 :推杆远休时所 s 对应的凸轮转角。 B’ 3)回程:推杆从最远位臵回到 h 最近位臵的这一过程。 A t o δ0 δ01 δ’0 δ02 δ 回程运动角δ0′:推杆回程 D δ02 r 0 时凸轮相应的转角。 δ0 4)近休:推杆在最近位臵静 ω δ’0 δ01 止不动的这一阶段。 B 近休止角δ02 : 推杆近休时 所对应的凸轮转角。 C 行程h:推杆在推程或回程中所移动的距离。 最大摆幅ψmax:推杆在推程或回程中所摆动的角度。 e
(9-6b) 2 δ ( δ: δ /2~ δ) 0 0 0
2)运动线图(推程): 1
4 s图:δ=1、2、3时, s1 : s2 : s3=12 : 22 : 32=1 : 4 : 9
s
9 4
h/2
1
h/2 1 2 3 4 5 δ0 v 2hω /δ
0
3)运动特点:产生柔性冲击 ∵在A、B、C三点推杆的加速 度有突变,因此推杆的惯性
凸轮机构是高副机构。当凸轮运动 时,通过其曲线轮廓与推杆的高副接触, 使推杆得到预期的运动。
1
2、特点(Characteristics)
2
优点(Advantage) : 3 只要适当地设计凸轮的轮廓曲线,就可以使推杆准确
地实现各种预期的运动规律,且结构简单、紧凑。 缺点(Disadvantage) : 高副机构为点、线接触,故易磨损,所以多用在传递 动力不大的场合;制造加工较困难。
相关文档
最新文档