2014年黑龙江省牡丹江市中考数学试卷

合集下载

5.6.6 2020中考数学复习:《确定组成几何体的小正方体的个数》近8年全国中考题型大全(含答案)

5.6.6  2020中考数学复习:《确定组成几何体的小正方体的个数》近8年全国中考题型大全(含答案)

确定组成几何体的小正方体的个数一、选择题1. (2013 广西玉林市) 某几何体的三视图如右图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块2. (2013 黑龙江省龙东地区) 由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()(A)4 (B)5 (C)6 (D)73. (2014 黑龙江省齐齐哈尔市) 如图,由几个相同的小正方体搭成的几何体的主视图和俯视图,组成这个几何体的小正方体的个数是 ( )A.5个或6个 B.6个或7个第8题图C.7个或8个 D.8个或9个4. (2014 黑龙江省牡丹江市) 由一些大小相同的小正方形搭成的几何体的主视图和左视图所图所示,则搭成该几何体的小正方体的个数最少是A.3B.4C.5D.6主视图左视图5. (2014 四川省达州市) 小颖同学到学校领来n盒粉笔,整齐地摞在讲桌上,其三视图如图所示,则n的值是 ( )12A .6 B. 7 C. 8 D. 96. (2015 甘肃省庆阳市) 某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体( )A .3B .4C .5D . 67. (2015 黑龙江省齐齐哈尔市) 如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是( )A . 5或6或7B . 6或7C . 6或7或8D . 7或8或98. (2015 辽宁省营口市) 如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是 A .5或6 B .5或7 C .4或5或6 D .5或6或739. (2015 四川省绵阳市) 由若干个边长为1cm 的正方体堆积成一个几何体,它的三视图如图,则这个几何体的表面积是( )A . 15cm 2B . 18cm 2C . 21cm 2D . 24cm 210. (2017 贵州省毕节地区) 一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少有( )A .3个B .4个C .5个D .6个11. (2017 黑龙江省黑河市) 几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是( ) 俯视图 左视图A .5个B .7个C .8个D .9个第2题图 俯视图 左视图12. (2017 黑龙江省佳木斯市) 如图,是由若干个相同的小立方体搭成的几何体体俯视图和左视图.则小立方体的个数可能是()A.5或6 B.5或7 C.4或5或6 D.5或6或713. (2017 湖北省荆门市) 3分)已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B .7个C.8个D.9个14. (2017 内蒙古包头市) 将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()A. B. C. D.15. (2017 山东省聊城市) 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()45A . B.C .D .16. (2017 山东省威海市) 一个几何体由n 个大小相同的小正方体搭成,其左视图、俯视图如图所示,则n 的最小值是( )A .5B .7C .9D .1017. (2017 四川省内江市) 由一些大小相同的小正方体搭成的几何体的俯视图如下图所示,其中正方形总的数字表示该位置上的小正方体的个数,那么该几何体的主视图是 ( )18. (2019 黑龙江省鸡西市) (3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .319. (2019 黑龙江省齐齐哈尔市) (3分)如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5 B.6 C.7 D.820. (2019 四川省宜宾市) (3分)已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10 B.9 C.8 D.7二、填空题21. (2013 黑龙江省齐齐哈尔市) 如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由个小正方体塔成的.22. (2013 黑龙江省绥化市) 由一些完全相同的小正方体搭成的几何体的主视图67和左视图如图所示,则组成这个几何体的小正方体的个数最多..是 个.23. (2014 贵州省黔东南州) 在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为 .24. (2015 黑龙江省牡丹江市) 由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是 个.25. (2018 山东省青岛市) (3.00分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.参考答案一、选择题1. D2. C3. B4. B5. B.6.分析:先由俯视图可得最底层有3个小正方体,然后根据主视图得到第二列由两层,于是可判断上面第二列至少有1个小正方体,从而得到几何体所需要最少小正方体的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得上面一层至少有1个小正方体,所以至少需要4个这样的小正方体.故选B.点评:本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.87. C8. D9.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:综合三视图,我们可以得出,这个几何模型的底层有2+1=3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是3+1=4个.所以表面积为3×6=18cm2.故选:B.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.考点U3:由三视图判断几何体.分析从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.9所以图中的小正方体最少4块,最多5块.故选:B.11.考点U3:由三视图判断几何体.分析根据俯视图知几何体的底层有4个小正方形组成,而左视图是由3个小正方形组成,故这个几何体的后排最有1个小正方体,前排最多有2×3=6个小正方体,即可解答.解答解:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选:B.12.考点U3:由三视图判断几何体.分析易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由左视图可得第二层最多和最少小立方体的个数,相加即可.解答解:由俯视图易得最底层有4个小立方体,由左视图易得第二层最多有3个小立方体和最少有1个小立方体,那么小立方体的个数可能是5个或6个或7个.故选D.13.答案B.10考点:由三视图判断几何体.14.答案C.考点:几何体的展开图.15.考点U3:由三视图判断几何体;U2:简单组合体的三视图.分析找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答解:从正面看易得第一列有3个正方形,第二列有2个正方形,第三列有1个正方形..故选:C.16.分析从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层和第三层的个数,从而算出总的个数.解答解:由题中所给出的左视图知物体共三层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少1+2+4=7.故选B.点评本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17. A18.分析主视图、俯视图是分别从物体正面、上面看,所得到的图形.解答解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.点评考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.19.分析主视图、俯视图是分别从物体正面、上面看,所得到的图形.解答解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选:B.点评考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.20.分析从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答解:从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.点评本题考查三视图的知识及从不同方向观察物体的能力,解题中用到了观察法.确定该几何体有几列以及每列方块的个数是解题关键.二、填空题21. 6或7或822. 523. 524.分析:根据几何体主视图,在俯视图上表上数字,即可得出搭成该几何体的小正方体最多的个数.解答:解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.点评:此题考查了由三视图判断几何体,在俯视图上表示出正确的数字是解本题的关键.25.分析先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.解答解:设俯视图有9个位置分别为:由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;②一定有2个2,其余有5个1;③最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.。

黑龙江省牡丹江市中考数学试卷

黑龙江省牡丹江市中考数学试卷

黑龙江省牡丹江市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·鄂州) ﹣的相反数是()A . ﹣B . ﹣C .D .2. (2分)若一个几何体的三视图都是正方形,则这个几何体是()A . 长方体B . 正方体C . 圆柱D . 圆锥3. (2分)下列运算正确的是()A .B .C .D .4. (2分)如图,将一副三角板按如图方式叠放,则∠等于()A . 30°B . 45°C . 60°D . 75°5. (2分)(2014·柳州) 如图,正六边形的每一个内角都相等,则其中一个内角α的度数是()A . 240°B . 120°C . 60°D . 30°6. (2分) (2017九上·鸡西月考) 点M(5,-4)关于原点对称的点的坐标是()A . (-5,-4)B . (5,4)C . (-5,4)D . (4,5)7. (2分)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A .B .C .D .8. (2分) (2017八下·宁波月考) 一组数据:1,3,2,5,x的平均数是3,则这组数据的标准差为()A . 2B . 4C .D . -29. (2分) (2018九上·深圳期中) 新华商场销售某种冰箱,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,设每台冰箱的定价为x元,则x满足的关系式为()A . (x−2500)(8+4× )=5000B . (2900−x−2500)(8+4× )=5000C . (x−2500)(8+4× )=5000D . (2900−x)(8+4× )=500010. (2分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=6cm,动点P从点C沿CA,以1cm/s的速度向点A 运动,同时动点O从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动.则运动过程中所构成的△CPO的面积y(cm2)与运动时间x(s)之间的函数图象大致是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2019九上·阳东期末) 如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为________.12. (1分)不等式组的解集是________.13. (1分) (2019九上·惠州期末) 抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是________.14. (1分) (2018九上·天河期末) 如图,已知圆锥的母线长为2,高所在直线与母线的夹角为30º,则圆锥的侧面积为________15. (1分)如图,Rt△A BC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为________ .三、解答题 (共9题;共92分)16. (20分)计算和解分式方程:(1);(2)(﹣1)2016﹣|﹣2|+(﹣π)0× +()﹣1;(3) = ;(4) + = .17. (5分) (2019七下·茂名期中) 先化简,再求值:[(x﹣y)(x+y)﹣(x﹣y)2]÷2y,其中x=2020,y=1.18. (15分)(2019·广西模拟) 如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于0点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2 ,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.19. (5分)(2018·赣州模拟) 某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.求第一批每只文具盒的进价是多少元?20. (15分)(2017·崇左) “校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.21. (5分)(2018·安徽) 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)22. (10分)(2017·罗山模拟) 顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h 后乙开始出发,结果比甲早1(h)到达B地,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,a表示A、B两地之间的距离.请结合图中的信息解决如下问题:(1)分别计算甲、乙两车的速度及a的值;(2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离S(km)与时间t(h)的函数图象.23. (7分) (2016九下·长兴开学考) 综合题(1)如图①,在△ABC中,点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,若AD=2,AE=1,DF=4,则EG=________,=________.(2)如图②,在△ABC中点D、F在AB上,点E,G在AC上,且DE∥FG∥BC,以AD,DF,FB为边构造△ADM (即AM=BF,MD=DF),以AE,EG,GC为边构造△AEN(即AN=GC,NE=EG),求证:∠M=∠N.24. (10分) (2016九上·杭锦后旗期中) 如图,已知二次函数y=﹣ +bx+c的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共9题;共92分)16-1、16-2、16-3、16-4、17-1、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、。

牡丹江市中考数学试卷及答案

牡丹江市中考数学试卷及答案

二○○八年牡丹江市初中毕业学业考试数 学 试 卷考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数31xy x -=-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是 . 7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 .8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.下列各图中, 不是正方体的展开图(填序号).① ② ③ ④第9题图D OC B A 第3题图 O B A 第4题图 5cm2 3 4 1 6 5第6题图 一共花了170元 第5题图10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是.11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D ,使360B ∠=;依此类推,这样做的第n个菱形n n n AB C D 的边n AD 的长是 . 二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- ②523-= ③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( ) A .开口向下,顶点坐标(53), B .开口向上,顶点坐标(53), C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数1D B 3第11题图AC 2B 2C 3D 3 B 1D 2C 1 A . B . C .D .第16题图C .5m <-时,方程的解为负数D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )第18题图 19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +,D .34562a a a +,20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE =四边形;④2BDF FEC BAC ∠+∠=∠,正确的个数是( )A .1B .2C .3D .4三、解答题(满分60分) 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值. 22.(本小题满分6分)如图,方格纸中每个小正方形的边长都是单位1.(1)平移已知直角三角形,使直角顶点与点O 重合,画出平移后的三角形. (2)将平移后的三角形绕点O 逆时针旋转90,画出旋转后的图形.第20题图t B. C . D .(3)在方格纸中任作一条直线作为对称轴,画出(1)和(2)所画图形的轴对称图形,得到一个美丽的图案.23.(本小题满分6分) 有一底角为60的直角梯形,上底长为10cm ,与底垂直的腰长为10cm ,以上底或与底垂直的腰为一边作三角形,使三角形的另一边长为15cm ,第三个顶点落在下底上.请计算所作的三角形的面积. 24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.图二 9590 8580 7570 分数/分 图一竞选人 A B C武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?26.(本小题满分8分)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的数量关系?请直接写出你的猜想.BBMBCNCNCNM 图1图2图3A A A D D D x (分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费) (3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由. 28.(本小题满分10分) 如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y轴的正半轴上,且满足10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.x二○○八年黑龙江省牡丹江市初中毕业学业考试数学试卷参考答案及评分标准一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.③10.6或10或1211.1n -⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题,满分60分.21.解:224226926a a a a a --÷++++ 2(2)(2)2(3)2(3)2a a a a a +-+=++- ····································································· (1分) 242633a a a a ++=-+++ ·················································································· (2分) 23a =+ ·································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ············································ (5分) 22.平移正确,给2分;旋转正确,给2分;轴对称正确,给2分,计6分.23.解:当15BE =cm 时,ABE △的面积是250cm ; 当15CF =cm 时,BCF △的面积是275cm ;当15BE =cm 时,BCE △的面积是2cm .(每种情况,图给1分,计算结果正确1分,共6分) 24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A :30035105⨯=% B :30040120⨯=% C :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分)C :90485375384433⨯+⨯+⨯=++(分)B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分) 25.解:(1)24分钟 ················································································· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩·············································································· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩答:水流速度是112千米/分. ······································································ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为B95 90 85 80 7570分数/分竞选人A B C56y x b =+ ····························································································· (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =- ············································ (6分)由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ·············································· (7分)∴冲锋舟在距离A 地203千米处与救生艇第二次相遇. ···································· (8分) 26.解:(1)BM DN MN +=成立. ························································· (2分)如图,把AND △绕点A 顺时针90,得到ABE △,则可证得E B M ,,三点共线(图形画正确) ···· (3分) 证明过程中,证得:EAM NAM ∠=∠ ···························· (4分)证得:AEM ANM △≌△ ························ (5分)ME MN ∴= ME BE BM DN BM =+=+DN BM MN ∴+= ·················································································· (6分) (2)DN BM MN -= ············································································· (8分) 27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ···································································· (2分) 解得240250x ≤≤ ················································································· (3分) 因为x 是整数,所以有11种生产方案. ························································ (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ····························· (6分)220-<,y 随x 的增大而减少.∴当250x =时,y 有最小值. ··································································· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.x (分)B ME A C N D此时min 222506200056500y =-⨯+=(元) ··············································· (8分) (3)有剩余木料,最多还可以解决8名同学的桌椅问题. ······························ (10分) 28.解:(1)2310OB OA --=230OB ∴-=,10OA -= ······································································· (1分) OB ∴=,1OA =点A ,点B 分别在x 轴,y 轴的正半轴上(10)(0A B ∴,, ·················································································· (2分)(2)求得90ABC ∠= ············································································· (3分)(0(t t S t t ⎧<⎪=⎨->⎪⎩ ≤(每个解析式各1分,两个取值范围共1分) ················································ (6分)(3)1(30)P -,;21P ⎛-⎝;31P ⎛⎝;4(3P (每个1分,计4分) ··········································································································· (10分)注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.。

黑龙江省牡丹江市中考数学试卷

黑龙江省牡丹江市中考数学试卷

黑龙江省牡丹江市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列各式运算结果为正数的是()A . -24×5B . (1-4)4×5C . (1-24)×5D . 1-(3×5)62. (2分) (2016七下·岑溪期中) 下列运算中,正确的是()A . 3a﹣2a=aB . (a2)3=a5C . a2•a3=a6D . a10÷a5=a23. (2分) (2017七上·和平期中) 下列图形的名称按从左到右的顺序依次是()A . 圆柱、圆锥、正方体、长方体B . 圆柱、球、正方体、长方体C . 棱柱、球、正方体、长方体D . 棱柱、圆锥、四棱柱、长方体4. (2分) (2017七下·柳州期末) 估算的值介于()A . 5到6之间B . 6到7之间C . 7到8之间D . 8到9之间5. (2分)若有意义,则a是一个()。A . 正实数B . 负实数C . 非正实数D . 非负实数6. (2分)如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A . (3,-1)B . (-1,-1)C . (1,1)D . (-2,-1)二、填空题 (共10题;共10分)7. (1分)实数a、b在数轴上位置如图所示,则|a|、|b|的大小关系是________.8. (1分)(2017·长春模拟) 一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为________.9. (1分) (2019八下·长沙期中) 函数中自变量 x 的取值范围是________;10. (1分) (2017八下·鞍山期末) 化简:( +2)(﹣2)=________.11. (1分)(2011·海南) 方程的解是________.12. (1分)(2017·樊城模拟) 若x=3是方程x2﹣9x+6m=0的一个根,则另一个根是________.13. (1分)(2018·重庆) 某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是________个.14. (1分)(2019·南平模拟) 一个多边形的每个外角都等于72°,则这个多边形的边数为________.15. (1分) AB是圆O的直径,点C,D都在圆O上,连接CA,CB,DC,DB.已知∠D=30°,BC=3,则AC的长是________ .16. (1分) (2018八上·太原期中) 在函数y=2x中,y的值随x值的增大而________.(填“增大”或“减小”)三、解答题 (共11题;共111分)17. (10分)计算:(1)÷ + ;(2)(2m2n﹣2)2•3m﹣3n3.18. (20分)解下列不等式(组),并把解集在数轴上表示出来:(1) 3x﹣1<2x+1;(2) +1>x﹣3;(3);(4).19. (5分) (2019八下·康巴什新期中) 已知:如图,,是平行四边形的对角线所在直线上的两点,且.求证:四边形是平行四边形.20. (10分)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).服装统一进退场有序动作规范三项得分平均分一班80848884二班97788085三班90788484根据表中信息回答下列问题:(1)学校将“服装统一”、“队形整齐”、“动作规范”三项按2:3:5的比例计算各班成绩,求八年级三个班的成绩;(2)由表中三项得分的平均数可知二班排名第一,在(1)的条件下,二班成绩的排名发生了变化,请你说明二班成绩排名发生变化的原因.21. (10分) (2019九上·武汉月考) 一个不透明的布袋里装有4个大小、质地均相同的兵乓球,球上分别标有数字1、2、3、4(1)随机从布袋中摸出一个兵乓球,记下数字后放回布袋里,再随机从布袋中摸出一个兵乓球,请用列表或画树状图的方式列出有可能的结果,并求出“两个兵乓球上的数字之和不小于4”的概率.(2)随机从布袋中一次摸出两个兵乓球,直接写出“两个兵乓球上的数字至少有一个是奇数”的概率.22. (5分) (2016八上·临泽开学考) 如图,已知∠α和∠β,线段c,用直尺和圆规作出△ABC,使∠A=∠α,∠B=∠β,AB=c(要求画出图形,并保留作图痕迹,不必写出作法)23. (15分) (2017八下·桂林期末) 甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,已知甲车匀速行驶;乙车出发2h后休息,与甲车相遇后继续行驶,结果同时分别到达B,A两地.设甲、乙两车与B地的距离分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲, y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)当0<x<2时,求乙车的速度;(2)求乙车与甲车相遇后y乙与x的关系式;(3)当两车相距20km时,直接写出x的值.24. (10分) (2020九上·景县期末) 如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O 相切于点C,CE与AB交于点F.(1)求证:PC=PF;(2)连接OB,BC,若OB∥PC,BC=3 ,tanP= ,求FB的长。

2014年黑龙江省牡丹江市中考数学试卷附详细答案(原版+解析版)

2014年黑龙江省牡丹江市中考数学试卷附详细答案(原版+解析版)

2014年黑龙江省牡丹江市中考数学试卷一、选择题(每小题3分,满分27分)1.(3分)(2014•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是()3.(3分)(2014•牡丹江)下列计算正确的是()(4.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()5.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()6.(3分)(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()﹣D7.(3分)(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()8.(3分)(2014•牡丹江)如图,点P 是菱形ABCD 边上一动点,若∠A =60°,AB =4,点P 从点A 出发,以每秒1个单位长的速度沿A →B →C →D 的路线运动,当点P 运动到点D 时停止运动,那么△APD 的面积S 与点P 运动的时间t 之间的函数关系的图象是( )B9.(3分)(2014•牡丹江)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若∠COB =60°,FO =FC ,则下列结论:①FB ⊥OC ,OM =CM ; ②△EOB ≌△CMB ; ③四边形EBFD 是菱形; ④MB :OE =3:2.其中正确结论的个数是()二、填空题(每小题3分,满分33分)10.(3分)(2014•牡丹江)2014年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为 .11.(3分)(2014•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.12.(3分)(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为元.13.(3分)(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是.14.(3分)(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.15.(3分)(2014•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是.16.(3分)(2014•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为.17.(3分)(2014•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= .18.(3分)(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=.19.(3分)(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y 轴正半轴于点C,则直线BC的解析式为.20.(3分)(2014•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE= .三、解答题(满分60分)21.(5分)(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°.22.(6分)(2014•牡丹江)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).23.(6分)(2014•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线.24.(7分)(2014•牡丹江)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.25.(8分)(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.26.(8分)(2014•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(提示:过点F作FM∥BC交射线AB于点M.)(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S△ABC=4,则BE= ,CD=.27.(10分)(2014•牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.28.(10分)(2014•牡丹江)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =43. (1)求点A ,C 的坐标; (2)若反比例函数y =xk的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.2014年黑龙江省牡丹江市中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分27分)1.(3分)(2014•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是()3.(3分)(2014•牡丹江)下列计算正确的是()(4.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()5.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是()6.(3分)(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()﹣D∴=7.(3分)(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()8.(3分)(2014•牡丹江)如图,点P 是菱形ABCD 边上一动点,若∠A =60°,AB =4,点P 从点A 出发,以每秒1个单位长的速度沿A →B →C →D 的路线运动,当点P 运动到点D 时停止运动,那么△APD 的面积S 与点P 运动的时间t 之间的函数关系的图象是( )B=4×=24×t t =4(4×(9.(3分)(2014•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB:OE=3:2.其中正确结论的个数是()/,/,即可求得/,/,二、填空题(每小题3分,满分33分)10.(3分)(2014•牡丹江)2014年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为8.79×1010.11.(3分)(2014•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE(答案不唯一),使△ABC≌△DEF.12.(3分)(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为160元.13.(3分)(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是3.14.(3分)(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3.=2,即(15.(3分)(2014•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是1.16.(3分)(2014•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为n2+2.17.(3分)(2014•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE=28.=2218.(3分)(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=0.19.(3分)(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y 轴正半轴于点C,则直线BC的解析式为y=﹣x+.,,)代入得,解得﹣20.(3分)(2014•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE=﹣2或+2..,=+1=故答案为:三、解答题(满分60分)21.(5分)(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°.=÷=•==22.(6分)(2014•牡丹江)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).,解得:==223.(6分)(2014•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线.== ==24.(7分)(2014•牡丹江)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是144度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.×1050×=63025.(8分)(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.解得:∴解得:.解得:解得:;;><.综上所述:两车出发小时、小时或小时时,两车相距的路程为26.(8分)(2014•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(提示:过点F作FM∥BC交射线AB于点M.)(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;(3)在(2)的条件下,若∠ADC=30°,S△ABC=4,则BE=8,CD=4或8.,27.(10分)(2014•牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.28.(10分)(2014•牡丹江)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x +72=0的两根(OA >OC ),BE =5,tan ∠ABO =43. (1)求点A ,C 的坐标;(2)若反比例函数y =xk 的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.∴∴=20∴∴);=33。

黑龙江省龙东地区2014年中考数学试卷(含答案)

黑龙江省龙东地区2014年中考数学试卷(含答案)

2014年黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.(3分)(2014年黑龙江龙东地区)数据显示,今年高校毕业生规模达到727万人,比去年有所增加.数据727万人用科学记数法表示为7.27×106人.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将727万用科学记数法表示为:7.27×106.故答案为:7.27×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)(2014年黑龙江龙东地区)函数y=中,自变量x的取值范围是x≤3.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2014年黑龙江龙东地区)如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足AB=DC(或∠ABC=∠DCB、∠A=∠D)等条件时,有MB=MC (只填一个即可).考点:梯形;全等三角形的判定.专题:开放型.分析:根据题意得出△ABM≌△△DCM,进而得出MB=MC.解答:解:当AB=DC时,∵梯形ABCD中,AD∥BC,则∠A=∠D,∵点M是AD的中点,∴AM=MD,在△ABM和△△DCM中,,∴△ABM≌△△DCM(SAS),∴MB=MC,同理可得出:∠ABC=∠DCB、∠A=∠D时都可以得出MB=MC,故答案为:AB=DC(或∠ABC=∠DCB、∠A=∠D)等.点评:此题主要考查了梯形的性质以及全等三角形的判定与性质,得出△ABM≌△△DCM是解题关键.4.(3分)(2014年黑龙江龙东地区)三张扑克牌中只有一张黑桃,三位同学依次抽取,第一位同学抽到黑桃的概率为.考点:概率公式.分析:由三张扑克牌中只有一张黑桃,直接利用概率公式求解即可求得答案.解答:解:∵三张扑克牌中只有一张黑桃,∴第一位同学抽到黑桃的概率为:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(2014年黑龙江龙东地区)不等式组2≤3x﹣7<8的解集为3≤x<5.考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出即可.解答:解:原不等式组化为,∵解不等式①得:x≥3,解不等式②得:x<5,∴不等式组的解集是3≤x<5,故答案为:3≤x<5.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.6.(3分)(2014年黑龙江龙东地区)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是30°或150°.考点:圆周角定理;含30度角的直角三角形;垂径定理.专题:分类讨论.分析:连接OA、OB,根据等边三角形的性质,求出∠O的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠D的度数.解答:解:连接OA、OB,∵AB=OB=OA,∴∠AOB=60°,∴∠C=30°,∴∠D=180°﹣30°=150°.故答案为30°或150°.点评:本题考查了圆周角定理和圆内接四边形的性质,作出辅助线是解题的关键.7.(3分)(2014年黑龙江龙东地区)小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买1或2或3(每答对1个给1分,多答或含有错误答案不得分)支.考点:二元一次方程的应用.分析:根据小明所带的总钱数以及中性笔与橡皮的价格,分别得出符合题意的答案.解答:解:∵小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,∴当买中性笔1只,则可以买橡皮5只,当买中性笔2只,则可以买橡皮3只,当买中性笔3只,则可以买橡皮1只,故答案为:1或2或3.点评:此题主要考查了二次元一次方程的应用,正确分类讨论是解题关键.8.(3分)(2014年黑龙江龙东地区)△ABC中,AB=4,BC=3,∠BAC=30°,则△ABC的面积为2+或2﹣(答对1个给2分,多答或含有错误答案不得分).考点:解直角三角形.专题:分类讨论.分析:分两种情况:过点B或C作AC或AB上的高,由勾股定理可得出三角形的底和高,再求面积即可.解答:解:当∠B为钝角时,如图1,过点B作BD⊥AC,∵∠BAC=30°,∴BD=AB,∵AB=4,∴BD=2,∴AD=2,∵BC=3,∴CD=,∴S△ABC=AC?BD=×(2+)×2=2+;当∠C为钝角时,如图2,过点B作BD⊥AC,交AC延长线于点D,∵∠BAC=30°,∴BD=AB,∵AB=4,∴BD=2,∵BC=3,∴CD=,∴AD=2,∴AC=2﹣,∴S△ABC=AC?BD=×(2﹣)×2=2﹣.点评:本题考查了解直角三角形,还涉及到的知识点有勾股定理、直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.9.(3分)(2014年黑龙江龙东地区)如图,菱形ABCD中,对角线AC=6,BD=8,M、N 分别是BC、CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是5.考点:轴对称-最短路线问题;菱形的性质.分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出CP、PB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案.解答:解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP 的值最小,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AC=3,BP=BD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故答案为:5.点评:本题考查了轴对称﹣最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置.10.(3分)(2014年黑龙江龙东地区)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣761)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣761)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二、选择题(每题3分,满分30分)11.(3分)(2014年黑龙江龙东地区)下列各运算中,计算正确的是()A.4a2﹣2a2=2 B.(a2)3=a5C.a3?a6=a9D.(3a)2=6a2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项,可判断A,根据幂的乘方,可判断B,根据同底数幂的乘法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、底数不变指数相乘,故B错误;C、底数不变指数相加,故C正确;D、3的平方是9,故D错误;故选:C.点评:本题考查了幂的乘方与积的乘方,积得乘方等于每个因式分别乘方,再把所得的幂相乘.12.(3分)(2014年黑龙江龙东地区)下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(3分)(2014年黑龙江龙东地区)由若干个相同的小正方体搭成的一个几何体的俯视图如图,小正方形中的数字表示该位置的小正方体的个数,则这个几何体的主视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图右四列,从左到右分别是1,2,2,1个正方形.解答:解:由俯视图中的数字可得:主视图右4列,从左到右分别是1,2,2,1个正方形.故选A.点评:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.14.(3分)(2014年黑龙江龙东地区)为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.中位数是40 B.众数是4 C.平均数是20.5 D.极差是3考点:极差;加权平均数;中位数;众数.分析:中位数、众数、加权平均数和极差的定义和计算公式分别对每一项进行分析,即可得出答案.解答:解:A、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;D、这组数据的极差是:60﹣25=35,故本选项错误;故选A.点评:此题考查了中位数、众数、加权平均数和极差,掌握中位数、众数、加权平均数和极差的定义和计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数;求极差的方法是用一组数据中的最大值减去最小值.15.(3分)(2014年黑龙江龙东地区)如图,在平面直角坐标系中,边长为1的正方形ABCD 中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.分析:将动点P的运动过程划分为PD、DC、CB、BA、AP共5个阶段,分别进行分析,最后得出结论.解答:解:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s ≤4时,动点P 在线段AP 上运动,此时y=2保持不变.结合函数图象,只有D 选项符合要求.故选D .点评: 本题考查了动点运动过程中的函数图象.把运动过程分解,进行分类讨论是解题的关键.16.(3分)(2014年黑龙江龙东地区)已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A . m >2B . m ≥2C . m ≥2且m ≠3D . m >2且m ≠3考点: 分式方程的解.专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解表示出x ,根据方程的解为非负数求出m 的范围即可.解答: 解:分式方程去分母得:m ﹣3=x ﹣1,解得:x=m ﹣2,由方程的解为非负数,得到m ﹣2≥0,且m ﹣2≠1,解得:m=2且m ≠3.故选C点评: 此题考查了分式方程的解,时刻注意分母不为0这个条件.17.(3分)(2014年黑龙江龙东地区)一圆锥体形状的水晶饰品,母线长是10cm ,底面圆的直径是5cm ,点A 为圆锥底面圆周上一点,从A 点开始绕圆锥侧面缠一圈彩带回到A 点,则彩带最少用多少厘米(接口处重合部分忽略不计)( )A . 10πcmB . 10cmC . 5πcmD . 5cm 考点: 平面展开-最短路径问题;圆锥的计算.分析: 利用圆锥侧面展开图的弧长等于底面圆的周长,进而得出扇形圆心角的度数,再利用勾股定理求出AA ′的长.解答: 解:由题意可得出:OA=OA ′=10cm ,==5π,解得:n=90°,∴∠AOA ′=90°,∴AA ′==10(cm ),故选:B .点评: 此题主要考查了平面展开图的最短路径问题,得出∠AOA ′的度数是解题关键.18.(3分)(2014年黑龙江龙东地区)如图,正方形ABCD 的边长为2,H 在CD 的延长线上,四边形CEFH 也为正方形,则△DBF 的面积为 ( )A . 4B .C .D . 2考点: 整式的混合运算.专题: 计算题.分析: 设正方形CEFH 边长为a ,根据图形表示出阴影部分面积,去括号合并即可得到结果.解答:解:设正方形CEFH的边长为a,根据题意得:S△BDF=4+a2﹣×4﹣a(a﹣2)﹣a(a+2)=2+a2﹣a2+a﹣a2﹣a=2,故选D点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.19.(3分)(2014年黑龙江龙东地区)今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有()A.2种B.3种C.4种D. 5种考点:二元一次方程的应用.分析:依题意建立方程组,解方程组从而用k(整数)表示负场数z=,因为z为整数,即2k+3为35的正约分,据此求得z、k的值.解答:解:设小虎足球队胜了x场,平了y场,负了z场,依题意得,把③代入①②得,解得z=(k为整数).又∵z为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1.综上所述,小虎足球队所负场数的情况有3种情况.故选:B.点评:本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.20.(3分)(2014年黑龙江龙东地区)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()A. 2 B. 3 C. 4 D. 5考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.分析:根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;分别求出S△EGC与S△AFE的面积比较即可;求得∠GAF=45°,∠AGB+∠AED=180°﹣∠GAF=135°.解答:解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.理由:∵S△GCE=GC?CE=×3×4=6,∵S△AFE=AF?EF=×6×2=6,∴S△EGC=S△AFE;⑤错误.∵∠BAG=∠FAG,∠DAE=∠FAE,又∵∠BAD=90°,∴∠GAF=45°,∴∠AGB+∠AED=180°﹣∠GAF=135°.故选:C.点评:本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.三、解答题(满分60分)21.(5分)(2014年黑龙江龙东地区)先化简,再求值:﹣÷,其中x=4cos60°+1.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=﹣?==,当x=4cos60°+1=3时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(6分)(2014年黑龙江龙东地区)如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.考点:作图-旋转变换;作图-平移变换.分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.解答:解:(1)如图所示:△A1B1C即为所求;(2)如图所示:△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).点评:此题主要考查了旋转的性质以及图形的平移等知识,根据题意得出对应点坐标是解题关键.23.(6分)(2014年黑龙江龙东地区)如图,二次函数的图象与x轴交于A(﹣3,0)和B (1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.考点:抛物线与x轴的交点;待定系数法求二次函数解析式;二次函数与不等式(组).分析:(1)根据抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)根据图象直接写出答案.解答:解:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.点评:本题考查了抛物线与x轴的交点,待定系数法求二次函数解析式以及二次函数与不等式组.解题时,要注意数形结合数学思想的应用.另外,利用待定系数法求二次函数解析式时,也可以采用顶点式方程.24.(7分)(2014年黑龙江龙东地区)为了更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了本市全部5000名司机中的部分司机后,整理相关数据并制作了右侧两个不完整的统计图:克服酒驾﹣﹣你认为哪一种方式更好?A.司机酒驾,乘客有责,让乘客帮助监督B.在车上张贴“请勿喝酒”的提醒标志C.签订“永不酒驾”保证书D.希望交警加大检查力度E.查出酒驾,追究就餐饭店的连带责任根据以上信息解答下列问题:(1)请补全条形统计图,并直接写出扇形统计图中m=12;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机抽取100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被抽中的概率是多少?考点:条形统计图;用样本估计总体;扇形统计图;概率公式.分析:(1)根据选择方式B的有81人,占总数的27%,即可求得总人数,利用总人数减去其它各组的人数即可求得选择方式D的人数,作出直方图,然后根据百分比的意义求得m的值;(2)利用总人数5000乘以对应的百分比即可求得;(3)利用概率公式即可求解.解答:解:(1)调查的总人数是:81÷27%=300(人),则选择D方式的人数300﹣75﹣81﹣90﹣36=18(人),m=×100=12.补全条形统计图如下:(2)该市支持选项B的司机大约有:27%×5000=1350(人);(3)小李抽中的概率P==.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)(2014年黑龙江龙东地区)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为900千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.考点:一次函数的应用.分析:(1)由函数图象可以直接得出甲、乙两地之间的距离为900千米;(2)先由条件可以得出慢车走完全程的时间,就可以求出慢车的速度,进而求出快车的速度就可以求出快车的速度而得出C的坐标,由待定系数法求出结论;(3)根据慢车的速度和时间求出第二辆慢车与慢车相遇时慢车行驶的路程,就可以求出第二辆快车行驶的时间,就可以得出第二辆快车晚出发的时间,进而就可以得出结论.解答:解:(1)由函数图象得:甲、乙两地之间的距离为900千米,故答案为:900;(2)由题意,得慢车速度为900÷12=75千米/时,快车速度+慢车速度=900÷4=225千米/时,快车速度=225﹣75=150千米/时快车走完全程时间为900÷150=6小时快车到达时慢车与快车相距6×75=450千米∴C(6,450).设y CD=kx+b(k≠0,k、b为常数)把(6,450)(12,900)代入y CD=kx+b 中,有,解得:.∴y=75x(6≤x≤12);(3)由题意,得4.5﹣(900﹣4.5×75)÷150=0.75,4.5+6﹣(900﹣4.5×75)÷150=6.75.故答案为:0.75,6.75.点评:本题考查了一次函数图象的运用,行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,相遇问题的数量关系的运用,解答时认真分析一次函数的图象的意义是关键.26.(8分)(2014年黑龙江龙东地区)已知△ABC中,M为BC的中点,直线m绕点A旋转,过B、M、C分别作BD⊥m于D,ME⊥m于E,CF⊥m于F.(1)当直线m经过B点时,如图1,易证EM=CF.(不需证明)(2)当直线m不经过B点,旋转到如图2、图3的位置时,线段BD、ME、CF之间有怎样的数量关系?请直接写出你的猜想,并选择一种情况加以证明.考点:旋转的性质;全等三角形的判定与性质;梯形中位线定理.分析:(1)利用垂直于同一直线的两条直线平行得出ME∥CF,进而利用中位线的性质得出即可;(2)根据题意得出图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD),进而利用△DBM≌△KCM(ASA),即可得出DB=CK DM=MK即可得出答案.解答:解:(1)如图1,∵ME⊥m于E,CF⊥m于F,∴ME∥CF,∵M为BC的中点,∴E为BF中点,∴ME是△BFC的中位线,∴EM=CF.(2)图2的结论为:ME=(BD+CF),图3的结论为:ME=(CF﹣BD).图2的结论证明如下:连接DM并延长交FC的延长线于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠DBM=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA),∴DB=CK DM=MK由题意知:EM=FK,∴ME=(CF+CK)=(CF+DB)图3的结论证明如下:连接DM并延长交FC于K又∵BD⊥m,CF⊥m∴BD∥CF∴∠MBD=∠KCM在△DBM和△KCM中,∴△DBM≌△KCM(ASA)∴DB=CK,DM=MK,由题意知:EM=FK,∴ME=(CF﹣CK)=(CF﹣DB).点评:此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△DBM≌△KCM(ASA)是解题关键.27.(10分)(2014年黑龙江龙东地区)我市为改善农村生活条件,满足居民清洁能源的需求,计划为万宝村400户居民修建A、B两种型号的沼气池共24个.政府出资36万元,其余资金从各户筹集.两种沼气池的型号、修建费用、可供使用户数、占地面积如下表:沼气池修建费用(万元/个)可供使用户数(户/个)占地面积(平方米/个)A型 3 20 10B型 2 15 8政府土地部门只批给该村沼气池用地212平方米,设修建A型沼气池x个,修建两种沼气池共需费用y万元.(1)求y与x之间函数关系式.(2)试问有哪几种满足上述要求的修建方案.(3)要想完成这项工程,每户居民平均至少应筹集多少钱?考点:一次函数的应用;一元一次不等式组的应用.分析:(1)由A型沼气池x个,则B型沼气池就是(24﹣x)个,根据总费用=两种不同型号的沼气池的费用之后就可以得出结论;(2)由A型沼气池x个,则B型沼气池就是(24﹣x)个,就有10x+8(24﹣x)≤212和20x+15(24﹣x)≥400建立不等式组求出其解即可;(3)根据(1)一次函数的性质可以得出最小的修建方案,求出总费用就可以求出需要增加的费用,从而可以求出每户应自筹资金.解答:解:(1)y=3x+2(24﹣x)=x+48;(2)根据题意得,解得:8≤x≤10,∵x取非负整数,∴x等于8或9或10,答:有三种满足上述要求的方案:修建A型沼气池8个,B型沼气池16个,修建A沼气池型9个,B型沼气池15个,修建A型沼气池10个,B型沼气池14个;(3)y=x+48,∵k=1>0,∴y随x的减小而减小,∴当x=8时,y最小=8+48=56(万元),56﹣36=20(万元),200000÷400=500(元),∴每户至少筹集500元才能完成这项工程中费用最少的方案.点评:此题考查了一次函数的解析式的性质的运用,列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时建立不等式组求出修建方案是关键.28.(10分)(2014年黑龙江龙东地区)如图,在平面直角坐标系中,正方形ABCD的顶点A在y轴正半轴上,顶点B在x轴正半轴上,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA>OB).(1)求点D的坐标.(2)求直线BC的解析式.(3)在直线BC上是否存在点P,使△PCD为等腰三角形?若存在,请直接写出点P的坐标;若不存在,说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b(k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.解答:解:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,在△DAE和△ABO中,,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,。

牡丹江市九年级数学中考模拟试卷

牡丹江市九年级数学中考模拟试卷

牡丹江市九年级数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2014九上·临沂竞赛) 下列图形中既是中心对称图形,又是轴对称图形的是()A . 等边三角形B . 等腰三角形C . 平行四边形D . 线段2. (2分)(2018·金华模拟) 如图,数轴上有A,B,C,D四个点,其中表示-2的相反数的点是()A . 点DB . 点CC . 点BD . 点A3. (2分)(2018·金华模拟) 如图所示物体的俯视图是()A .B .C .D .4. (2分)(2018·金华模拟) 当实数x的取值使得有意义时,函数y=x+1中y的取值范围是()A . y>-1B . y≥-1C . y≥-3D . y≤-35. (2分)(2018·金华模拟) 已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A . 30πcm2B . 40πcm2C . 60πcm2D . cm26. (2分)(2018·金华模拟) 如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A . 85°B . 70°C . 75°D . 60°7. (2分)(2018·金华模拟) 四边形ABCD的两条对角线相交于点O,若∠BAD=∠BCD=90°,BD=8,则AC的长可能是()A . 11B . 9C . 7D . 108. (2分)(2018·金华模拟) 如图,一只蜗牛以匀速沿台阶A1→A2→A3→A4→A5爬行,那么蜗牛爬行的高度h随时间t变化的图象大致是()A .B .C .D .9. (2分)(2018·金华模拟) 如图,直线AB与⊙O相切于点A,弦CD∥AB,若⊙O的直径为5,CD=4,则弦AC的长为()A . 4B .C . 5D . 610. (2分)(2018·金华模拟) 设直线是函数(a,b,c是常数,a>0)的图象的对称轴,下列不符合题意的是()A . 若m>3,则(m-1)a+b>0B . 若m>3,则(m-1)a+b<0C . 若m<3,则(m+1)a+b>0D . 若m<3,则(m+1)a+b<0二、填空题 (共6题;共6分)11. (1分) (2019七上·包河期中) 当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值为________.12. (1分)(2018·金华模拟) 若一组数据2,1, a,2,-2,1的唯一众数为2,则这组数据的平均数为________.13. (1分)(2018·金华模拟) 如图,在长为10m,宽为8m的矩形空地上,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.则其中一个小矩形花圃的周长是________ m.14. (1分)(2018·金华模拟) 如图,已知直线与反比例函数()图像交于点A,将直线向右平移4个单位,交反比例函数()图像于点B,交y轴于点C,连结AB、AC,则△ABC 的面积为________15. (1分)(2018·金华模拟) 在等腰Rt△ABC中,D为斜边AB的中点,点E在AC上,且∠EDC=72°,点F 在AB上,满足DE=DF,则∠CEF的度数为________16. (1分)(2018·金华模拟) 如图,在△ABC中,∠A=45°,AB= ,AC=6,点D,E为边AC上的点,AD=1,CE=2,点F为线段DE上一点(不与D,E重合),分别以点D、E为圆心,DF、EF为半径作圆.若两圆与边AB,BC共有三个交点时,线段DF长度的取值范围是________.三、解答题 (共8题;共88分)17. (5分)计算:.18. (10分)(2019·淮安模拟)(1)计算:(﹣1)2﹣4sin45°+|﹣3|+ .(2)先化简,再求代数式的值,其中x=4sin60°﹣2.19. (10分)(2018·金华模拟) 如图,在平面直角坐标系中,点A(6,8),点B(6,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年黑龙江省牡丹江市中考数学试卷
一、选择题(每小题3分,满分27分)
1.(3分)(2014•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的
2.(3分)(2014•牡丹江)在函数y=中,自变量x的取值范围是()
=(
4.(3分)(2014•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()
5.(3分)(2014•牡丹江)将抛物线y=(x﹣1)2+3向左平移1个单位,得到的
6.(3分)(2014•牡丹江)若x:y=1:3,2y=3z,则的值是()
7.(3分)(2014•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()
8.(3分)(2014•牡丹江)如图,点P 是菱形ABCD 边上一动点,若∠A=60°,AB=4,点P 从点A 出发,以每秒1个单位长的速度沿A →B →C →D 的路线运动,当点P 运动到点D 时停止运动,那么△APD 的面积S 与点P 运动的时间t 之间的函数关系的图象是( )
. . . .
9.(3分)(2014•牡丹江)如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若∠COB=60°,FO=FC ,则下列结论:
①FB ⊥OC ,OM=CM ;
②△EOB ≌△CMB ;
③四边形EBFD 是菱形;
④MB :OE=3:2

其中正确结论的个数是( )
二、填空题(每小题3分,满分33分)
10.(3分)(2014•牡丹江)2014年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为 _________ .
11.(3分)(2014•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,
BE=CF,请添加一个条件_________,使△ABC≌△DEF.
12.(3分)(2014•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为_________元.
13.(3分)(2014•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是_________.
14.(3分)(2014•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________.15.(3分)(2014•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把
它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是_________.
16.(3分)(2014•牡丹江)如图,是由一些点组成的图形,按此规律,在第n 个图形中,点的个数为_________.
17.(3分)(2014•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE=_________.
18.(3分)(2014•牡丹江)抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c=_________.
19.(3分)(2014•牡丹江)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为_________.
20.(3分)(2014•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE=_________.三、解答题(满分60分)
21.(5分)(2014•牡丹江)先化简,再求值:(x﹣)÷,其中x=cos60°.22.(6分)(2014•牡丹江)如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).
23.(6分)(2014•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线.
24.(7分)(2014•牡丹江)某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生
进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.
请你根据以上信息解答下列问题:
(1)求本次调查的学生人数;
(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是
_________度;
(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.
25.(8分)(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回
甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:
(1)直接写出慢车的行驶速度和a的值;
(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?
(3)两车出发后几小时相距的路程为200千米?请直接写出答案.
26.(8分)(2014•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.
(1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD;(提示:过点F作FM∥BC交射线AB于点M.)
(2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD 之间的数量关系,不需要证明;
(3)在(2)的条件下,若∠ADC=30°,S△ABC=4,则BE=_________,CD=_________.
27.(10分)(2014•牡丹江)某工厂有甲种原料69千克,乙种原料52千克,现计划用这两种原料生产A,B两种型号的产品共80件,已知每件A型号产品需要甲种原料0.6千克,乙种原料0.9千克;每件B型号产品需要甲种原料1.1千克,乙种原料0.4千克.请解答下列问题:
(1)该工厂有哪几种生产方案?
(2)在这批产品全部售出的条件下,若1件A型号产品获利35元,1件B型号产品获利25元,(1)中哪种方案获利最大?最大利润是多少?
(3)在(2)的条件下,工厂决定将所有利润的25%全部用于再次购进甲、乙两种原料,要求每种原料至少购进4千克,且购进每种原料的数量均为整数.若甲种原料每千克40元,乙种原料每千克60元,请直接写出购买甲、乙两种原料之和最多的方案.
28.(10分)(2014•牡丹江)如图,在平面直角坐标系中,直线AB与x轴、y 轴分别交于点A,B,直线CD与x轴、y轴分别交于点C,D,AB与CD相交于点E,线段OA,OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),
BE=5,tan∠ABO=.
(1)求点A,C的坐标;
(2)若反比例函数y=的图象经过点E,求k的值;
(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.。

相关文档
最新文档