透射电镜结构原理及明暗场成像
第十章透射电镜的结构与成像原理

第十章透射电镜的结构与成像原理第十章透射电镜的结构与成像原理透射电镜构造原理透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。
电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。
下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。
由图中可以看出,电镜中的电子光学系统主要包括电子枪、聚光镜、试样台、物镜、物镜光阑、选区光阑、中间镜、投影镜和观察记录系统等几部分组成,其成像的光路与光学显微镜基本相同。
电镜的电子光学系统中,一般将电子枪和聚光镜归为照明系统,将物镜、中间镜和投影镜归为成像系统,而观察记录系统则一般是荧光屏和照相机,现在的电镜往往还配有慢扫描CCD相机,主要用来记录高分辨像和一般的电子显微像。
下图是电子光学系统的框架图。
第一节照明系统照明系统由电子枪、聚光镜以及相应的平移、倾转和对中等调节装置组成,其作用是提供一束亮度高、照明孔径半角小、平行度好、束流稳定的照明源。
为了满足明场和暗场成像的需要,照明束可以在5度范围内倾转。
1.1电子枪电子枪可分为热阴极电子枪和场发射电子枪。
热阴极电子枪的材料主要有钨丝(W)和六硼化镧(LaB6)而场发射电子枪又可以分为热场发射、冷场发射和Schottky场发射,Schottky场发射也归到热场发射。
场发射电子枪的材料必须是高强度材料,一般采用的是单晶钨,但现在有采用六硼化镧(LaB6)的趋势。
下一代场发射电子枪的材料极有可能是碳纳米管。
A、热阴级电子枪热电子枪由灯丝(阴极)、栅极帽、阳极组成。
常用灯丝为钨丝(如H-800)、LaB6(如JEM-3010)。
下图为热阴级电子枪的示意图。
其中左图是电子枪自偏压回路的示意图,右边是电子枪中等电压面的示意图。
下图是热阴级电子枪的实图,其中左边是钨灯丝电子枪,右边是六硼化镧电子枪。
钨灯丝电子枪的特点是价格便宜,对真空系统的要求不高,一般用比较老式的电镜中;而六硼化镧灯丝的性能要优于钨灯丝,在现在的电镜中,热阴级电子枪一般采用六硼化镧灯丝。
透射电镜的成像原理

透射电镜的成像原理
透射电镜是一种能够观察物质内部微观结构的重要仪器,它的成像原理主要基于电子的波粒二象性和电磁场的作用。
透射电镜的成像原理包括电子源的发射、电子束的聚焦、样品的透射和信号的检测等过程,下面将逐一介绍。
首先,透射电镜的成像原理涉及到电子源的发射。
通常,透射电镜使用热阴极或场发射阴极作为电子源。
当电子源受到加热或电场激励时,会发射出能量较高的电子,这些电子被聚焦后形成电子束。
其次,电子束的聚焦是透射电镜成像原理的关键步骤。
在透射电镜中,电子束需要经过一系列的透镜系统进行聚焦,以便在样品上形成细小的探针。
这些透镜系统包括凸透镜、凹透镜和磁透镜等,它们能够使电子束的发散度减小,从而提高成像的分辨率。
然后,样品的透射是透射电镜成像原理的另一个重要环节。
在电子束经过聚焦后,需要穿过待观察的样品。
样品与电子束的相互作用会产生透射、散射和吸收等现象,其中透射电子被收集并用于成像。
最后,透射电镜的成像原理还包括信号的检测。
透射电镜通过检测透射电子的强度和位置来获取样品的显微图像。
检测器通常包括荧光屏、CCD相机或光电倍增管等,它们能够将透射电子转换为可见的光信号或电信号。
综上所述,透射电镜的成像原理涉及到电子源的发射、电子束的聚焦、样品的透射和信号的检测等过程。
通过这些步骤,透射电镜能够实现对物质内部微观结构的高分辨率成像,为科学研究和工程应用提供了重要的技术手段。
明场像和暗场像

明场像和暗场像The Standardization Office was revised on the afternoon of December 13, 2020透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
明暗场成像原理:晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。
如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。
有关明暗场成像的光路原理参见图2-1。
就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。
满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。
而暗场像中的衬度则与选择哪支衍射束成像有关。
如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。
a) 明场成像 b) 中心暗场成像明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下:(1)在明场像下寻找感兴趣的视场。
(2) 插入选区光栏围住所选择的视场。
(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。
为获得较强的衍射束,可适当的倾转样品调整其取向。
透射电镜原理

透射电镜原理简介透射电镜是一种重要的高分辨率显微技术,可以通过透射电子束观察材料的微观结构。
通过透射电子显微镜,我们可以获得关于材料晶格结构、原子尺寸、晶体缺陷等信息。
本文将介绍透射电镜的原理及其工作原理。
透射电镜的结构透射电镜主要由以下几个部分组成: 1. 电子源:产生高能电子束的装置。
2. 准直系统:用于准直并聚焦电子束。
3. 透射电子显微镜柱:包括透镜和走物台,用于控制电子束及样品的相对位置。
4. 探测系统:用于接收和转换透射电子信号并生成图像。
透射电镜的原理透射电镜的工作原理基于电子的物质波性质。
根据德布罗意假设,电子具有粒子和波动性质。
透射电镜利用电子的波动性质,将电子束聚焦到极小的尺寸,并通过透射样品中的原子和结构来解析样品的微观信息。
透射电镜工作原理的关键是电磁透镜。
透射电镜中使用的透镜原理是与光学透镜基本相似的,但是由于电子束的特性,透射电镜的透镜通常使用磁场而不是透明材料来聚焦。
透射电镜中的电子源产生的电子束首先经过准直系统进行准直,在准直过程中使电子束的发散度趋于零,然后通过透镜进行聚焦。
在样品上生成的电子映射图像通过探测系统进行接收和转换。
透射电子显微镜的分辨率取决于电子波长和透镜的性能。
透射电镜的分辨率分辨率是透射电镜的一个重要性能指标,它反映了透射电子显微镜所能区分的最小距离。
透射电镜的分辨率主要受到以下几个因素的影响: 1. 电子束的能量:电子束的能量越高,波长越短,分辨率越高。
2. 透镜的性能:透射电镜中使用的透镜一般为磁透镜,透镜的性能包括聚焦能力、像场大小等。
3. 样品的制备:样品的制备对于透射电镜的分辨率至关重要,高质量的制备能够获得更高的分辨率。
应用领域透射电镜在材料科学、纳米科学、生物学等领域有着广泛的应用。
它可以用于观察材料的晶格结构、原子尺寸、晶体缺陷等信息,为材料设计和制备提供重要的参考。
此外,透射电镜还可以用于研究纳米材料、生物分子结构等领域。
实验三透射电子显微镜的结构及样品观察

实验三透射电子显微镜的结构及样品观察
一、实验目的
1.结合透射电镜实物,熟悉透射电子显微镜的基本结构及工作原理。
2.通过明暗场成像的实际演示,了解明暗场成像原理。
3.通过选区电子衍射的实际操作演示,加深对电子衍射原理的了解。
4.选用合适样品,利用双倾样品台取向的调整,使学生认识电子衍射花样的作用。
二、实验原理(自由写)
1. 透射电子显微镜的基本结构
2.明暗场成像的原理
3. 选区电子衍射的原理
三、成像与电子衍射操作(自由写)
结合具体样品进行明暗场成像及电子衍射的操作与观察。
四、实验报告要求
1.简述透射电镜的基本结构。
2.试述明场与暗场像及电子衍射的操作方法与步骤,绘图说明明暗场成像与选区电子衍射的原理。
3.明白成像操作与电子衍射操作的目的与作用。
透射电镜的简单原理

透射电镜的简单原理
透射电镜是一种用于观察材料内部结构的显微镜。
其简单原理如下:
1. 电子源:透射电镜使用电子束来照射样品。
电子源通常是一个发射电子的热阴极,例如钨丝。
2. 准直系统:电子束从电子源发射出来后,通过准直系统进行调整,以保持电子束的直线性质和平行性。
准直系统通常包括透镜和磁铁等。
3. 照射样品:经过准直系统调整后的电子束照射到待观察的样品上。
样品可以是薄片或厚块,这取决于所需的观察深度。
4. 样品交叉点:经过样品的电子束会与样品内部原子或分子相互作用。
这些相互作用会导致一部分电子束被散射、吸收或透射。
5. 过滤器:透射电镜使用不同的过滤器来选择散射、吸收和透射电子束。
通过调整过滤器,可以选择只让透射电子束通过。
6. 探测器:透过样品的透射电子束最终到达探测器,例如荧光屏或CCD。
探测器记录下电子束的位置和强度。
7. 数据处理:通过采集和处理探测器的数据,可以形成一个关于样品内部结构的电子图像。
透射电镜的原理包括产生平行且高能的电子束、调整电子束与样品之间的相对位置、选择透射电子束并记录下来。
通过这些原理,透射电镜可以产生高分辨率的样品内部结构图像。
高角环形暗场扫描透射电镜工作原理

高角环形暗场扫描透射电镜工作原理高角环形暗场扫描透射电镜工作原理简介高角环形暗场扫描透射电镜(Scanning Transmission Electron Microscope,简称STEM)是一种强大的工具,用于研究材料的结构和性质。
它利用高能电子束通过样品,将样品的微观结构显微地显示出来,并提供高分辨率的图像和化学分析。
工作原理1.发射电子源:STEM使用一种极其尖锐的发射电子源,如钨尖或场致发射电源。
这个发射电子源发射出非常细的电子束,用于对样品进行扫描。
2.高能电子束:生成的电子束被加速到非常高的能量,通常在几千伏到几十万伏之间。
这样高能的电子束可以穿过样品,并与样品中的原子或分子发生相互作用。
3.透射电子模式:在STEM中,使用透射电子模式来观察样品。
透射电子模式允许电子束穿透样品,并通过其中的原子或分子与电子进行相互作用。
这种相互作用会散射部分电子,产生信号。
4.暗场探测:暗场是一种特殊的探测方式。
在STEM中,使用环形暗场探测器来收集散射电子。
环形暗场探测器位于电子束后方,收集在一个特定角度范围内散射的电子。
由于暗场探测器只收集散射电子,相对于亮场探测器,它能提供更高的对比度。
5.扫描:STEM是一种扫描电子显微镜,可以通过扫描样品表面的方式获取完整的成像。
电子束被聚焦到非常小的点上,然后在样品上进行扫描,在每个扫描位置收集散射电子。
通过多个扫描位置的叠加,可以生成一幅高分辨率的图像。
功能和应用1.高分辨率成像:STEM提供高分辨率的成像,可以显示样品中的各种微观结构,例如晶体缺陷、晶界和原子排列等。
它可以显示出高度细节的图像,对材料科学和纳米技术的研究非常有用。
2.化学分析:STEM还可以进行化学分析,通过透射电子能谱(Energy-Dispersive X-ray Spectroscopy,简称EDS)技术来确定样品中不同元素的含量和分布情况。
这项功能使STEM成为研究材料的化学成分和晶体结构的有力工具。
透射电镜结构原理及明暗场成像

透射电镜结构原理及明暗场成像透射电子显微镜(Transmission Electron Microscope, TEM)是一种利用电子束来观察物质微观结构的仪器。
与光学显微镜相比,透射电镜具有更高的分辨率和更强的放大能力。
其结构原理主要包括电子源、透射电子束、样品与透射电镜之间的相互作用、透射电镜成像系统。
1.电子源:透射电子显微镜主要使用热电子发射阴极作为电子源。
通常使用钨丝发射、氧化物表面发射或冷钨阴极等方式来产生电子束。
2.透射电子束:电子源发射出的电子经过一系列的电子光学透镜系统进行聚焦和调节,形成一束准直的电子束。
透射电子束的能量通常为几千伏到几十万伏之间,能量越高,穿透力越强。
3.样品与透射电镜之间的相互作用:透射电子束通过样品后,会与样品中的原子和分子发生相互作用。
这些相互作用包括散射、散射衍射和吸收。
这些相互作用使得电子束的方向、速度、能量等发生变化。
透射电子显微镜中的明暗场成像原理如下:1.明场成像:在明场条件下,样品中的透射电子束被物镜聚焦,形成一个清晰的像。
物体的亮度取决于电子束的强度,在没有样品的地方透射电子束强度最大,物体越厚,透射强度就越小,呈现出亮度变暗的效果。
明场成像适合于观察形貌和表面特性。
2.暗场成像:在暗场条件下,样品被遮挡住一部分区域,只有经过遮挡区域的电子束能够通过。
这样,只有经过散射才能把电子束引入投影镜,通过暗场的形成,呈现出样品的内部结构。
暗场成像适合于观察晶体缺陷、界面反应等。
总之,透射电子显微镜利用电子束的穿透性质,通过样品与电子束的相互作用以及透射电镜的光学系统,实现了对物质微观结构的高分辨率观察。
明暗场成像原理使得我们可以观察到不同结构和特性的样品的不同信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017 年秋季学期研究生课程考核
(读书报告、研究报告)
考核科目:材料显微分析实践
考核项目:透射电镜的明暗场成像技术学生所在院(系):材料学院
学生所在学科:材料工程
学生姓名:张珞斌
学号:17S109247
学生类别:专硕
考核结果阅卷人
透射电镜结构原理及明暗场成像
一、实验内容及实验目的
1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。
2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。
二、透射电镜的基本结构及工作原理
透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。
提高加速电压,可缩短入射电子的波长。
一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。
就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下:
加速电压:80~3000kV
分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm
最高放大倍数:30~100万倍
尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。
此外,还包括一些附加的仪器和部件、软件等。
有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。
以下仅对透射电镜的基本结构作简单介绍。
2.1电子光学系统
电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。
整个镜筒自上而下顺序排列着电子枪、双聚光镜、样
品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。
通常又把电子光学系统分为照明、成像和观察记录部分。
2.2 真空系统
为保证电镜正常工作,要求电子光学系统应处于真空状态下。
电镜的真空度一般应保持在10-5托,这需要机械泵和油扩散泵两级串联才能得到保证。
目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×10-8Pa或更高。
如果电镜的真空度达不到要求会出现以下问题:
(1) 电子与空气分子碰撞改变运动轨迹,影响成像质量。
(2) 栅极与阳极间空气分子电离,导致极间放电。
(3) 阴极炽热的灯丝迅速氧化烧损,缩短使用寿命甚至无法正常工作。
(4) 试样易于氧化污染,产生假象。
3.供电控制系统
供电系统主要提供两部分电源,一是用于电子枪加速电子的小电流高压电源;二是用于各透镜激磁的大电流低压电源。
目前先进的透射电镜多已采用自动控制系统,其中包括真空系统操作的自动控制,从低真空到高真空的自动转换、真空与高压启闭的连锁控制,以及用微机控制参数选择和镜筒合轴对中等。
三、明暗场成像原理及操作
3.1 明暗场成像原理
晶体薄膜样品明暗场像的衬度(即不同区域的亮暗差别),是由于样品相应的不同部位结构或取向的差别导致衍射强度的差异而形成的,因此称其为衍射衬度,以衍射衬度机制为主而形成的图像称为衍衬像。
如果只允许透射束通过物镜光栏成像,称其为明场像;如果只允许某支衍射束通过物镜光栏成像,则称为暗场像。
有关明暗场成像的光路原理参见图2-1。
就衍射衬度而言,样品中不同部位结构或取向的差别,实际上表现在满足或偏离布喇格条件程度上的差别。
满足布喇格条件的区域,衍射束强度较高,而透射束强度相对较弱,用透射束成明场像该区域呈暗衬度;反之,偏离布喇格条件的区域,衍射束强度较弱,透射束强度相对较高,该区域在明场像中显示亮衬度。
而暗场像中的衬度则与选择哪支衍射束成像有关。
如果在一个晶粒内,在双光束衍射条件下,明场像与暗场像的衬度恰好相反。
3.2 明场像和暗场像
明暗场成像是透射电镜最基本也是最常用的技术方法,其操作比较容易,这里仅对暗场像操作及其要点简单介绍如下:
(1) 在明场像下寻找感兴趣的视场。
(2) 插入选区光栏围住所选择的视场。
(3) 按“衍射”按钮转入衍射操作方式,取出物镜光栏,此时荧光屏上将显示选区域内晶体产生的衍射花样。
为获得较强的衍射束,可适当的倾转样品调整其取向。
(4) 倾斜入射电子束方向,使用于成像的衍射束与电镜光铀平行,此时该衍射斑点应位于荧光屏中心。
(5) 插入物镜光栏套住荧光屏中心的衍射斑点,转入成像操作方式,取出选区光栏。
此时,荧光屏上显示的图像即为该衍射束形成的暗场像。
通过倾斜入射束方向,把成像的衍射束调整至光轴方向,这样可以减小球差,获得高质量的图像。
用这种方式形成的暗场像称为中心暗场像。
在倾斜入射束时,应将透射斑移至原强衍射斑(hkl)位置,而(hkl)弱衍射斑相应地移至荧光屏中心,而变成强衍射斑点,这一点应该在操作时引起注意。
图1 明暗场成像的光路原理示意图
a) 明场成像b) 中心暗场成像
图1是相邻两个钨晶粒的明场和暗场像。
由于A晶粒的某晶面满足布喇格条件,衍射束强度较高,因此在明场像中显示暗村度。
图1b是A晶粒的衍射束形成的暗场像,因此A 晶粒显示亮衬度,而B晶粒则为暗像。