考点50 矩阵与变换【2019年高考数学真题分类】
最新版精编2019年高中数学单元测试试题《矩阵与变换》专题考核题库(含答案)

2019年高中数学单元测试试题 矩阵与变换专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.圆221x y +=在矩阵10⎡⎢⎣⎦对应的变换作用下的曲线方程为___________. 2.若矩阵A 有特征值122,1λλ=-=,它们所对应的特征向量分别为10i ⎡⎤=⎢⎥⎣⎦和01j ⎡⎤=⎢⎥⎣⎦,则矩阵A =______________.3.若行列式112124=-x x ,则=x ________4.已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.5.椭圆1162522=+y x 经过矩阵M 变换后得到的曲线方程为1251622=+y x ,试写出一个满足要求的矩阵=M6.现代社会对破译密码的难度要求越来越高,有一处密码把英文的明文(真实名)按字母分解,其中英文a ,b ,c …,z 这26个字母(不论大小写)依次对应1,2,3…,26这26个正整数。
(见下表)用如下变换公式:⎪⎪⎩⎪⎪⎨⎧≤≤∈+≤≤∈+=')2,261,(132)2,261,(21整除能被整除不能被x x N x x x x N x x x 将明文转换成密码。
如:13212525::,1713288=+→=+→再如变成即q h ,即y 变成m ; 上述变换规则,若将明文译成的密码是live ,那么原来的明文是7.表示绕坐标原点顺时针旋转23π的变换的矩阵是 .1212⎡-⎢⎢⎥⎢⎥-⎢⎥⎣⎦8.行列式cossin 36sincos36ππππ的值是 0 。
二、解答题9.已知矩阵33A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111α⎡⎤=⎢⎥⎣⎦,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求矩阵A 的逆矩阵.10.一个22⨯的矩阵M 有两个特征值:128,2λλ==,其中1λ对应的一个特征向量111e ⎡⎤=⎢⎥⎣⎦,2λ对应的一个特征向量212e ⎡⎤=⎢⎥-⎣⎦,求M 。
高考数学 高频考点归类分析 矩阵与变换(真题为例)

典型例题:例1. (2012年上海市理4分)函数1sin cos 2)(-=xx x f 的值域是 ▲ .【答案】⎥⎦⎤⎢⎣⎡--23,25。
【考点】行列式的基本运算,三角函数的值域,二倍角公式。
【解析】()2cos 1==sin cos 2=sin 22sin 12x f x x x x x -- - ,∵12sin 1≤≤-x ,∴23)(25-≤≤-x f 。
例2. (2012年福建省理7分)设曲线2x 2+2xy +y 2=1在矩阵A =⎝⎛⎭⎫a b 01(a >0)对应的变换作用下得到的曲线为x 2+y 2=1.(Ⅰ)求实数a ,b 的值; (Ⅱ)求A 2的逆矩阵.【答案】解:(Ⅰ)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的像是P ′(x ′,y ′)。
由⎝⎛⎭⎫x ′y ′=⎝⎛⎭⎫a b 01⎝⎛⎭⎫x y =⎝⎛⎭⎫ax bx +y ,得'='=+x ax y bx y ⎧⎨⎩。
又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx+y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1。
依题意得22+=22=2a b b ⎧⎨⎩解得=1=1a b ⎧⎨⎩或=1=1a b -⎧⎨⎩。
因为a >0,所以=1=1a b ⎧⎨⎩。
(Ⅱ)由(1)知,A =⎝⎛⎭⎫11 01,A 2=⎝⎛⎭⎫11 01⎝⎛⎭⎫11 01=⎝⎛⎭⎫12 01,所以|A 2|=1,(A 2)-1=⎝⎛⎭⎫1-2 01。
【考点】逆变换与逆矩阵,几种特殊的矩阵变换。
【解析】(Ⅰ)确定点在矩阵A =⎝⎛⎭⎫a b 01(a >0)对应的变换作用下得到点坐标之间的关系,利用变换前后的方程,即可求得矩阵A 。
(Ⅱ)先计算A 2,即可得到A 2的逆矩阵。
例3. (2012年江苏省10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.【答案】解:∵1-A A =E ,∴()11--A =A 。
最新版精编2019年高中数学单元测试试题《矩阵与变换》专题完整考试题库(含参考答案)

2019年高中数学单元测试试题 矩阵与变换专题(含答案)学校:__________考号:__________一、填空题1.二阶矩阵1002A ⎡⎤=⎢⎥⎣⎦的1A -= ▲ . (12,13班做)若关于x 的不等式a ≥|x +1|+|x -2|存在实数解,则实 数a 的取值范围是 ▲ .2.已知矩阵1101,20201⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦A B ,若矩阵AB 对应的变换把直线l :20x y +-=变为直线'l ,求直线'l 的方程.3.已知X 是二阶矩阵,且满足满足23321211X⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则X =_____。
4511-⎡⎤⎢⎥-⎣⎦132233223451112111211X ---⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦4.表示绕坐标原点顺时针旋转23π的变换的矩阵是 .1212⎡-⎢⎢⎥⎢⎥-⎢⎥⎣⎦5.当πcos12=a 时,行列式211121a a +-的值是 .6.方程0cos sin sin cos =xx x x 的解为_____)(,42Z k k x ∈+=ππ______. 7.设2111()1111f x xx =-()x R ∈,则方程()0f x =的解集为 .8.若1250120131xx =,则实数x = .9.把实数a ,b ,c ,d 排成形如⎪⎪⎭⎫⎝⎛d c b a 的形式,称之为二行二列矩陈。
定义矩阵的一种运算⎪⎪⎭⎫⎝⎛d c b a ·),(dy cx by ax y x ++=⎪⎪⎭⎫⎝⎛,该运算的几何意义为平面上的点(x ,y )在矩阵⎪⎪⎭⎫⎝⎛d c b a 的作用下变换成点),(dy cx by ax ++,若点A 在矩阵⎪⎪⎭⎫ ⎝⎛-1112的作用下变换成点(2,4),则点A 的坐标为 . 二、解答题 10.已知矩阵2121A ⎡⎤=⎢⎥-⎣⎦,1201B -⎡⎤=⎢⎥⎣⎦(1)计算AB ;(2)若矩阵B 把直线:20,l x y l l ''++=变为直线求直线的方程。
矩阵与变换高考题精选

汇报人: 2024-01-07
目录
• 矩阵的基本概念 • 矩阵的变换 • 高考中的矩阵与变换题目 • 解题技巧与策略 • 高考真题解析
01
矩阵的基本概念
矩阵的定义与性质
矩阵的元素
矩阵中的每个元素都有行标和 列标,表示为“aij”,其中i表 示行标,j表示列标。
矩阵的标量乘法
03
利用矩阵的变换和几何 意义解决一些复杂的几 何问题,如平面上的曲
线、曲面等。
利用矩阵的性质和运算 解决一些复杂的代数问 题,如高次方程的求解 、多项式的因式分解等
。
利用矩阵的逆和其他高 级性质解决一些优化问 题,如最小二乘法、线
性规划等。
04
解题技巧与策略
解题思路分析
明确题目要求
首先需要仔细阅读题目,明确题目要求解决的问 题和给定的条件。
逆矩阵的求解错误
在求解逆矩阵时,未能正确使用逆矩阵的公 式或方法,导致结果不正确。
忽略矩阵的单位元性质
在计算过程中,忽略了矩阵的单位元性质, 导致结果出现偏差。
对空间几何变换理解不足
对平移、旋转、缩放等变换理解不透彻,导 致在解决相关问题时出现错误。
05
高考真题解析
近年真题回顾
2018年全国卷
考察矩阵的乘法运算及逆矩阵的概念。
2019年全国卷解析
利用矩阵的初等变换,将原方程组化为标准 形式,进而求解。
2021年全国卷解析
利用逆矩阵的性质,求解线性变换问题。
真题总结与启示
总结
从近年高考真题来看,矩阵与变换是 高考数学的重要考点之一,主要考察 矩阵的基本运算、逆矩阵、初等变换 、行列式以及特征值等知识点。
启示
精编2019年高中数学单元测试试题《矩阵与变换》专题完整考试题库(含答案)

2019年高中数学单元测试试题 矩阵与变换专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.(1)求矩阵A= ⎢⎣⎡31 ⎥⎦⎤42的逆矩阵;(2)已知矩阵A =⎣⎢⎡⎦⎥⎤1 121,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β;(3) 已知矩阵M=⎢⎣⎡12 ⎥⎦⎤10,求矩阵M 的特征值及其相应的特征向量.2.若行列式112124=-x x ,则=x ________3.椭圆1162522=+y x 经过矩阵M 变换后得到的曲线方程为1251622=+y x ,试写出一个满足要求的矩阵=M4.若21{,x x ∈},则x = ____ .5.函数221log ()2y x =+的值域为_______________. 关键字:复合函数;求值域;对数二、解答题6.已知曲线22:1C x y +=,对它先作矩阵A =⎣⎢⎡⎦⎥⎤1 00 2对应的变换,再作矩阵B=⎣⎢⎡⎦⎥⎤0 b 1 0对应的变换,得到曲线22:14x C y +=.求实数b 的值。
7.设M 是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换. (Ⅰ)求矩阵M 的特征值及相应的特征向量;(Ⅱ)求逆矩阵1M -以及椭圆22149x y +=在1M -的作用下的新曲线的方程.8.已知1413M -⎡⎤=⎢⎥-⎣⎦,24J ⎡⎤=⎢⎥⎣⎦,求满足MX N =的二阶方阵X ;9.学校餐厅每天供应1000名学生用餐,每星期一有A 、B 两样菜可供选择,调查资料表明,凡是在本周星期一选A 菜的,下周星期一会有20%改选B ,而选B 菜的,下周星期一则有30%改选A ,若用A n 、B n 分别表示在第n 个星期一选A 、B 菜的人数。
(1)若⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡++n n n n B A M B A 11,请你写出二阶矩阵M ; (2)求二阶矩阵M 的逆矩阵。
矩阵的基本变换及其相关知识点

矩阵的基本变换及其相关知识点矩阵的基本变换及其相关知识点2023年,矩阵已成为数学、物理、计算机等领域中不可或缺的基础工具之一。
掌握矩阵的基本变换是矩阵应用的核心,本文将介绍矩阵的基本变换及其相关知识点。
一、矩阵的基本变换1. 矩阵的加法:矩阵加法即将两个相同大小的矩阵对应元素相加,得到一个相同大小的矩阵。
例如:注意:只有相同大小的矩阵才可相加。
2. 矩阵的减法:矩阵减法即将两个相同大小的矩阵对应元素相减,得到一个相同大小的矩阵。
例如:注意:只有相同大小的矩阵才可相减。
3. 矩阵的数乘:矩阵的数乘即将一个数与矩阵的每个元素相乘,得到一个相同大小的矩阵。
例如:4. 矩阵的乘法:矩阵乘法是矩阵应用的关键,即将一个矩阵的行乘以另一个矩阵的列,得到一个新的矩阵。
例如:注意:只有左矩阵的列数与右矩阵的行数相等时,才可进行矩阵乘法。
二、相关知识点1. 矩阵的转置:矩阵的转置是将矩阵的行列互换得到的新矩阵,其中原矩阵的第i行第j列元素变为新矩阵的第j行第i列元素。
例如:2. 矩阵的逆:矩阵的逆是指一个矩阵与其逆矩阵相乘得到单位矩阵。
其中单位矩阵为对角线上元素均为1,其余元素均为0的矩阵。
例如:注意:只有行列式不为0的矩阵才有逆矩阵。
3. 矩阵的行列式:矩阵的行列式是矩阵特有的一种数值,用于判断矩阵是否可逆。
其中行列式的计算方法较为复杂,可通过高斯消元法等方式进行计算。
4. 矩阵的秩:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
江苏省各地2019届高考模拟考试数学试题分类汇编:矩阵与变换、不等式选讲(含答案)

江苏省各地2019届高考模拟考试数学试题分类汇编:矩阵与变换、不等式选讲一、矩阵与变换1、(南京市、盐城市2019届高三第二次模拟)已知矩阵23b a ⎡⎤=⎢⎥⎣⎦A ,1101⎡⎤=⎢⎥-⎣⎦B ,2141⎡⎤=⎢⎥⎣⎦AB . (1)求a ,b 的值;(2)求A 的逆矩阵1-A .2、(南京市2019届高三第三次模拟)已知矩阵M =⎣⎡⎦⎤ 2 1 1 2. (1)求M 2; (2)求矩阵M 的特征值和特征向量.3、(南通、如皋市2019届高三下学期语数英学科模拟(二))已知矩阵若直线l 依次经过变换T A ,T B 后得到直线l ':2x +y -2=0,求直线l 的方程。
4、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))已知矩阵=a b c d ⎡⎤⎢⎥⎣⎦M ,10=102⎡⎤⎢⎥⎢⎥⎣⎦N ,且()110402-⎡⎤⎢⎥=⎢⎥⎣⎦MN ,求矩阵M .5、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M 及另一个特征值.6、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次模拟(5月))已知a b c d ∈,,,R ,矩阵20a b -⎡⎤=⎢⎥⎣⎦A 的逆矩阵111c d -⎡⎤=⎢⎥⎣⎦A .若曲线C 在矩阵A 对应的变换作用下得到曲线21y x =+,求曲线C 的方程.7、(苏锡常镇四市2019届高三教学情况调查(二))已知矩阵A = 2 10 a ⎡⎤⎢⎥⎣⎦,其逆矩阵1A -= 0 1b c ⎡⎤⎢⎥⎣⎦,求2A .8、(苏锡常镇四市2019届高三教学情况调查(一))已知x ,y ∈R ,12α⎡⎤=⎢⎥⎣⎦是矩阵A = 10 x y ⎡⎤⎢⎥⎣⎦的属于特征值﹣1的一个特征向量,求矩阵A 的另一个特征值.9、(盐城市2019届高三第三次模拟)直线032:=--y x l 在矩阵⎢⎣⎡-=41M ⎥⎦⎤10所对应的变换M T 下得到直线'l ,求'l 的方程.10、(江苏省2019年百校大联考)已知矩阵1101A ⎡⎤=⎢⎥-⎣⎦,0614B ⎡⎤=⎢⎥-⎣⎦.若矩阵C 满足AC B =,求矩阵C 的特征值和相应的特征向量.二、不等式选讲1、(南京市、盐城市2019届高三第二次模拟)解不等式:|21|2x x --≥.2、(南京市2019届高三第三次模拟)若x ,y ,z 为实数,且x 2+4y 2+9z 2=6,求x +2y +6z 的最大值.3、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月)) 已知实数a b c ,,满足222a b c ++≤1,求证:22211191114a b c +++++≥4、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)已知x ,y ,z 均是正实数,且,164222=++z y x 求证:6x y z ++≤.5、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次模拟(5月))已知a ∈R ,若关于x 的方程2410x x a a ++-+=有实根,求a 的取值范围.6、(苏锡常镇四市2019届高三教学情况调查(二))已知正数a ,b ,c 满足a +b +c =2,求证:2221a b c b c c a a b++≥+++.。
高考数学压轴专题(易错题)备战高考《矩阵与变换》知识点总复习含答案解析

新数学高考《矩阵与变换》专题解析一、151.用行列式解关于x 、y 的方程组3(31)484mx y m x my m -=⎧⎨+-=+⎩,并讨论说明解的情况.【答案】当1m =时,无穷解;当14m =-时,无解;当1m ≠且14m ≠-时,有唯一解,441x m =+,8341m y m +=-+. 【解析】 【分析】 先求出系数行列式D ,x D ,y D ,然后讨论m ,从而确定二元一次方程解的情况. 【详解】 解:3(31)484mx y m x my m -=⎧⎨+-=+⎩Q 21431(41)(1)431mm D m m m m m -∴+-==-+=+-++,4443148x D m mm -==--+,()()23853*******y m D m m m m m m ==--+++=-,①当1m ≠且14m ≠-时,0D ≠,原方程组有唯一解,即144(41)4(14)x D m x m D m m -===+++-,()()()()8318341141y D m m m y D m m m +-+===-+-++, ②当1m =时,0D =,0x D =,0y D =,原方程组有无穷解. ③当14m =-时,0D =,0x D ≠,原方程无解. 【点睛】本题主要考查了行列式,以及二元一次方程的解法,属于基础题.2.a ,b 满足什么条件时,关于x ,y ,z 的方程组4424ax y z x by z x by z ++=⎧⎪++=⎨⎪++=⎩有唯一解.【答案】当0b ≠且1a ≠时 【解析】 【分析】计算对应行列式为()111110121aD bb a b ==-≠,计算得到答案.【详解】4424ax y z x by z x by z ++=⎧⎪++=⎨⎪++=⎩有唯一解,则()1111212110121a D b ab b b ab b a b ==++---=-≠ 所以当0b ≠且1a ≠时有唯一解 【点睛】本题考查了方程组的唯一解问题,意在考查学生的计算能力.3.解关于x ,y 的方程组93x ay aax y +=⎧⎨+=⎩.【答案】分类讨论,详见解析 【解析】 【分析】分别计算得到29D a =-,6x D a =,23y D a =-,讨论得到答案.【详解】2199a D a a ==-,639x a a D a ==,2133y a D a a ==-.当3a ≠±时,0D ≠,此时方程有唯一解:2226939a x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩; 当3a =±时,0D =,0x D ≠,方程无解. 综上所述:3a ≠±,有唯一解;3a =±,无解. 【点睛】本题考查了通过行列式讨论方程组的解的情况,分类讨论是一个常用的方法,需要同学熟练掌握.4.解方程组()32021mx y x m y m+-=⎧⎨+-=⎩,并求使得x y >的实数m 的取值范围.【答案】()1,3 【解析】 【分析】计算出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,求出方程组的解,再由x y >列出关于m 的不等式,解出即可. 【详解】 由题意可得()()2362321m D m m m m m ==--=+--,2321x D m m m ==---,()()224222y m D m m m m==-=-+.①当0D ≠时,即当260m m --≠时,即当2m ≠-且3m ≠时,1323x y D x D m D m y D m ⎧==⎪⎪-⎨-⎪==⎪-⎩.x y >Q ,则()()()2222133m m m ->--,即()22130m m ⎧-<⎪⎨-≠⎪⎩,解得13m <<; ②当2m =-时,方程组为2320232x y x y -+-=⎧⎨-=-⎩,则有232x y -=,该方程组有无穷多解,x y >不能总成立;③当3m =时,方程组为33202230x y x y +-=⎧⎨+-=⎩,即203302x y x y ⎧+-=⎪⎪⎨⎪+-=⎪⎩,该方程组无解.综上所述,实数m 的取值范围是()1,3. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,在解题时要注意对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.5.用行列式解方程组252,23,24 1.x y z y z x y z ++=-⎧⎪--=⎨⎪++=-⎩【答案】1337313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项求得D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:125202324111x y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎦--⎣,1912502241D =-=-, 13922532141x D --=-=-,12503221121y D --==--,1312203241z D ---==-,所以13,37,31.3x y z D x D D y D D z D ⎧==⎪⎪⎪==-⎨⎪⎪==-⎪⎩【点睛】本题考查三元一次方程组的矩阵形式、线性方程组的行列式求解,考查运算求解能力.6.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x x x x x x x x x xx x =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.7.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.【答案】见解析 【解析】 【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况. 【详解】 系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.8.(1)用行列式判断关于x y 、的二元一次方程组2373411x y x y -=⎧⎨-=⎩解的情况;(2)用行列试解关于x y 、的二元一次方程组12mx y m x my m+=+⎧⎨+=⎩,并对解的情况进行讨论.【答案】(1)51x y =⎧⎨=⎩;(2)当1m ≠-,1m ≠时,0D ≠,方程组解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【解析】 【分析】(1) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D ,即可求解方程组的解. (2) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D 下面对m 的值进行分类讨论:①当1m ≠-,1m ≠时,②当1m =-时,③当1m =时,分别求解方程组的解即可. 【详解】(1)列出行列式系数 112a =,123a =-,17b =,213a =,224a =,211b =,23D =34--891=-+=,711x D = 34--=28335-+=,23y D =711=22211-= ,5xD x D ∴== ,1y D y D== , 所以二元一次方程组2373411x y x y -=⎧⎨-=⎩的解为51x y =⎧⎨=⎩ . (2)1m D =1m=21m - =()()11m m +- , 12x m D m+=1m=2m m - =()1m m - ,1y m D =12m m+ =()()221211m m m m --=+- ,当1m ≠-,1m ≠时,0D ≠,方程组有唯一解,解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【点睛】本题主要考查二元一次方程组的矩阵形式、线性方程组解的存在性,唯一性、二元方程的解法等基础知识,考查运算求解能力与转化思想,属于中档题.9.已知1m >,1n >,且1000mn <,求证:lg 901lg 4m n <. 【答案】证明见解析 【解析】 【分析】由题意,求得11000mn <<,利用基本不等式,得到2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,再结合行列式的运算,即可求解. 【详解】由题意,实数1m >,1n >,且1000mn <,可得11000mn <<,则2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,又由lg 919lg ln 9lg ln 144lg 4m m n m n n=-⨯=-,所以lg 901lg 4m n <. 【点睛】本题主要考查了行列式的运算性质,以及对数的运算性质和基本不等式的应用,其中解答中熟记行列式的运算法则,以及合理应用对数的运算和基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10.解关于x 、y 、z 的三元一次方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并对解的情况进行讨论.【答案】答案不唯一,见解析 【解析】 【分析】根据题意,分别求出D 、x D 、y D 、z D 关于a 的表达式,再由三元一次方程组解的公式对a 的取值进行讨论,即可得到原方程组解的各种情况. 【详解】(1)(25)D a a =--+,(11)(1)x D a a =+-,22y D a =-,55z D a =-;① 当1a =,0x y z D D D D ====,方程组有无穷多解; ② 当52a =-,0D =,且x D 、y D 、z D 不为零,方程组无解; ③ 当1a ≠且52a ≠-时,方程组的解为1125a x a +=-+,225y a =+,525z a =-+. 【点睛】本题考查三元一次方程组的行列式解法,解题关键是要分类讨论,属于常考题.11.在平面直角坐标系xOy 中,直线20x y +-=在矩阵12a A b ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到的直线仍为20x y +-=,求矩阵A .【答案】1102-⎡⎤⎢⎥⎣⎦【解析】 【分析】设(,)P x y 是直线20x y +-=上任意一点,根据题意变换得到直线220x ay bx y +++-=,对比得到答案.【详解】设(,)P x y 是直线20x y +-=上任意一点,其在矩阵2a a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到122a x x ay b y bx y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦仍在直线上,所以得220x ay bx y +++-=,与20x y +-=比较得1121b a +=⎧⎨+=⎩,解得01b a =⎧⎨=-⎩,故1102A -⎡⎤=⎢⎥⎣⎦.【点睛】本题考查了矩阵变换,意在考查学生的计算能力和应用能力.12.设,,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b .(1)求字母b 的代数余子式的展开式;(2)若(1)的值为0,判断直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系. 【答案】(1)233b ac -;(2)重合. 【解析】 【分析】(1)根据字母b 的代数余子式的展开式()()()246111b a b c b a c ba bc b-+-+-即可求解;(2)根据(1)的值为0,得出边长的关系,即可判断直线位置关系. 【详解】(1),,a b c 分别是ABC ∆的三边,行列式b a cc b a a c b ,所以字母b 的代数余子式的展开式为:()()()246111b a b c b a c ba bc b-+-+-222b ac b ac b ac =-+-+- 233b ac =-(2)若(1)的值为0,即2330b ac -=,2b ac =,b c a b=, 由正弦定理:sin sin c Cb B=所以sin sin c C b c b B a b-===- 所以直线sin 0B x ay b ⋅+-=与sin 0C x by c ⋅+-=的位置关系是重合. 【点睛】此题考查求代数余子式的展开式,得出三角形边长关系,结合正弦定理判断两直线的位置关系,跨章节综合性比较强.13.设()3322k kx k x f x k x-=+⋅(x ∈R ,k 为正整数)(1)分别求出当1k =,2k =时方程()0f x =的解.(2)设()0f x ≤的解集为[]212,k k a a -,求1234a a a a +++的值及数列{}n a 的前2n 项和.【答案】(1)1k =时,方程()0f x =的解为2x =,3x =;2k =时, ()0f x =的解为6x =,4x =(2)123415a a a a +++=;前2n 项和为21332222n n n ++-+【解析】 【分析】(1)根据定义化简函数()f x 的解析式,然后根据一元二次方程求出当1k =,2k =时方程()0f x =的解即可;(2)由()0f x ≤即()()320kx k x --≤的解集为[]212,k k aa -建立关系式,然后取1k =,2k =可求出1234a a a a +++的值,最后根据()()()212342121234212n n n n n S a a a a a a a a a a a a --=++++++=++++++L L 进行求解即可; 【详解】解:(1)()()()()2323232kkkf x x k x k x k x =-++⋅=--,当1k =时()()()32f x x x =--,所以方程()0f x =的解为2x =,3x =; 当2k =时()()()64f x x x =--,所以方程()0f x =的解为6x =,4x =; (2)由()0f x ≤即()()320kx k x --≤的解集为[]212,k k aa -.∴2122123232k k k kk ka a k a a k --⎧+=+⎨⋅=⋅⎩, ∴1k =时,1123125a a +=⋅+=,2k =时,23432210a a +=⋅+=. ∴123451015a a a a +++=+=()()()212342121234212n n n n n S a a a a a a a a a a a a --=++++++=++++++L L()()()()()12231232232312222n n n n =⋅++⋅+++⋅+=+++++++L L L()()2121213332221222nn n n n n +-+=⋅+=+-+-.【点睛】 本题主要考查了二阶行列式的定义,以及数列的求和,同时考查了计算能力,属于中档题.14.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a+=+⎧∈⎨+=⎩,并对解的情况进行讨论. 【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论.【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩, 所以221111,(1),12x a a D a D a a a a aa a +==-==-=- 2121(21)(1)12y a a D a a a a a +==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩; (2)当1a =-时,0,0x D D =≠,方程组无解;(3)当1a =时,0x y D D D ===,方程组有无穷多解,,()2x t t R y t=⎧∈⎨=-⎩. 【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.15.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3.【解析】【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值.【详解】由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-, 故1141A -⎡⎤=⎢⎥-⎣⎦, 则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=,所以矩阵A 的特征值为1-或3.【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.16.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -. 【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】【分析】 根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==; 矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】 本题主要考查矩阵的乘法运算及逆矩阵的求解.17.已知矩阵1001A ⎡⎤=⎢⎥-⎣⎦,4123B ⎡⎤=⎢⎥⎣⎦,若矩阵M BA =,求矩阵M 的逆矩阵1M -. 【答案】13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【解析】 试题分析:411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 试题解析:B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.18.已知矩阵120A x -⎡⎤=⎢⎥⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦,B 的逆矩阵1B -满足17177AB y --⎡⎤=⎢⎥-⎣⎦. (1)求实数x ,y 的值;(2)求矩阵A 的特征值和特征向量.【答案】(1)1,3x y ==;(2)特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【解析】【分析】(1)计算()1AB B -,可得12514721y y -⎡⎤⎢⎥--⎣⎦,根据()1A AB B -=,可得结果. (2)计算矩阵A 的特征多项式()121f λλλ+-=-,可得2λ=-或1λ=,然后根据Ax x λ=r r ,可得结果.【详解】 (1)因为17177AB y --⎡⎤=⎢⎥-⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦ 所以()17175712723514721AB B y y y ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 由()1A AB B -=,所以12120514721x y y --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ 所以514172103y x x y y -==⎧⎧⇒⎨⎨-==⎩⎩(2)矩阵A 的特征多项式为:()()()()1212211f λλλλλλλ+-==+-=+-- 令()0f λ=,解得2λ=-或1λ=所以矩阵A 的特征值为2-和1.①当2λ=-时,12222102x x x y x y y x y --+=-⎡⎤⎡⎤⎡⎤⎧=-⇒⎨⎢⎥⎢⎥⎢⎥=-⎣⎦⎣⎦⎣⎦⎩令1y =,则2x =-,所以矩阵M 的一个特征向量为21-⎡⎤⎢⎥⎣⎦. ②当1λ=时, 12210x x x y x y y x y --+=⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥=⎣⎦⎣⎦⎣⎦⎩令1y =,则1x =所以矩阵M 的一个特征向量为11⎡⎤⎢⎥⎣⎦. 因此,矩阵A 的特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【点睛】本题考查矩阵的应用,第(1)问中,关键在于()1A AB B -=,第(2)问中,关键在于()1201f λλλ+-==-,考验分析能力以及计算能力,属中档题.19.己知矩阵1221M ⎡⎤=⎢⎥⎣⎦. (1)求1M -;(2)若曲线221:1C x y -=在矩阵M 对应的变换作用下得到另一曲线2C ,求2C 的方程.【答案】(1)112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦;(2)223y x -= 【解析】【分析】(1)根据逆矩阵的求法,求得M 的逆矩阵1M -.(2)设出1C 上任意一点的坐标,设出其在矩阵M 对应的变换作用下得到点的坐标,根据坐标变换列方程,解方程求得两者坐标对应关系式,再代入1C 方程,化简后可求得2C 的方程.【详解】解(1)设所求逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则122210212201a b a c b d c d a c b d ++⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦⎣⎦,即21202021a c b d a c b d +=⎧⎪+=⎪⎨+=⎪⎪+=⎩,解得13232313a b c d ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=-⎩,所以112332133M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. (2)设曲线1C 上任一点坐标为()00,x y ,在矩阵M 对应的变换作用下得到点(),x y , 则001221x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即000022x y x x y y+=⎧⎨+=⎩, 解得002323y x x x yy -⎧=⎪⎪⎨-⎪=⎪⎩. 因为22001x y -=,所以2222133y x x y --⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,整理得223y x -=, 所以2C 的方程为223y x -=.【点睛】本小题主要考查逆矩阵的求法,考查利用矩阵变换求曲线方程,考查运算求解能力,属于中档题.20.[选修4-2:矩阵与变换]已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦的一个特征值为2,其对应的一个特征向量为21α⎡⎤=⎢⎥⎣⎦. 若x a A y b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求x ,y 的值.【答案】x ,y 的值分别为0,1.【解析】试题分析:利用矩阵的乘法法则列出方程,解方程可得x ,y 的值分别为0,1. 试题解析: 由条件知,2A αα=,即][1222111a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,即][2422a b +⎡⎤=⎢⎥-+⎣⎦, 所以24,{22,a b +=-+= 解得2,{ 4.a b == 所以1214A ⎡⎤=⎢⎥-⎣⎦.则][][][12221444x x x y A y y x y +⎡⎤⎡⎤===⎢⎥⎢⎥--+⎣⎦⎣⎦,所以22,{44,x y x y +=-+= 解得0,{ 1.x y == 所以x ,y 的值分别为0,1.。