八年级数学上册测试题:13.4 课题学习 最短路径问题
人教版八年级数学上册测试题:13.4课题学习最短路径问题

人教版八年级数学上册测试题:13.4课题学习最短路径问题学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH 上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为________.二、解答题2.已知,如图,在直线l的同侧有两点A,B.(1)在图1的直线上找一点P,使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长.3.如图均是由相同的小正方形组成的网格图,点A、B、C、D均落在格点上.请只用无刻度的直尺在格线CD上确定一点Q,使QA与QB的长度之和最小.4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?5.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD 上一动点,要使MB+MN最小,请找点M的位置.6.如图,在△ABC的一边AB上有一点P.(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短?若能,请画出点M、N的位置,若不能,请说明理由;(2)若∠ACB=52°,在(1)的条件下,求出∠MPN的度数.7.如图,已知∠AOB,点P是∠AOB内部的一个定点,点E、F分别是OA、OB上的动点.(1)要使得△PEF的周长最小,试在图上确定点E、F的位置.(2)若OP=4,要使得△PEF的周长的最小值为4,则∠AOB=________.8.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,求∠AMN+∠ANM的度数.9.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.参考答案1.60°【详解】如图,因为点A关于GH的对称点是F,所以连接BF交GH于点P,则PA+PB=PF+PB=BF,所以PA+PB的最小值是BF.因为∠BAF=180°×(6-2)÷6=120°,AB=AF,所以∠AFB=30°.因为∠HGF=90°,所以∠GPF=60°.故答案为:60°.2.画图见解析.【解析】试题分析:(1)作B关于l的对称点B',连接AB′,线段AB′与l交于P,则P就是所求点.也可作A关于l的对称点A′;(2)直线AB与l交于P,则P就是所求点,试题解析:如图:(1)作点B关于直线l的对称点B′,连接AB′交直线l于点P.点P即为所求.(2)连接AB并延长,交直线l于点P.3.作图见解析.【解析】试题分析:根据轴对称的性质,作B关于CD的对称点B′,连接AB′,交CD于Q.试题解析:如图,作B关于CD的对称点B′,连接AB′,交格线CD于Q,此时QA+QB=QA+QB′=AB′,根据两点之间线段最短,得QA+QB最小.4.画图见解析.【解析】试题分析:过点A作河岸a的垂线AE,在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;连接A′B与河岸b相交于点C,即可确定桥的位置.试题解析:(1)过点A作河岸a的垂线AE;(2)在a的垂线AE上截取AA′等于河宽(即桥长CD),从而确定点A′的位置;(3)连接A′B与河岸b相交于点C;(4)过点C作河岸b的垂线,交河岸a于点D.所以,CD就是桥所在的位置.5.作图见解析.【解析】试题分析:因为AD垂直平分BC,所以点C是点B关于AD的对称点,连接CN交AD于点M.试题解析:如图,连接NC与AD的交点为M点.点M即为所求.6.(1) 作图见解析. (2) 76°.【解析】试题分析:(1)分别作点P关于AC,BC的对称点D,G,连接DG交AC、BC于点M、N.(2)由四边形的内角和求∠D+∠G=∠C,由轴对称的性质可得,∠D=∠DPM,∠G=∠GPN,即可求解.试题解析:(1)①作出点P关于AC、BC的对称点D、G.②连接DG交AC、BC于点M、N.点M、N即为所求.(2)设PD交AC于E,PG交BC于F,∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°.∵∠C=52°,∴∠EPF=128°.∵∠D+∠G+∠EPF=180°,∴∠D+∠G=52°.由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=52°,∴∠MPN=128°-52°=76°.7.(1) 作图见解析. (2)30°【解析】试题分析:(1)分别作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB 于F.(2)由轴对称的性质知OP=OC,OP=OD,且△PEF周长的最小值是CD,所以dqga4OCD 是等边三角形,而∠COD=2∠EOF,由此即可求解.试题解析:(1)如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.(2)根据轴对称的性质得,OC=OP=OD,∠COE=∠POE,∠DOF=∠POF,△PEF的周长的最小值=CD,因为OP=4,△PEF的周长的最小值为4,所以△OCD是等边三角形.因为∠COE=∠POE,∠DOF=∠POF,所以∠PEF=12∠COD=30°.8.∠AMN+∠ANM=120°.【解析】试题分析:根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.试题解析:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠DAB=120°,∴∠HAA′=60°.∴∠A′+∠A″=∠HAA′=60°.∵∠A′=∠MAA′,∠NAD=∠A″,且∠A′+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAD+∠A″=2(∠A′+∠A″)=2×60°=120°.点睛:本题考查的是轴对称−最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.9.(1)见解析;(2)AM+AN=BM+BN.【解析】试题分析:(1)根据轴对称的性质,分别作点M,N关于OP,OQ的对称点M′,N′,连接MM′,NN′交OP,OQ于点A,B.(2)由轴对称的性质可知AM+AN=M′N,BM+BN=MN′,试题解析:(1)图略,点A,B即为所求.画法:①作点M关于射线OP的对称点M′;②连接M′N交OP于点A;③作点N关于射线OQ的对称点N′;④连接N′M交OQ于点B.(2)AM+AN=BM+BN.点睛:本题主要考查了轴对称的性质,“将军饮马”型的问题是中考常考的题型,如图,点A,B在直线l的同旁,在直线l求点P,使PA+PB最小.确定点P的位置的方法是,作点A 关于直线l的对称点A′,连接BA′交直线l于点P,则PA+PB的值最小.。
人教版八年级数学上册《13-4 课题学习 最短路径问题》作业同步练习题及参考答案

13.4 课题学习最短路径问题1.已知点A(-2,1),B(3,2),在x 轴上求一点P,使AP+BP 最小,下列作法正确的是( ).A.点P 与O(0,0)重合B.连接AB 并延长,交x 轴于点P,点P 即为所求C.过点A 作x 轴的垂线,垂足为P,点P 即为所求D.作点A 关于x 轴的对称点A',连接A'B,交x 轴于点P,点P 即为所求2.如图,OA,OB 分别是线段MC,MD 的垂直平分线,MD=5 cm,MC=7 cm,CD=10 cm,一只小蚂蚁从点M 出发爬到OA 边上任意一点E,再爬到OB 边上任意一点F,然后爬回点M 处,则小蚂蚁爬行的路径最短可为( ).A.12 cmB.10 cmC.7 cmD.5 cm3.如图,牧童在A 处放牛,其家在B 处,A,B 到河岸的距离分别为AC 和BD,且AC=BD,若点A 到河岸CD 的中点的距离为500 m,则牧童从A 处把牛牵到河边饮水再回家,所走的最短路程是m.4.如图,l 为河岸(视为直线),要想开一条沟将河里的水从A 处引到田地里去,应从河边l 的何处开口才能使水沟最短,找出开口处的位置并说明理由.5.如图,在四边形ABCD 中,∠C=50°,∠B=∠D=90°,E,F 分别是BC,DC 上的点,当△AEF 的周长最小时,∠EAF 的度数为( ).A.50°B.60°C.70°D.80°6.如图,某公路(视为x 轴)的同一侧有A,B,C 三个村庄,要在公路边建一货栈(即在x 轴上找一点)D,向A,B,C 三个村庄运送农用物资,路线是:D→A→B→C→D(或D→C→B→A→D).试问在公路上是否存在D 使送货路程之和最短?若存在,请在图中画出D 所在的位置;若不存在,请说明理由.7.某中学八(2)班举行文艺晚会,桌子摆成如图所示的两直排(图中的AO,BO),AO 桌面上摆满了橘子,BO 桌面上摆满了糖果,站在C 处的学生小明先拿橘子再拿糖果,然后到D 处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.答案与解析夯基达标1.D2.B 当CD 与OA 的交点为E,与OB 的交点为F 时,路径最短.因为OA,OB 分别是线段MC,MD 的垂直平分线,所以ME=CE,MF=DF,所以小蚂蚁爬行的路径最短为CD=10 cm,故选B.3.1 0004.解过A 向直线l 作垂线段,与l 相交于B,从B 处开口可满足要求.图略.理由:垂线段最短. 培优促能5.D 作点A 关于BC 和CD 的对称点A',A″,连接A'A″,交BC 于点E,交CD 于点F,则A'A″即为△AEF 周长的最小值.作DA 的延长线AH.∵∠C=50°,∴∠DAB=130°.∴∠HAA'=50°.∴∠AA'E+∠A″=∠HAA'=50°.∵∠EA'A=∠EAA',∠FAD=∠A″,∴∠EAA'+∠A″AF=50°.∴∠EAF=130°-50°=80°.故选D.6.解存在D 使所走路线D→A→B→C→D 的路程之和最短.作法:(1)作点A 关于x 轴的对称点A';(2)连接A'C 交x 轴于D.则D(3,0)就是所要建货栈的位置,如图.创新应用7.解如图.作法:①作点C 关于OA 的对称点C1,点D 关于OB 的对称点D1;②连接C1D1,分别交OA,OB 于点P,Q,连接CP,DQ,小明沿C→P→Q→D 的路线行走时,所走的总路程最短.。
八年级上册数学人教版课时练《4 课题学习 最短路径问题》 试题试卷 含答案解析

《13.4课题学习最短路径问题》课时练一、选择题(共15小题)1.如图,在直角坐标系中有线段AB ,AB =50cm ,A 、B 到x 轴的距离分别为10cm 和40cm ,B 点到y 轴的距离为30cm ,现在在x 轴、y 轴上分别有动点P 、Q ,当四边形PABQ 的周长最短时,则这个值为()A .50B .505C .505-50D .505+502.如图,在平面直角坐标系中,点A (-2,4),B (4,2),在x 轴上取一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是()A .(-2,0)B .(4,0)C .(2,0)D .(0,0)3.如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF 的度数为().A .15°B .22.5°C .30°D .45°4.如图,∠AOB =30°,内有一点P 且OP =6,若M 、N 为边OA 、OB 上两动点,那么△PMN 的周长最小为().A .62B .6C .621D .65.已知两点M (3,5),N (1,-1),点P 是x 轴上一动点,若使PM +PN 最短,则点P 的坐标应为().A .(21,-4)B .(32,0)C .(34,0)D .(23,0)6.已知∠AOB 的大小为α,P 是∠AOB 内部的一个定点,且OP =2,点E 、F 分别是OA 、OB 上的动点,若△PEF 周长的最小值等于2,则α=().A .30°B .45°C .60°D .90°7.直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().A .B .C .D .8.已知两点A (3,2)和B (1,-2),点P 在y 轴上且使AP +BP 最短,则点P 的坐标是().A .(0,21-)B .(0,611)C .(0,-1)D .(0,41-)9.在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(4,0),点C 的坐标为(m ,3m )(m 为非负数),则CA +CB 的最小值是().A .6B .73C .72D .510.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是().A .3B .4C .5D .611.如图,锐角三角形ABC 中,∠C =45°,N 为BC 上一点,NC =5,BN =2,M 为边AC 上的一个动点,则BM +MN 的最小值是().A .29B .21C .74D .4512.加油站A 和商店B 在马路MN 的同一侧(如图),A 到MN 的距离大于B 到MN 的距离,AB =7米,一个行人P 在马路MN 上行走,问:当P 到A 的距离与P 到B 的距离之差最大时,这个差等于()米.A .8B .9C .6D .713.如图,△ABC 中,AB =AC =13,BC =10,AD 是BC 边上的中线,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值为().A .13120B .10C .12D .1314.如图,Rt △ABC 中,AC =BC =4,点D ,E 分别是AB ,AC 的中点,在CD 上找一点P ,使PA +PE 最小,则这个最小值是().A .32B .4C .52D .515.已知,如图,一牧童在A 处牧马,牧童家在B 处,A ,B 两处距河岸的距离AC ,BD 的长分别为700米,500米,且CD 的距离为500米,天黑前牧童从A 点将马牵到河边去饮水后,再赶回家,那么牧童最少要走()米.A .1100B .1200C .1300D .1400二、填空题(共5小题)1.如图,已知AB ⊥AD ,CD ⊥AD ,垂足分别为A 、D ,AD =6,AB =5,CD =3,P 是线段AD 上的一个动点,设AP =x ,DP =y ,92522+++=y x a ,则a 的最小值是______.2.已知如图所示,∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数为_____.3.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值是_____.4.已知:如图所示,M(3,2),N(1,-1).点P在y轴上使PM+PN最短,则P点坐标为_________.5.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,E是AB边的中点,F是AC边的中点,则(1)EF=____;(2)若D是BC边上一动点,则△EFD的周长最小值是____.三、解答题(共6小题)1.已知:如图,在∠POQ内部有两点M、N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.2.某大型农场拟在公路L旁修建一个农产品储藏、加工厂,将该农场两个规模相同的水果生产基地A、B的水果集中进行储藏和技术加工,以提高经济效益.请你在图中标明加工厂所在的位置C,使A、B两地到加工厂C的运输路程之和最短.(要求:用尺规作图,保留作图痕迹,不写作法和证明)3.如图,△ABC的边AB、AC上分别有定点M、N,请在BC边上找一点P,使得△PMN 的周长最短.(写出作法,保留作图痕迹)4.在某一地方,有条小河和草地,一天某牧民的计划是从A处的牧场牵着一只马到草地牧马,再到小河饮马,你能为他设计一条最短的路线吗?(在N上任意一点即可牧马,M上任意一点即可饮马.)(保留作图痕迹,需要证明)5.已知:如图所示,(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.(2)在x轴上画出点P,使PA+PC最小.6.作图题:(写出作法,保留作图痕迹)M、N为△ABC为AB、AC上的两个定点,请你在BC边上找一点P,使PMN周长最小?参考答案一、选择题(共15小题)1.D2.C3.C4.D5.C6.A7.D8.C9.C10.B11.C12.D13.A14.C15.C二、填空题(共5小题)1.102.100°3.54.(0,-41)5.2;2+213三、解答题(共6小题)1.(1)如图所示.画法:①作点M 关于射线OP 的对称点M',②连接M'N 交OP 于点A .③作点N 关于射线OQ 的对称点N',④连接N'M 交OQ 于点B .(2)答:AM +AN 与BM +BN 的大小关系是:AM +AN =BM +BN .2.如图3.①作点N关于BC的对称点N′,连接MN′交BC于点P,②由对称的性质可知PN=PN′,故PN+PM=MN′,③由两点之间线段最短可知,△PMN的最短周长即为MN′+MN.4.沿AC-CD-DB路线走是最短的路线如图(1)所示:证明:在ON上任意取一点T,在OM上任意取一点R,连接FR、BR、RT、ET、AT,∵A、E关于ON对称,∴AC=EC,同理BD=FD,FR=BR,AT=ET,∴AC+CD+DB=EC+CD+FD=EF,AT+TR+BR=ET+TR+FR,∵ET+TR+FR>EF,∴AC+CD+DB<AT+TR+BR,即沿AC-CD-DB路线走是最短的路线.5.(1)分别作A、B、C的对称点,A′、B′、C′,由三点的位置可知:A′(-1,2),B′(-3,1),C′(-4,3)(2)先找出C点关于x轴对称的点C″(4,-3),连接C″A交x轴于点P,(或找出A点关于x轴对称的点A″(1,-2),连接A″C交x轴于点P)则P点即为所求点.6.作法:(1)作M关于BC的对称点M’(2)连接M’N交BC于P点(3)连线MP,则△PMN周长最小P为所求作的点.。
人教版八年级数学上册同步练习13.4 课题学习 最短路径问题(word版,含答案解析)

人教版八年级数学上册13.4 课题学习最短路径问题一、选择题(共16小题;共80分)1. 如图,直线是一条河,,是两个村庄.欲在上的某处修建一个水泵站,向,两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是A. B.C. D.2. 如图,四边形是直角梯形,,,点是腰上的一个动点,要使最小,则点应该满足A. B.C. D.3. 四边形中,,,在,上分别找一点,,使三角形周长最小时,则的度数为A. B. C. D.4. 如图,直线外存在不重合的两点,,在直线上求作一点,使得的长度最短,作法为:① 作点关于直线的对称点;②连接与直线相交于点,则点为所求作的点.在解决这个问题时没有运用到的知识或方法是A. 转化思想B. 三角形的两边之和大于第三边C. 两点之间,线段最短D. 三角形的一个外角大于与它不相邻的任意一个内角5. 如图,牧童在处放牛,其家在处,,到河岸的距离分别为和,且,若点到河岸的中点的距离为米,则牧童从处把牛牵到河边饮水再回家,最短距离是A. 米B. 米C. 米D. 米6. 如图,已知直线,且与之间的距离为,点到直线的距离为,点到直线的距离为,.试在直线上找一点,在直线上找一点,满足且的长度最短,则此时A. B. C. D.7. 如图,正的边长为,过点的直线,且与关于直线对称,为线段上一动点,则的最小值是A. B. C. D.8. 如图,在中,,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是A. B. C. D.9. 如图,在四边形中,,,在,上分别找一点,,使的周长最小,此时,A. B. C. D.10. 如图,,内有一定点,且,在上有一动点,上有一动点.若周长最小,则最小周长是A. B. C. D.11. 如图,四边形中,,,,分别是,上的点,当的周长最小时,的度数为A. B. C. D.12. 如图,在中,,,面积是,的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为A. B. C. D.13. 如图,在中,,,,为上一点,且,平分交于.若是上的动点,则的最小值等于A. B. C. D.14. 如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁从外壁处到达内壁处的最短距离为A. C. D.15. 如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为A. B. C. D.16. 如图,,点是内任意一点,,点和点分别是射线和射线上的动点,若周长的最小值是,则的值是A. B. C. D.二、填空题(共5小题;共25分)17. 与的最小公倍数是.18. 如图,在中,是边的中点,过点作边的垂线,是上任意一点,且,,则的周长的最小值为.19. 如图,在中,,,的垂直平分线交于点,交于点,在直线上存在一点,使,,三点构成的的周长最小,则的周长最小值为.20. 已知,点在的内部,点是边上任意一点,点是边上任意一点,连接,,当的周长最小时,的度数为.21. 如图,是等腰直角三角形,,,为上的动点,则的最大值为.三、解答题(共3小题;共45分)22. 如图,已知直线及其同侧两点,,在直线上找一点,使得的长度最小.23. 如图,点,在的内部,为射线上的一个动点,为射线上的一个动点,求作点,,使得的长最短.作法:24. 如图,,两个小集镇在河流的同侧,分别到河的距离为千米,千米,且千米,现在要在河边建一自来水厂,向,两镇供水,铺设水管的费用为每千米万,请你在河流上选择水厂的位置,使铺设水管的费用最节省,并求出总费用是多少?答案第一部分1. D2. D 【解析】如图,作点关于的对称点,连接交于,连接.根据轴对称的性质,得,根据对顶角相等知,所以.3. C4. D5. B6. B7. A 【解析】如图所示.过点作的对称点,连接,与的延长线交于点 .此时,为最小值 .点在线段上,点在点处.的最小值为.8. B 【解析】如图连接,,,,,,,,,共线时,的值最小,最小值为的长度.9. D10. B【解析】设,则,作与相交于,并将延长一倍到,即,作与相交于,并将延长一倍到,即,连接与相交于,与相交于,再连接,,连接,,则即为周长最短的三角形,是的垂直平分线,;同理,是的垂直平分线,,的周长,,且,是等边三角形,,即在保持的条件下的最小周长为.11. D 【解析】作关于和的对称点,,连接,交于,交于,则即为的周长最小值.作延长线 .,...,,..12. C 【解析】连接.是等腰三角形,点是边的中点,,,解得,是线段的垂直平分线,点关于直线的对称点为点,的长为的最小值,13. D 【解析】如图,作点关于的对称点,连接交于,连接,此时的值最小,作于.,,,,,,,,,故选:D.14. D 【解析】如图:将杯子侧面展开,作关于的对称点,连接,则即为最短距离,.15. B【解析】分别作点关于,的对称点,,连接,分别交,于点,,如图所示:此时的周长取最小值.,,,,,,,.16. B第二部分17.18.19.【解析】如图,连接.,,的值最小时,的周长最小,垂直平分线段,,,的最小值为,的周长的最小值为.20.【解析】如图,过点作关于,的对称点,,连接,与,相交与点,,则此时的周长最小,为线段的长度;,,,,,,,,,,,解得:;故答案为:.21.第三部分22. 过点作直线的垂线,垂足为点,截取,连接,则与的交点就是点.23. 作点关于直线的对称点,作点关于直线的对称点交于,交于,则最短.24. 作关于的对称点,连接交于,点即为所求作的点,则可得:(千米),所以(千米),所以(千米),总费用为万元.。
课题学习:最短路径问题(分层作业)(原卷版)

13.4 课题学习:最短路径问题夯实基础篇一、单选题:1.直线L是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是().A.B.C.D.2.如图,点M,N在直线l的同侧,小东同学想通过作图在直线l上确定一点Q,使MQ与QN的和最小,那么下面的操作正确的是()A.B.C.D.3.如图,在等腰△AB C中,AB=AC=6,∠ACB=75°,AD⊥BC于D,点M、N分别是线段AB,AD上的动点,则MN+BN的最小值是()A .3B .C .4.5D .64.如图:△AB C 中,∠ACB =90°,AC =BC ,AB =4,点E 在BC 上,且BE =2,点P 在∠ABC 的平分线BD 上运动,则PE +PC 的长度最小值为()A .1B .2C .3D .45.如图,在锐角△AB C 中,AB =AC =10,S △ABC =25,∠BAC 的平分线交BC 于点D ,点M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .4B .245C .5D .6 6.如图,等边 ABC 中,D 为A C 中点,点P 、Q 分别为AB 、AD 上的点, 4BP AQ == , 3QD = ,在BD 上有一动点E ,则 PE QE + 的最小值为( )A .7B .8C .10D .127.如图,等腰三角形ABC 的底边BC 长为3,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 边于E , F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .7.5B .8.5C .10.5D .13.5二、填空题:8.如图的4×4的正方形网格中,有A ,B ,C ,D 四点,直线a 上求一点P ,使P A +PB 最短,则点P 应选 点(C 或D ).9.如图,在 ABC 中, 3,4,,AB AC AB AC EF ==⊥ 垂直平分 BC ,点P 为直线 EF 上一动点,则 ABP 周长的最小值是 .10.如图,在 ABC 中,AB =4,AC =6,BC =7,EF 垂直平分BC ,点P 为直线EF 上的任一点,则 ABP 周长的最小值是 .11.如图,在△AB C 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是 .三、作图题:12.有一个养鱼专业户,在如图所示地形的两个池塘里养鱼,他每天早上要从住处P分别前往两个池塘投放鱼食,试问他怎样走才能以最短距离回到住地?(请用尺规作图,保留作图痕迹,不写做法)13.如图,P和Q为△ABC边AB与AC上两点,在BC边上求作一点M, 使△PQM的周长最小。
13.4课题学习-最短路径问题

B A C
L
B
/
证明:
在L 上任取另一点C ',连结AC ' 、BC'、B'C'. ∵ 直线 L 是点B、B'的对称轴,点C、C' 在对称轴上, ∴CB=CB',C'B=C'B'. B ∴AC+CB=AC+CB'=AB'
A
C'
在△AC'B'中, AC'+C'B'>AB', ∴AC'+C'B>AC+CB, 即AC+CB 最小.
13.4课题学习 最短路径问题
提出问题
八年级(1)班同学做游戏,在活动区 域边放了一些球(如下图),小华按怎 样的路线跑,去捡哪个位置的球,才 能最快拿到球跑到目的地A?
A
B小华 l
探究一
如图,直线L两侧有两点A、B。 在直线L上求一点C,使它到A、B两 点的距离之和最小?
C 两点之间,线段最短。
A/
。
A C B小明 l
巩固新知
练 习 一
A
龟兔赛跑新规则:参赛者从A点出发到达直 线a上任意一点后,再回到直线a同侧的终点B, 最先达到终点者胜。下面是小猫、小猪、小猴、 小熊为他们设计的路线,其中路程最短的是()
B A a B A B A a B
C
C
a
C
a
C
小猫
小猪
A‘
小猴
小熊
练 习 二
巩固新知
A/
。
l2 N M A
B/
。
B小华
l1
八年级上册数学13.4课题学习 最短路径问题专项练习附答案 教师版

八年级上册数学13.4课题学习最短路径问题专项练习附答案一、单选题(共23题;共46分)1.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB 上的动点,则BM+MN的最小值是()C. 5D. 6A. 4B. 245【答案】C【解析】【解答】如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴1×10•BE=25,2解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故答案为:C.【分析】本题关键是确定点M、N分别在什么位置时,BM+MN最小。
首先根据AD是∠BAC平分线可知点B的对称点B'必在AC上,再根据垂线段最短的原理从B'向AB边引垂线段,与AD、AB的交点即为M、N,因为此时B'N=MN+B'M=MN+MB。
最后利用AB=AB',结合等腰三角形两腰上的高相等把求B'N的长转化为求△ABC边AC上的高BE,据此解答即可。
2.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A. 140°B. 100°C. 50°D. 40°【答案】B【解析】【解答】如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.根据轴对称的性质可得OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;因∠AOB=∠MOP+∠PON=40°,即可得∠COD=2∠AOB=80°,在△COD中,OC=OD,根据等腰三角形的性质和三角形的内角和定理可得∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,利用SAS判定△CON≌△PON,根据全等三角形的性质可得∠OCN=∠NPO=50°,同理可得∠OPM=∠ODM=50°,所以∠MPN=∠NPO+∠OPM=50°+50°=100°.故答案为:B.【分析】分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.3.如图,在矩形ABCD中,AD=4,∠DAC=30°,点P、E分别在AC、AD上,则PE+PD的最小值是()A. 2B. 2 √3C. 4D. 8√33【答案】B【解析】【解答】作D关于直线AC的对称点D′,过D′作D′E⊥AD于E,则D′E=PE+PD的最小值,∵四边形ABCD是矩形,∴∠ADC=90°,∵AD=4,∠DAC=30°,∴CD= 4√3,3∵DD′⊥AC,∴∠CDD′=30°,∴∠ADD′=60°,∴DD′=4,∴D′E=2 √3,故答案为:B.【分析】找出定直线AC,D是定点,可作出D的对称点D',连结D'E,当P点在交点时,由两点之间线段转化为D'E,且D'E与AD垂直时PE+PD的最小.4.如图,在锐角三角形ABC中,AC=6,△ABC的面积为15,∠BAC的平分线交BC与点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A. 4B. 5C. 6D. 7【答案】B【解析】【解答】解:如图,作N关于AD的对称点N′,连接MN′,作BN″⊥AC于N″交AD于M′.∵BM+MN=BM+MN′≤BN″,∴当M与M′,N与N″重合时,BN″最小,∵1×AC×BN″=15,AC=6,2∴BN″=5,∴BM+MN的最小值为5,故选B.【分析】如图,作N关于AD的对称点N′,连接MN′,作BN″⊥AC于N″交AD于M′.因为BM+MN=BM+MN′≤BN″,所以当M与M′,N与N″重合时,BN″最小,求出BN″即可解决问题.5.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. 2√3B. 2√6C. 3D. √6【答案】A【解析】【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE 是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2√3.又∵△ABE是等边三角形,∴BE=AB=2√3故所求最小值为2√3故选:A.【点评】此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题6.如图,已知点D是等边三角形ABC中BC的中点,BC=2,点E是AC边上的动点,则BE+ED的和最小值为()A. √5B. √7C. 3D. √3+1【答案】B【解析】【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD= √3,BD=CD=1,BB′=2AD=2 √3,作B′G⊥BC的延长线于G,∴B′G=AD= √3,在Rt△B′BG中,BG= √BB′2−B′G2=√(2√3)2−(√3)2=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG中,BD= √DG2+9B′G2=√22+(√3)2=√7.故BE+ED的最小值为√7.故选B.【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E即为所求的点.7.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A. 2√3B. 2√6C. 3D. √6【答案】A【解析】【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE 是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2√3.又∵△ABE是等边三角形,∴BE=AB=2√3故所求最小值为2√3故选:A.【点评】此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题8.如图,在锐角三角形ABC中AB= 4√2,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A. 4B. 5C. 6D. 2【答案】A【解析】【解答】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,{AE=AN∠EAM=∠NAMAM=AM,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵AB=4 √2,∠BAC=45°,此时△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故选A.【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.9.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。
2023-2024学年人教版八年级数学上学期:课题学习 最短路径问题(附答案解析)

第1页(共9页)
2023-2024学年人教版八年级数学上学期13.4课题学习 最短路
径问题
一.选择题(共6小题)
1.如图,点P 为∠AOB 内一点,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1,P 2
交OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 周长为( )
A .4
B .5
C .6
D .7
2.如图,直线L 是一条输水主管道,现有A 、B 两户新住户要接水入户,图中实线表示铺
设的管道,则铺设的管道最短的是( )
A .
B .
C .
D .
3.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,
Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是( )
A .
B .
C .
D .
4.如图,直线m 表示一条河,M ,N 表示两个村庄,欲在m
上的某处修建一个给水站,向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4课题学习最短路径问题
01基础题
知识点1运用“垂线段最短”解决最短路径问题
1.如图,点P是直线a外一点,PB⊥a,点A,B,C,D都在直线a上,下列线段中最短的是(B)
A.PA
B.PB
C.PC
D.PD
2.如图,l为河岸(视为直线),要想开一条沟将河里的水从A处引到田地里去,则应从河边l的何处开口才能使水沟最短,找出开口处的位置并说明理由.
解:图略.理由:垂线段最短.
知识点2运用“两点之间线段最短”解决最短路径问题
3.已知,如图,在直线l的同侧有两点A,B.
(1)在图1的直线上找一点P,使PA+PB最短;
(2)在图2的直线上找一点P,使PA-PB最长.
解:(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP.点P即为所求.图略.
(2)连接AB并延长,交直线l于点P.图略.
4.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂
直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?
解:①过点A作AP⊥a,并在AP上向下截取AA′,使AA′的长等于河的宽度;②连接A′B交b 于点D;③过点D作DE∥AA′交a于点C;④连接AC.则CD即为桥的位置.图略.
02中档题
5.茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短.
解:如图.
作法:①作点C关于OA的对称点C1,点D关于OB的对称点D1;②连接C1D1,分别交OA,OB于点P,Q,连接CP,DQ,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.
03综合题
6.(兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小,求∠AMN+∠ANM的度数.
解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN的周长最小值.作DA延长线AH.
∵∠DAB=120°,
∴∠HAA′=60°.
∴∠A′+∠A″=∠HAA′=60°.
∵∠A′=∠MAA′,∠NAD=∠A″,且∠A′+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠A′+∠MAA′+∠NAD+∠A″=2(∠A′+∠A″)=2×60°=120°.。