初二数学上期末测试卷及答案

合集下载

初二数学上期末试卷及解析

初二数学上期末试卷及解析

一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边,且a+b+c=10,a+c=8,则b的值为()A. 1B. 2C. 3D. 4解析:由a+c=8,得b=10-(a+c)=2。

故选B。

2. 若x²+4x+4=0,则x的值为()A. 2B. -2C. 1D. -1解析:由x²+4x+4=(x+2)²=0,得x=-2。

故选B。

3. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。

由a+b+c=12,得a+c=8,即2c=8,得c=4。

由等差数列的性质,得b-a=c-b,即a=2。

故选A。

4. 若x=1+√2,y=1-√2,则x+y的值为()A. 0B. 2C. -2D. 4解析:由x=1+√2,y=1-√2,得x+y=2。

故选B。

5. 若m、n、p是等比数列的前三项,且m+n+p=12,n²=4,则m的值为()A. 2B. 3C. 4D. 6解析:由n²=4,得n=±2。

由m+n+p=12,得m+p=10。

若n=2,则m+p=10,得m=8,p=2。

若n=-2,则m+p=10,得m=6,p=4。

由等比数列的性质,得m/p=n/m,即m²=np。

若n=2,则m²=4,得m=±2。

若n=-2,则m²=-8,无实数解。

故选A。

6. 若x²-2x+1=0,则x的值为()A. 1B. -1C. 0D. 2解析:由x²-2x+1=(x-1)²=0,得x=1。

故选A。

7. 若a、b、c是等差数列的前三项,且a+b+c=12,b+c=8,则a的值为()A. 2B. 3C. 4D. 5解析:由b+c=8,得b=4。

由a+b+c=12,得a+c=8,即2c=8,得c=4。

由等差数列的性质,得b-a=c-b,即a=2。

人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试卷有答案

人教版数学八年级上册期末考试试题一、单选题(本大题共16小题,共48分)1.若一个三角形的两边长分别是3和4,则第三边的长可能是A.8B.7C.2D.12.下列图形中具有不稳定性的是( )A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.如图,平移ΔABC得到ΔDEF,若∠DEF=35°,∠ACB=50°,则∠A的度数是A.65°B.75°C.95°D.105°4.探究多边形的内角和时,需要把多边形分割成若干个三角形.在分割六边形时,所分三角形的个数不可能的是A.3个B.4个C.5个D.6个5.如图,在RtΔABC中,∠ABC=90°,BD是高,E是ΔABC外一点,BE=BA,∠E=∠C,若DE=23BD,AD=95,BD=125,则ΔBDE的面积为A.2725B.1825C.3625D.54256.剪纸是我国古老的民间艺术.下列四个剪纸图案为轴对称图形的是A. B. C. D.7.如图,在等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,若∠BEC= 90°,则∠ACE的度数A.60°B.45°C.30°D.15°8.下列式子不能用“两数和乘以这两数差的公式”计算的是A.(3b−a)(3b+a)B.(3b−a)(−3b−a)C.(3b−a)(6b+2a)D.(3b−a)(a−3b)9.下列多项式相乘,能用平方差公式计算的是A.(5x+2y)(3x−2y)B.(2x−y)(2x+y)C.(−m+n)(m−n)D.(a−2b)(2a+b)10.如图是小明的作业,那么小明做对的题数为A.2B.3C.4D.511.下列从左边到右边的变形中,是因式分解的是A.a2−9=(a−3)(a+3)B.(x−y)2=x2−y2C.x2−4+4x=(x+2)(x−2)+4xD.x2+3x+1=x(x+3+1x)12.如果多项式x2−5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是A.2B.3C.4D.513.下列分式中属于最简分式的是( )A.x+2y+2B.1−x2x−2C.2x+2y6x−6yD.x2−9x+314.如果把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,那么分式的值A.不变B.缩小为原来的12C.变为原来的2倍D.变为原来的4倍15.假期正是读书的好时候,小颖同学到重庆图书馆借了一本书,共280页,要在两周借期内读完,当她读了一半时,发现平均每天要多读21页才能在借期内读完,她读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是A.140x+140x−21=14B.280x+280x+21=14C.140140101016.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是A.40×1.25x−40x=800 B.800x−8002.25x=40C.800x−8001.25x=40D.8001.25x−800x=40二、填空题(本大题共6小题,共18分)17.一个正多边形的每个内角都等于120°,那么它的内角和是______.18.如图,BD是ΔABC的角平分线,DE⊥AB于点E.ΔABC的面积为20,AB=12,BC=8,则DE的长为______.19.两位同学将同一个二次三项式进行因式分解时,一位同学因看错了一次项系数而分解成(x−1)(x−9);另一位同学因看错了常数项而分解成(x−2)(x−4),则原多项式因式分解的正确结果是:______.20.如图,在ΔABC中,BC边的垂直平分线交BC于D,交AB于E.若CE平分∠ACB,∠B=42°,则∠A=______.21.某校九年级学生去距学校6千米的地铁站参观,一部分同学们步行先走,过了40分钟后,其余学生乘坐公共汽车出发,结果他们同时到达,已知公共汽车的速度的步行学生速度的3倍,求步行学生的速度.若设步行学生的速度为x km/h,则可列方程______.22.化简:(1x−4−8x2−16)⋅(x+4)=______.三、计算、画图、解答题(本大题共6小题,共48分)23.如图,∠B=∠E,BF=EC,AB=DE.求证:AC//DF.24.在如图所示的网格(每个小正方形的边长为1)中,ΔABC的顶点A的坐标为(−2,1),顶点B的坐标为(−1,2). (1)在网格图中画出两条坐标轴,并标出坐标原点; (2)作ΔA'B'C'关于x轴对称的图形ΔA''B''C''; (3)求ΔABB''的面积.25.因式分解(1)3a2−6ab+3b2. (2)m2(m−2)+4(2−m).26.先化简再求值: (1)y(x+y)+(x+y)(x−y)−x2,其中x=−2,y=12. 27.(2)2(a−3)(a+2)−(3+a)(3−a),其中a=−2.27.已知分式y−a y+b,当y=−3时无意义,当y=2时分式的值为0,求当y=−7时分式的值.28.为庆祝建党100周年,学校组织初二学生乘车前往距学校132千米的某革命根据地参观学习.二班因事耽搁,比一班晚半小时出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果和一班同时到达.求一班的平均车速是多少千米/时?答案和解析1.【答案】C;【解析】解:设第三边长x. 根据三角形的三边关系,得1<x<7. 故选:C. 根据三角形的三边关系求得第三边的取值范围解答即可. 此题主要考查三角形三边关系的知识点,此题比较简单,注意三角形的三边关系.2.【答案】A;【解析】解:等腰三角形,直角三角形,锐角三角形都具有稳定性, 长方形不具有稳定性. 故选:A. 根据三角形具有稳定性解答. 此题主要考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.【答案】C;【解析】解:∵平移ΔABC得到ΔDEF,∠DEF=35°, ∴∠B=∠DEF=35°, ∵∠ACB=50°, ∴∠A=180°−∠B−∠ACB=95°. 故选:C. 由平移的性质可得∠B=∠DEF=35°,从而利用三角形的内角和定理即可求∠A的度数. 此题主要考查三角形的内角和定理,平移的性质,解答的关键是由平移的性质得到∠B=∠DEF.4.【答案】A;【解析】解:分割六边形,可以从一顶点连接对角线,分割成四个三角形,如图1; 可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形,如图2; 可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形,如图3. 故选:A. 分割六边形,可以从一顶点连接对角线,分割成四个三角形;可以在某条边上任取一点,连接这点和各顶点,分割成五个三角形;可以在六边形内取任取一点,连接这点和各顶点,分割成六个三角形. 此题主要考查了多边形内角和问题,解题关键是把多边形分割成若干三角形来研究.5.【答案】C;【解析】解:∵∠ABD=∠C=∠E,,AB=BE, 在BD上截取BF=DE, 在ΔABF与ΔBED中, AB=BE∠ABD=∠EBF=DE, ∴ΔABF≌ΔBED(SAS), ∴SΔBDE=SΔABF. ∴SΔABD=12BD⋅AD=12⋅125⋅95=5425. ∵DE=23BD, ∴BF=23BD, ∴SΔABF=23SΔABD=3625, ∴SΔBDE=3625. 故选:C. 根据SAS证明ΔABF与ΔBED全等,进而利用全等三角形的性质解答即可. 此题主要考查全等三角形的判定和性质,关键是根据SAS证明ΔABF与ΔBED全等.6.【答案】C;【解析】解:A、不是轴对称图形,本选项不符合题意; B、不是轴对称图形,本选项不符合题意; C、是轴对称图形,本选项符合题意; D、不是轴对称图形,本选项不符合题意. 故选:C. 根据轴对称图形的概念求解即可. 此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,7.【答案】D;【解析】解:∵等边三角形ABC中,AD⊥BC, ∴BD=CD,即:AD是BC的垂直平分线, ∴BE=CE, ∴∠EBC=∠ECB, ∵∠BEC=90°, ∴∠EBC=∠ECB=45°, ∵ΔABC是等边三角形, ∴∠ACB=60°, ∴∠ACE=∠ACB−∠ECB=15°, 故选:D. 先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论. 此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.【答案】D;【解析】解:A、(3b−a)(3b+a)=(3b)2−a2,故A不符合题意; B、(3b−a)(−3b−a)=−(3b−a)(3b+a)=−[(3b)2−a2],故B不符合题意; C、(3b−a)(6b+2a)=2(3b−a)(3b+a)=2[(3b)2−a2],故C不符合题意; D、(3b−a)(a−3b)=−(a−3b)(a−3b)=−(a−3b)2,故D符合题意; 故选:D. 根据平方差公式进行分析求解即可. 此题主要考查整式的混合运算,解答的关键是对平方差公式的掌握与应用.9.【答案】B;【解析】解:A、原式=15x2−10xy+6xy−4y2=15x2−4xy−4y2,不符合题意; B、原式=4x2−y2,符合题意; C、原式=−(m−n)2=−(m2−2mn+n2)=−m2+2mn−n2,不符合题意; D、原式=2a2+ab−4ab−2b2=2a2−3ab−2b2,不符合题意. 故选:B. 利用平方差公式的结构特征判断即可. 此题主要考查了平方差公式,熟练掌握平方差公式的结构特征是解本题的关键.10.【答案】A;【解析】解:(1)∵a m=3,a n=7, ∴a m+n=a m⋅a n=3×7=21,本小题正确; (2)原式=(−0.125)2020×82020×8 =(−0.125×8)2020×8 =(−1)2020×8 =1×8 =8,本小题正确; (3)原式=2a2b÷ab−ab÷ab (4)原式=(−2)3⋅a3 =−8a3,本小题错误; (5)原式=2x2+x−6x−3 =2x2−5x−3,本小题错误, 则小明做对的题数为2. 故选:A. (1)利用同底数幂的乘法法则计算得到结果,即可作出判断; (2)原式变形后,逆用积的乘方运算法则计算得到结果,即可作出判断; (3)原式利用多项式除以单项式法则计算得到结果,即可作出判断; (4)原式利用积的乘方运算法则计算得到结果,即可作出判断; (5)原式利用多项式乘多项式法则计算,合并得到结果,即可作出判断. 此题主要考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】A;【解析】解:A、符合因式分解的定义,故本选项符合题意; B、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; C、右边不是整式的积的形式,不符合因式分解的定义,故本选项不符合题意; D、右边不是整式的积的形式(含有分式),不符合因式分解的定义,故本选项不符合题意. 故选:A. 多项式的因式分解是将多项式变形为几个整式的乘积形式,由此解答即可. 此题主要考查因式分解的定义.解答该题的关键是掌握因式分解的定义,属于基础题型.12.【答案】C;【解析】解:当c=4时, x2−5x+c =x2−5x+4 =(x−1)(x−4). 故选:C. ∵4=−1×(−4),−1+(−4)=−5,∴可以用十字相乘法因式分解. 此题主要考查了因式分解−十字相乘法,熟练掌握十字相乘法分解因式的方法是解题关键.13.【答案】A;【解析】解:A、x+2y+2是最简分式,故本选项符合题意; B、原式=−12,不是最简分式,故本选项不符合题意; C、原式=x+y3x−3y,不是最简分式,故本选项不符合题意; D、原式=x−3,该式子不是最简分式,故本选项不符合题意; 故选:A. 最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 此题主要考查了分式的基本性质和最简分式,能熟记分式的化简过程是解此题的关键,首先要把分子分母分解因式,然后进行约分.14.【答案】C;【解析】解:∵2.(2x)2−3.(2y)22x−2y=8x2−12y22x−2y=4(2x2−3y2)2(x−y)=2(2x2−3y2)x−y, ∴把分式2x2−3y2x−y中的x和y的值都变为原来的2倍,则分式的值变为原来的2倍. 故选:C. 根据分式的基本性质解决此题. 此题主要考查分式的基本性质,熟练掌握分式的基本性质是解决本题的关键.15.【答案】C;【解析】解:读前一半用的时间为:140x, 读后一半用的时间为:140x+21. 由题意得,140x+140x+21=14, 故选:C. 设读前一半时,平均每天读x页,关键描述语为:“在两周借期内读完”;等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可. 此题主要考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.16.【答案】C;【解析】解:小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒, 方程是800x−8001.25x=40, 故选:C. 先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 该题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.17.【答案】720°;【解析】解:设所求正多边形边数为n, ∵正n边形的每个内角都等于120°, ∴正n边形的每个外角都等于180°−120°=60°. 又因为多边形的外角和为360°, 即60°⋅n=360°, ∴n=6. 所以这个正多边形是正六边形. 所以内角和是120°×6=720°. 故答案为:720°. 设所求正多边形边数为n,根据内角与外角互为邻补角,可以求出外角的度数.根据任何多边形的外角和都是360度,由60°⋅n=360°,求解即可. 此题主要考查了多边形内角和外角的知识,解答本题的关键在于熟练掌握任何多边形的外角和都是360°并根据外角和求出正多边形的边数.18.【答案】2;【解析】解:作DF⊥BC于F, ∵BD是ΔABC的角平分线,DE⊥AB,DF⊥BC, ∴DF=DE, ∴12×AB×DE+12×BC×DF=20,即12×12×DE+12×8×DF=20, ∴DF=DE=2. 故答案为:2. 作DF⊥BC于F,根据角平分线的性质得到DF=DE,根据三角形面积公式计算即可. 此题主要考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解答该题的关键.19.【答案】(x-3)2;【解析】解:根据题意得:(x−1)(x−9)=x2−10x+9,(x−2)(x−4)=x2−6x+ 8, 原多项式为x2−6x+9=(x−3)2. 故答案为:(x−3)2. 根据两位同学的结果确定出原多项式,分解即可. 此题主要考查了因式分解−十字相乘法,熟练掌握因式分解的方法是解本题的关键.20.【答案】54°;【解析】解:∵E在线段BC的垂直平分线上, ∴BE=CE, ∵CE平分∠ACB, ∴∠ACD=2∠ECB=84°, 又∵∠A+∠B+∠ACB=180°, ∴∠A=180°−∠B−∠ACB=54°, 故答案为:54°. 由线段垂直平分线和角平分线的定义可得∠B=∠ECB=∠ACE=40°,在ΔABC中由三角形内角和定理可求得∠A. 此题主要考查线段垂直平分线的性质,掌握垂直平分线上的点到线段两端点的距离相等是解答该题的关键.21.【答案】6x−63x=23;【解析】解:设步行学生的速度为x km/h,则汽车的速度为3x km/h, 由题意得,6x−63x=23, 故答案为:6x−63x=23. 表示出汽车的速度,然后根据汽车行驶的时间等于步行行驶的时间减去时间差列方程即可. 此题主要考查了实际问题抽象出分式方程,读懂题目信息,理解两种行驶方式的时间的关系是解答该题的关键.22.【答案】1;【解析】解:(1x−4−8x2−16)⋅(x+4) =x+4−8(x+4)(x−4)⋅(x+4) =x−4(x+4)(x−4)⋅(x+4) =1, 故答案为:1. 先根据分式的减法法则算减法,再算乘法即可. 此题主要考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.23.【答案】证明:∵BF=EC, ∴BF+CF=EC+CF, ∴BC=EF, 在△ABC和△DEF中, BC=EF∠B=∠EAB=DE, ∴△ABC≌△DEF(SAS), ∴∠ACB=∠DFE, ∴AC∥DF.;【解析】 证明ΔABC≌ΔDEF(SAS),由全等三角形的性质得出∠ACB=∠DFE,由平行线的判定可得出结论. 此题主要考查了全等三角形的判定与性质、平行线的判定.解答该题的关键是证明ΔABC≌ΔDEF.24.【答案】解:(1)如图,平面直角坐标系如图所示: (2)如图,△A″B″C″即为所求; =3×4-12×1×1-12×3×3-12×2×4=3. (3)S△ABB″;【解析】 (1)根据A,B两点坐标确定平面直角坐标系即可; (2)利用轴对称的性质分别作出A',B',C'的对应点A'',B'',C''即可; (3)把三角形面积看成矩形面积减去周围三个三角形面积即可. 此题主要考查作图−轴对称变换,三角形的面积等知识,解答该题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.25.【答案】解:(1)原式=3(a2-2ab+b2) =3(a-b)2; (2)原式=m2(m-2)-4(m-2) =(m-2)(m2-4) =(m-2)(m-2)(m+2) =(m-2)2(m+2).;【解析】 (1)先提公因式3,再利用完全平方公式即可进行因式分解; (2)先提公因式(m−2),再利用平方差公式进行因式分解即可. 此题主要考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键.26.【答案】解:(1)原式=xy+y2+x2-y2-x2 =xy, 当x=-2,y=12时, 原式=-2×12=-1; (2)原式=2(a2+2a-3a-6)-(9-a2) =2a2-2a-12-9+a2 =a2-2a-21, 当a=-2时,原式=(-2)2-2×(-2)-21 =4+4-21 =-13.;【解析】 (1)直接利用单项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案; (2)直接利用多项式乘多项式以及平方差公式化简,再合并同类项,最后把已知数据代入得出答案. 此题主要考查了整式的混合运算−化简求值,正确运用乘法公式计算是解题关键.27.【答案】解:∵当y=-3时无意义, ∴-3+b=0, ∴b=3. ∵当y=2时分式的值为0, ∴2-a=0,2+3≠0, ∴a=2. ∴该分式为y−2y+3, 当x=-7时, y−2y+3 =−7−2−7+3 =−9−4 =94. 答:当x=-7时分式的值为94.;【解析】 分式无意义的条件是分母等于0,分式等于0的条件是分子等于0,且分母不等于0. 此题主要考查分式无意义的条件和分式值为0的条件,解题时注意分式为0的条件是分子等于0,且分母不等于0.28.【答案】解:设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时, 依题意得:132x-1321.2x=12, 解得:x=44, 经检验,x=44是原方程的解,且符合题意. 答:一班的平均车速是44千米/时.;【解析】 设一班的平均车速是x千米/时,则二班的平均车速是1.2x千米/时,利用时间=路程÷速度,结合二班比一班少用半小时,即可得出关于x的分式方程,解之经检验后即可得出一班的平均车速. 此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解答该题的关键.。

八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷(答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣24.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)5.(3分)化简正确的是()A.B.C. D.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.29.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标.12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=度.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△A BC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下四家银行的标志图中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故错误;B、不是轴对称图形,故正确;C、是轴对称图形,故错误;D、不轴对称图形,故错误.故选:B.2.(3分)下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.(3分)使分式有意义的x的取值范围是()A.x>﹣2 B.x<2 C.x≠2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,即x≠﹣2.故选:D.4.(3分)下列各式由左边到右边的变形中,是因式分解的是()A.2xy+6xz+3=2x(y+3z)+3 B.(x+6)(x﹣6)=x2﹣36C.﹣2x2﹣2xy=﹣2x(x+y) D.3a2﹣3b2=3(a2﹣b2)【解答】解:A、在等式的右边最后计算的是和,不符合因式分解的定义,故A不正确;B、等式从左边到右边属于整式的乘法,故B不正确;C、等式从左边到右边把一个多项式化成两个整式积的形式,符合因式分解的定义,故C正确;D、多项式a2﹣b2仍然可以继续分解为(a+b)(a﹣b),故D属于分解不彻底,故D不正确;故选:C.5.(3分)化简正确的是()A.B.C. D.【解答】解:原式==x+1,故选:C.6.(3分)如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD ≌△C'O'D',故选:B.7.(3分)如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选:B.8.(3分)如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.2【解答】解:∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.9.(3分)如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于()A.80°B.60°C.40°D.30°【解答】解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.∴∠B=∠AED=40°故选:C.10.(3分)如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,AD=EC,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③由②得:∠BDC=∠BEA,又∵∠ADE=∠BDC,∴∠ADE=∠BEA,∴AD=AE,∴AD=AE=EC,③正确;④∵AD=AE=EC,AE+CE>AD+CD,∴AD>CD,∴AC≠2CD,故④错误,故选:C.二、填空题(共5小题,每小题3分,满分15分)11.(3分)写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)12.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.13.(3分)若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的顶角的度数为80°或40°.【解答】解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,顶角∠B=80°;当∠B=∠C为底角时,2(x+30)+x=180°,解得x=40°,顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为:80°或40°.14.(3分)如图,△ABC中,点D在边BC上,若AB=AD=CD,∠BAD=100°,则∠C=20度.【解答】解:∵若AB=AD=CD,∠BAD=100°,∴∠B=∠ADC=(180°﹣100°)=40°,又∵在等腰三角形ADC中,∠ADB是三角形ADC的外角,∴∠BDA=∠DAC+∠C,又∵∠C=∠DAC,∴∠C=×40°=20°,故答案为:20.15.(3分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=96°.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三、解答题(共75分)16.(8分)计算(1)(a﹣1)2﹣a(a+2)(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)【解答】解:(1)(a﹣1)2﹣a(a+2)=a2﹣2a+1﹣a2﹣2a=﹣4a+1;(2)(x﹣6)(x+4)+(3x+2)(2﹣3x)=x2﹣2x﹣24+4﹣9x2=﹣8x2﹣2x﹣20.17.(8分)解决下列两个问题:(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;解:PA+PB的最小值为4.(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)【解答】解:(1)点P的位置如图所示:∵EF垂直平分BC,∴B、C关于EF对称,设AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,即最小值为4.故答案为4.(2)如图,①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P,则点P即为所求.18.(9分)先化简(1﹣)÷,然后从﹣2≤a≤2的范围内选取一个合适的整数作为a的值代入求值.【解答】解:原式=•=.当a=0时,原式==2.19.(9分)如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.20.(9分)某市为节约水资源,从2016年1月1日起调整居民用水价格,每立方米水费比2015年上涨.小红家2015年8 月的水费是18元,而2016年8月的水费是33元.已知小红家2016年8月的用水量比2015年8月的用水量多5m3,求该市2015年居民用水的价格.【解答】解:设2015年居民用水价格为x元/m3,则2016年1月起居民用水价格为(1+)x元/m3.…(1分)依题意得:﹣=5.解得x=1.8.检验:当x=1.8时,(1+)x≠0.所以,原分式方程的解为x=1.8.答:2015年居民用水价格为1.8元/m3.21.(10分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.22.(11分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)作AF⊥CD于点F,求证:△AFD≌△CEB.(3)请直接写出CD与BE的数量关系(不需证明).【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠A=∠B=45°,∵AD=AC,∴∠ACD=∠ADC==67.5°,∴∠BCD=90°﹣67.5°=22.5°;(2)∵AD=AC,∴CF=FD=CD,∠FAD=CAB=22.5°,∵∠ADC=67.5°,∴∠BDE=67.5°,∴∠DBE=22.5°,∴∠CBE=67.5°,在△AFD和△CEB中,,∴△AFD≌△CEB,(3)CD=2BE,理由如下;∵△AFD≌△CEB,∴BE=DF,∴CD=2BE.23.(11分)问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC 的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.【解答】特例探究:证明:∵△ABC是等边三角形,∴AB=AC,∠DBA=∠EAC=60°,在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);解:归纳证明:△ABD与△CAE全等.理由如下:∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,∴∠DBA=∠EAC=120°.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS);拓展应用:∵点O在AB的垂直平分线上,∴OA=OB,∴∠OBA=∠BAC=50°,∴∠EAC=∠DBC.在△ABD与△CAE中,,∴△ABD≌△CAE(SAS),∴∠BDA=∠AEC=32°,∴∠BAD=∠OBA﹣∠BDA=18°.。

八年级数学上册期末测试卷及答案【真题】

八年级数学上册期末测试卷及答案【真题】

八年级数学上册期末测试卷及答案【真题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.将9.52变形正确的是( )A .9.52=92+0.52B .9.52=(10+0.5)(10﹣0.5)C .9.52=102﹣2×10×0.5+0.52D .9.52=92+9×0.5+0.523.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.化简x 1x -,正确的是( ) A .x - B .xC .﹣x -D .﹣x 5.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或36.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.下列图形中,是轴对称图形的是( )A .B .C .D .8.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°9.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为_______cm .3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.6.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,再求值:已知1322x=+,求()221-4412x x xx x+-+--的值3.解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.4.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、A6、A7、B8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、223、13k <<.4、(﹣5,4).5、40°6、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)21x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩.2、1-3、则不等式组的解集是﹣1<x ≤3,不等式组的解集在数轴上表示见解析.4、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、(1)1,20 km/h ;(2)95. 6、甲、乙两个工厂每天分别能加工40件、60件新产品。

八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,满分30分,每小题的4个选项中,仅有一个符合题目要求,请把符合题目要求的选项序号填在题后括号内)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.m6÷m2=m3B.3m3﹣2m2=m C.(3m2)3=27m6D.m•2m2=m2 3.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4 4.(3分)分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣15.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF6.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个7.(3分)下列各式可以写成完全平方式的多项式有()A.x2+xy+y2 B.x2﹣xy+ C.x2+2xy+4y2D.8.(3分)将下列多项式分解因式,结果中不含因式x+1的是()A.x2﹣1 B.x2﹣2x+1 C.x(x﹣2)+(x﹣2) D.x2+2x+19.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.810.(3分)如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2 B.2+C.4 D.4+2二、填空题(本题共5小题,每小题3分,满分15分,把答案写在题中横线上)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.12.(3分)使分式的值为0,这时x=.13.(3分)在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=.14.(3分)若x2+y2=10,xy=﹣3,则(x+y)2=.15.(3分)平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm 和6cm的两部分,则平行四边形ABCD的周长为cm.三、解答题(解答题有必要的文字说明,证明过程或计算步骤)16.(10分)因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)17.(9分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.18.(10分)解方程(1)(2)19.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.20.(8分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.21.(9分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍.若甲、乙两工程队合作只需要10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是 4.5万元,乙工程队每天的工程费用是 2.5万元,请你设计一种方案,既能按时完工,又使工程费用最少.22.(9分)如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.23.(12分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题3分,满分30分,每小题的4个选项中,仅有一个符合题目要求,请把符合题目要求的选项序号填在题后括号内)1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:B.2.(3分)下列运算正确的是()A.m6÷m2=m3B.3m3﹣2m2=m C.(3m2)3=27m6D.m•2m2=m2【解答】解:A、m6÷m2=m4,故A错误;B、3m3﹣2m2不能合并,故B错误;C、(3m2)3=27m6,故C正确;D、m•2m2=m3,故D错误;故选:C.3.(3分)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【解答】解:a2﹣4a=a(a﹣4),故选:A.4.(3分)分式有意义,则x的取值范围是()A.x≠1 B.x=1 C.x≠﹣1 D.x=﹣1【解答】解:根据题意可得x﹣1≠0;解得x≠1;故选:A.5.(3分)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.6.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.7.(3分)下列各式可以写成完全平方式的多项式有()A.x2+xy+y2 B.x2﹣xy+ C.x2+2xy+4y2D.【解答】解:A、应为x2+2xy+y2,原式不能写成完全平方式,故错误;B、,正确;C、应为x2+4xy+4y2,原式不能写成完全平方式,故错误;D、应为,原式不能写成完全平方式,故错误;故选:B.8.(3分)将下列多项式分解因式,结果中不含因式x+1的是()A.x2﹣1 B.x2﹣2x+1 C.x(x﹣2)+(x﹣2) D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项不合题意;B、x2﹣2x+1=(x﹣1)2,故此选项符合题意;C、x(x﹣2)+(x﹣2)=(x+1)(x﹣2),故此选项不合题意;D、x2+2x+1=(x+1)2,故此选项不合题意;故选:B.9.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.10.(3分)如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M,N分别是AB,BC的中点,若PM+PN的最小值为2,则△ABC的周长是()A.2 B.2+C.4 D.4+2【解答】解:作M点关于AC的对称点M′,连接M'N,则与AC的交点即是P点的位置,∵M,N分别是AB,BC的中点,∴MN是△ABC的中位线,∴MN∥AC,∴,∴PM′=PN,即:当PM+PN最小时P在AC的中点,∴MN=AC∴PM=PN=1,MN=∴AC=2,AB=BC=2PM=2PN=2∴△ABC的周长为:2+2+2=4+2.故选:D.二、填空题(本题共5小题,每小题3分,满分15分,把答案写在题中横线上)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.12.(3分)使分式的值为0,这时x=1.【解答】解:由题意得:,解得x=1,故答案为1.13.(3分)在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B=55°.【解答】解:∵在Rt△ABC中,锐角∠A=35°,∴另一个锐角∠B=90°﹣35°=55°,故答案为:55°.14.(3分)若x2+y2=10,xy=﹣3,则(x+y)2=4.【解答】解:∵x2+y2=10,xy=﹣3,∴(x+y)2=x2+2xy+y2=10﹣6=4;故答案为:4.15.(3分)平行四边形ABCD中,∠ABC的角平分线BE将边AD分成长度为5cm 和6cm的两部分,则平行四边形ABCD的周长为32或34cm.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,(1)当AE=5时,AB=5,平行四边形ABCD的周长是2×(5+5+6)=32;(2)当AE=6时,AB=6,平行四边形ABCD的周长是2×(5+6+6)=34;故答案为:32或34.三、解答题(解答题有必要的文字说明,证明过程或计算步骤)16.(10分)因式分解(1)﹣x3+2x2y﹣xy2(2)x2(x﹣2)+4(2﹣x)【解答】解:(1)﹣x3+2x2y﹣xy2=﹣x(x2﹣2xy+y2)=﹣x(x﹣y)2;(2)x2(x﹣2)+4(2﹣x)=(x﹣2)(x2﹣4)=(x+2)(x﹣2)2.17.(9分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.18.(10分)解方程(1)(2)【解答】解:(1)+1=,去分母得:4x+2(x+3)=7,去括号得:4x+2x+6=7,移项得:4x+2x=7﹣6,合并同类项得:6x=1,把系数化为1得:x=,检验:把x=代入2(x+3)≠0,∴分式方程的解为x=;(2)=﹣1,去分母得:3(5x﹣4)=4x+10﹣3(x﹣2),去括号得:15x﹣12=4x+10﹣3x+6,移项得:15x﹣4x+3x=10+6+12,合并同类项得:14x=28,系数化为1得:x=2,检验:把x=2代入3(x﹣2)=0,∴分式方程无解.19.(8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.【解答】解:(1)如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.20.(8分)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.【解答】(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC;(2)解:∵△AOB≌△DOC,∴OA=OD,又E是AD的中点,∴OE⊥AD,即∠AEO=90°.21.(9分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍.若甲、乙两工程队合作只需要10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是 4.5万元,乙工程队每天的工程费用是 2.5万元,请你设计一种方案,既能按时完工,又使工程费用最少.【解答】解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.根据题意得:,方程两边同乘以2x,得2x=30解得:x=15经检验,x=15是原方程的解.∴当x=15时,2x=30.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)因为甲乙两工程队均能在规定的40天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:4.5×15=67.5(万元);方案二:由乙工程队单独完成.所需费用为:2.5×30=75(万元);方案三:由甲乙两队合作完成.所需费用为:(4.5+2.5)×10=70(万元).∵75>70>67.5∴应该选择甲工程队承包该项工程.22.(9分)如图,方格纸中每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)画出△ABC关于y轴成轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)(2)写出A1、B1、C1的坐标;(3)求出△A1B1C1的面积.【解答】解:(1)如图:△A1B1C1即为所求;(2)A1(1,5),B1(1,0),C1(4,3);(3)△A1B1C1的面积:×5×3=7.5.23.(12分)如图所示,把纸片△A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的式子表式)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.【解答】解:(1)由折叠的性质得出△ADE≌△A′DE,∠ADE=∠A′DE,∠AED=∠A′ED,∠A=∠A′,(2)∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠1=180°﹣2∠AED,∠2=180°﹣2∠ADE,∵∠AED=x,∠ADE=y,∴∠1=180°﹣2∠AED=180°﹣2x,∠2=180°﹣2∠ADE=180°﹣2y,(3)∵∠A′+∠A′DE+∠A′ED=180°,∴∠A′DE+∠A′E D=180°﹣∠A′,∵∠A=∠A′,∴∠A′DE+∠A′ED=180°﹣∠A,∵∠A′DE=∠ADE,∠A′ED=∠AED∴∠ADE+∠AED=180°﹣∠A,∵∠1+2∠AED=180°,∠2+2∠ADE=180°,∴2(∠AED+∠ADE)=360°﹣∠1﹣∠2,∴∠AED+∠ADE=180°﹣(∠1+∠2),∴∠A=(∠1+∠2),∴2∠A=∠1+∠2.。

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.04.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1 7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x2﹣3x=.12.(3分)方程=1的解是.13.(3分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD的周长是.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.21.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形【解答】解:三角形具有稳定性.故选:A.2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选:C.3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.0【解答】解:根据题意得,x﹣1=0且x+1≠0,解得x=1且x≠﹣1,所以x=1.故选:A.4.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1【解答】解:A、(x3)2=x6,此选项错误;B、(﹣2x)2÷x=4x2÷x=4x,此选项正确;C、(x+y)2=x2+2xy+y2,此选项错误;D、+=﹣==﹣1,此选项错误;故选:B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠A PF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE , ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF , ∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .故④正确, 故选:C .二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x 2﹣3x= x (x ﹣3) . 【解答】解:x 2﹣3x=x (x ﹣3).故答案为:x (x ﹣3)12.(3分)方程=1的解是 x=3 .【解答】解:去分母得:x ﹣1=2, 解得:x=3,经检验x=3是分式方程的解, 故答案为:x=313.(3分)如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是 15 .【解答】解:∵DE 是BC 的垂直平分线, ∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15, 故答案为:15.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=﹣10或10.【解答】解:∵代数式x2+kx+25是一个完全平方式,∴k=﹣10或10.故答案为:﹣10或10.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)【解答】解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷2ab=4ab÷2ab=2;(2)原式=•(﹣)=﹣.17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【解答】解:(1)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当xy=1时,原式=9;(2)原式=1﹣+=1﹣+=1+=,当x=0时,原式=2.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∵∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,即∠ADC=90°,∴∠CAD+∠C=90°,∵BF⊥AC,∠BAC=45°,∴∠CBF+∠C=90°,∠BFC=∠AFE=90°,BF=AF,∴∠CAD=∠CBF;在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA).21.(8分)计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案

八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。

答案:97. 4的立方是_________。

答案:648. 5的平方根是_________。

答案:±√59. 6的立方根是_________。

答案:∛610. 7的平方根是_________。

答案:±√7三、解答题11. 解方程:2x + 3 = 9。

答案:x = 312. 解方程:3x 2 = 8。

答案:x = 313. 解方程:4x + 5 = 17。

答案:x = 314. 解方程:5x 6 = 19。

答案:x = 515. 解方程:6x + 7 = 23。

答案:x = 216. 解方程:7x 8 = 21。

答案:x = 517. 解方程:8x + 9 = 35。

答案:x = 418. 解方程:9x 10 = 29。

答案:x = 519. 解方程:10x + 11 = 41。

答案:x = 320. 解方程:11x 12 = 39。

答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014学年八年级(上)数学期末测试题
(测试内容:三角形、全等三角形、轴对称、整式的乘除与因式分解、分式)
(时间:120分钟 总分:150分 )
一、 精心选一选:(本题共32分,每小题4分)
1、下列运算中,正确的是( )。

A 、x 3
·x 3
=x 6
B 、3x 2
÷2x=x C 、(x 2)3
=x 5
D 、(x+y 2)2
=x 2
+y 4
2、下列图形中,不是轴对称图形的是( )。

3、下列各式由左边到右边的变形中,是分解因式的为( ) A 、a (x + y) =a x + a y B 、x 2
-4x+4=x(x -4)+4 C 、10x 2
-5x=5x(2x -1) D 、x 2-16+3x=(x -4)(x+4)+3x
4、如果把y
x y
322-中的x 和y 都扩大5倍,那么分式的值( )
A 、扩大5倍
B 、不变
C 、缩小5倍
D 、扩大4倍
5、如图,E 、B 、F 、C 四点在一条直线上,EB=CF,∠A=∠D 再添一个条件仍不能证明ΔABC ≌ΔDEF 的是( )
A .AB=DE B. DF ∥AC C .∠E=∠ABC D .A
B ∥DE
第5题 第8题
6、已知m 6x =,3n x =,则2m n
x
-的值为( )。

A 、9
B 、
43 C 、12 D 、34
7、如图,C 、E 和B 、D 、F 分别在∠GAH 的两边上且AB=BC=CD=DE=EF ,若∠A=18°,
则∠GEF 的度数是( ) A.80° B.90°
C.100°
D.108°
8、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .则四个结论:① AD=BE ;②∠OED=∠EAD ;③ ∠AOB=60°; ④ DE=DP 中正确的是
A. ①②③
B. ①②④
C. ①③
D. ①④
二、 细心填一填:(本题共32分,每小题4分)
9、计算(-3a 3
)·(-2a)-2
=_____________ 10、当
_______时,分式1
-x 3
无意义;当
______时,分式3
9
x 2--x 的值为0.
11、如图,点P 在∠AOB 的平分线上, 若使△AOP ≌△BOP ,则需添加的一个
条件是 ___________( 写一个即可) 12、因式分解:3
2
2
6126y xy y x +-=
13、多项式1a 42
+加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是______________________。

(填上两个你认为正确的即可) 14、甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,
A
B
C
D
A
B
F
E
C
D
A
B
P
O
E
C
A
H
F
G
B
A
则b 小时甲追上乙.那么甲的速度是乙的速度的 倍。

15、等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,•则这
个等腰三角形的底边长是________.
16、大家一定知道杨辉三角(Ⅰ),观察下列等式(Ⅱ)
1
2
2
2
3
3
2
2
3
4432234
()()2()33()464a b a b
a b a ab b
a b a a b ab b
a b a a b a b ab b +=++=+++=++++=++++

根据前面各式规律,则5
()a b += .
三、 认真做一做:(本题共86分)
17、计算(8分)
(1)|-3|-(5-1)0
+(
4
1)-1-(-1)4 (2)()a a a a a -3361223÷+-
18、(8分)解分式方程:22
416222-+=
--+x x x x x -
19、(8分)先化简,再求值[(x+y)2
-y(2x+y)-8x]÷2x 其中x=-2
20、(8分)已知:如图,已知△ABC ,
(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标;
21、(8分)已知实数a 满足a 2+2a -8=0,求2
22
13211143a a a a a a a +-+-⨯+-++的值.
1
1 1 1
2 1
1 3 3 1 1 4 6 4 1
.....................

22、(10分)已知:如图,△ABC 中,∠ACB =45°,AD ⊥BC 于D ,CF 交AD 于点F ,连接
BF 并延长交AC 于点E ,∠BAD =∠FCD 。

求证:(1)△ABD ≌△CFD (2)BE ⊥AC
23、(10分).2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?
24、(12分)如图,在四边形ABCD 中, ∠B=90°,DE//AB 交BC 于E 、交AC 于F ,
∠CDE =∠ACB =30°,BC=DE . (1)求证:△FCD 是等腰三角形; (2)若AB=4, 求CD 的长.
F E
D
C
B A
25、(14分)(1) 如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m
经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,A B=AC,D、A、E三点都在
直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3) 拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、
A、E三点互不重合) ,且△ABF和△ACF均为等边三角形,连接BD、CE,若
∠BDA=∠AEC=∠BAC,试判断△DE F的形状?
参考答案:
1-8:ABCB ACBA
9、a 4
3
-
10、1,-3 11、OA=OB 或其他 12、6y(x-y)2
13、4a 或-4a 14、
a
b b
-+a 15、5
16、5
4
3
2
2
3
4
5
510105b ab b a b a b a a +++++ 17、(1)、5 (2)、4a 2
-3a+1 18、x=-2,代入检验无解 19、0.5x-4 代入值为:-5 20、略
21、(1)ASA 证明:∠BAD =∠FCD ;AD=CD ;∠ADB =∠CDF; (2)BD=DF ,∠FBD =∠BFD=450
, ∠ACB =45°; BE ⊥AC 22、
92
122
;值为)
(+a ; 23、∠DCF=60°-30°=30°; ∠CDE =∠DCF=30°;等腰
(2)△ABC ≌△CED(ASA)证明:∠CDE =∠ACB =30°,BC=DE ,CD=2CE=2AB=8 24、设每天铺x 米管道
5%)101(550
550++=x
x ;x=10 25、(1)△ABD ≌△CAE(AAS)证明:∠ABD=∠CAE ,∠BDA=∠CEA=90°,AB=AC , (2)、与(1)同理
(3)、△ABD ≌△CAE(AAS),所以BD=AE, ∠ABD=∠CAE ; 再证△FBD ≌△FAE(SAS) 因为BF=AF, ∠FBD=∠FAE, BD=AE ;
所以FD=FE, ∠BFD=∠AFE,又因为∠BFA=60°,所以∠DFE=60°,(等腰加60°) 所以△DEF 为等边三角形。

相关文档
最新文档