八年级数学上册第一章测试题一

合集下载

人教版数学八年级上册第一年级测试试卷(含答案)

人教版数学八年级上册第一年级测试试卷(含答案)

人教版数学8年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若一个多边形的一个内角为144°,则这个图形为正( )边形.A.十一B.十C.九D.八2.(3分)下列长度的三条线段中,能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cmC.4cm,6cm,10cm D.5cm,8cm,14cm3.(3分)某三角形的三边长分别为3,6,x,则x可能是( )A.3B.9C.6D.104.(3分)有下列两种图示均表示三角形分类,则正确的是( )A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对5.(3分)一个正六边形的内角和的度数为( )A.1080°B.720°C.540°D.360°6.(3分)如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是( )A.12米B.10米C.20米D.8米7.(3分)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是( )A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性8.(3分)在△ABC中,且满足∠A+∠B=90°,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.(3分)若一个正多边形的每一个外角都等于36°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形10.(3分)如图,∠1=40°,则∠C的度数为( )A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 .12.(3分)在△ABC中,AC=3,BC=4,若∠C是锐角,那么AB长的取值范围是 .13.(3分)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,则这个多边形的内角和为 .14.(3分)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC 沿直线AD折叠后,点C落到点E处,若∠BAE=50°,则∠DAC的度数为 °.15.(3分)如图所示,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是 .三、解答题(共10小题,满分75分)16.(7分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.(1)求c边的长;(2)判断△ABC的形状.17.(7分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.18.(7分)如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.19.(7分)如图,四边形ABCD中,AB⊥AC.(1)若AB∥CD,且∠D=60°,求∠1的度数;(2)若∠1+∠B=90°,求证:AD∥BC.20.(7分)如图,∠ABE是四边形ABCD的外角,已知∠ABE=∠D.求证:∠A+∠C=180°.21.(7分)如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.22.(7分)如图,在△ABC中,∠B=30°,∠C=65°,AE⊥BC于E,AD平分∠BAC,(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.23.(8分)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=35°,求∠BDG的度数.24.(9分)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.25.(9分)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.B;3.C;4.B;5.B;6.C;7.D;8.B;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.3;12.1<AB<5;13.1260°;14.30;15.80°;三、解答题(共10小题,满分75分)16.解:(1)∵a,b,c是△ABC的三边,a=4,b=6,∴2<c<10,∵三角形的周长是小于18的偶数,∴2<c<8,∴c=4或6;(2)当c=4或6时,△ABC的形状都是等腰三角形.17.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c+c﹣a﹣b+a+b+c=a﹣b+3c.18.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°)=54°,又∵∠AED=108°,∴∠1=∠2=54°,∴EF平分∠AED.19.(1)解:∵AB⊥AC,∴∠BAC=90°,∵AB∥CD,∴∠BAC=∠ACD=90°,∵∠D=60°,∴∠1=30°;(2)证明:∵∠B+∠BCA=90°,∠1+∠B=90°,∴∠1=∠BCA,∴AD∥BC.20.证明:∵∠ABE=∠D,∠ABE+∠ABC=180°,∴∠ABC+∠D=180°,又∵四边形内角和等于360°,∴∠A+∠C=180°.21.(1)证明:∵∠ADE+∠BCF=180°,∠BCE+∠BCF=180°,∴∠ADE=∠BCE,∴AD∥BC;(2)解:由(1)得,AD∥BC,∴∠AGB=∠EBC,∵∠AGB=∠DGE,∴∠AGB=∠EBC=∠DGE=30°,∵BE平分∠ABC,∴∠AGB=∠EBC,∴∠A=180°﹣30°﹣30°=120°.22.解:(1)∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∵AE⊥BC,∴∠CAE=25°,∴∠DAE=∠CAD﹣∠CAE=17.5°;(2)如图,∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∴∠FAG=180°﹣∠CAD=137.5°,∵EF⊥BC,∴∠CGE=25°,∴∠AGF=25°,∴∠DFE=180°﹣∠AGF﹣∠FAG=17.5°.23.(1)证明:∵EF∥AC,∴∠1=∠CAE.∵∠1+∠2=180°,∴∠2+∠CAE=180°.∴AE∥DG.(2)解:∵EF∥AC,∠C=35°,∴∠BEF=∠C=35°.∵EF平分∠AEB,∴∠1=∠BEF=35°.∴∠AEB=70°.由(1)知AE∥DG,∴∠BDG=∠AEB=70°.24.解:(1)∵∠AEB=∠C+∠CAE,∠C=42°,∠CAE=18°,∴∠AEB=60°,∵∠CBD=27°,∴∠BFE=180°﹣27°﹣60°=93°,∴∠AFB=180°﹣∠BFE=87°;(2)∵∠BAF=2∠ABF,∠BFE=93°,∴3∠ABF=93°,∴∠ABF=31°,∴∠BAF=62°.25.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠EAC+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠EAC=∠CEA,∵∠CEA=∠B+∠BAE,∠B=37°,∠BAE=33°,∴∠CEA=70°,∴∠EAC=70°.。

初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八年级上册第一章) (含答案)

初中数学试卷(八上第一章)一、单选题(共17题;共34分)1、在△ABC中,已知∠A=2∠B=3∠C,则三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、形状无法确定【答案】C【考点】三角形内角和定理【解析】【解答】解:设∠A、∠B、∠C分别为3k、3k、2k,则6k+3k+2k=180°,解得k=°,所以,最大的角∠A=6×°>90°,所以,这个三角形是钝三角形.故选C.【分析】根据比例设∠A、∠B、∠C分别为6k、3k、2k,然后根据三角形内角和定理列式进行计算求出k 值,再求出最大的角∠A即可得解.2、某同学手里拿着长为3和2的两个木棍,想要装一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A、1,3,5B、1,2,3C、2,3,4D、3,4,5【答案】C【考点】三角形三边关系【解析】【分析】首先根据三角形三边关系定理:①三角形两边之和大于第三边②三角形的两边差小于第三边求出第三边的取值范围,再找出范围内的整数即可.【解答】设他所找的这根木棍长为x,由题意得:3-2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4,故选:C.【点评】此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.3、若三条线段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可构成三角形的有()A、1个B、2个C、3个D、4个【答案】B【考点】三角形三边关系【解析】【解答】①1+4<6,不能构成三角形;②1+2=3,不能构成三角形;③3+3=6,不能够成三角形;④6+6>10,能构成三角形;⑤3+4>5,能构成三角形;故选:B.【分析】此题主要考查了三角形的三边关系.解此题不难,可以把它们边长的比,看做是边的长度,再利用“若两条较短边的长度之和大于最长边长,则这样的三条边能组成三角形”去判断,注意解题技巧.4、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A、①②③④B、①③④⑤C、②③④⑤D、①②④⑤【答案】C【考点】三角形内角和定理【解析】【解答】(1)最小内角是20°,那么其他两个角的和是160°,不能确定三角形的形状;(2)最大内角是100°,则其为钝角三角形;(3)最大内角是89°,则其为锐角三角形;(4)三个内角都是60°,则其为锐角三角形,也是等边三角形;(5)有两个内角都是80°,则其为锐角三角形.【分析】此题是三角形内角和定理和三角形的分类,关键是要知道钝角三角形、直角三角形和锐角三角形角的特征.5、如图小明做了一个方形框架,发现很容易变形,请你帮他选择一个最好的加固方案()A、B、C、D、【答案】B【考点】三角形的稳定性【解析】【解答】因为三角形具有稳定性,只有B构成了三角形的结构.故选B.【分析】根据三角形具有稳定性,可在框架里加根木条,构成三角形的形状.6、如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A、两点之间的线段最短B、长方形的四个角都是直角C、长方形是轴对称图形D、三角形有稳定性【答案】D【考点】三角形的稳定性【解析】【解答】用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.【分析】根据三角形具有稳定性解答.7、如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形D、任意三角形【答案】A【考点】三角形的角平分线、中线和高【解析】【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.【分析】根据三角形高的定义知,若三角形的两条高都在三角形的内部,则此三角形是锐角三角形.8、如图,∠B+∠C+∠D+∠E﹣∠A等于()A、360°B、300°C、180°D、240°【答案】C【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,∴∠B+∠C+∠D+∠E﹣∠A=360°﹣(∠1+∠2+∠A)=180°.故选C.【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°﹣∠1,∠D+∠E=∠DFG=180°﹣∠2,两式相加再减去∠A,根据三角形的内角和是180°可求解.9、已知三角形的两边长分别是4和10,则此三角形第三边长可以是()A、15B、12C、6D、5【答案】B【考点】三角形三边关系【解析】【分析】先根据三角形的三边关系求得此三角形第三边长的范围,即可作出判断。

八年级上数学第一章测试题

八年级上数学第一章测试题

八年级上册数学第一章测试题一、选择题(本大题共 11 小题,每小题 3 分,共 33 分. ?在每小题所给出的四个选项中,只有一项是符合题目要求的)1.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cmC.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于 9,则它的周长是()A.17 B . 22 C .17 或22 D .133.适合条件∠A= 1∠B=1∠C的△ ABC是()23A.锐角三角形B.直角三角形 C .钝角三角形D.等边三角形4.已知等腰三角形的一个角为75°,则其顶角为()A.30°B.75°C.105°D.30°或75°5.一个多边形的内角和比它的外角的和的 2 倍还大 180°,这个多边形的边数是()A.5B.6C.7D.86.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7.下列命题正确的是()A.三角形的角平分线、中线、高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高 D .直角三角形斜边上的高等于斜边的一半8.能把一个三角形分成两个面积相等的三角形是三角形的()A. 高线B. 中线C. 角平分线D. 以上都不对9.已知等腰△ABC的底边BC=8cm,│ AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10、在一个四边形中,如果有两个内角是直角,那么另外两个内角( ) .(A) 都是钝角(B) 都是锐角(C)一个是锐角,一个是直角(D)互为补角11.下列图形中,是正多边形的是()A.三条边都相等的三角形B.四个角都是直角的四边形C.四边都相等的四边形D.六条边都相等的六边形(14 题)(18 题)二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.把答案填在题中横线上)12.三角形的三边长分别为5, 1+2x, 8,则 x 的取值范围是 ________.13.四条线段的长分别为5cm、6cm、8cm、13cm,?以其中任意三条线段为边可以构成___个三角形.14.如图:∠ A+∠B+∠ C+∠D+∠E+∠ F 等于 ________.15.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.16.n 边形的每个外角都等于45°,则 n=________.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形, ?它的内角和(按一层计算)是_______度.18.如图,已知∠ 1=20°,∠ 2=25°,∠ A=55°,则∠ BOC的度数是 _____.19.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.三、解答题(本大题共 4 小题,共 43 分,解答应写出文字说明,?证明过程或演算步骤)20.(10 分)如图, BD平分∠ ABC,DA⊥ AB,∠ 1=60°,∠ BDC=80°,求∠ C的度数.21.(10 分)如图:(1)画△ ABC的外角∠ BCD,再画∠ BCD的平分线CE.(2)作出 AC边上的高。

苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)

苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。

八年级上册数学第一章试卷【含答案】

八年级上册数学第一章试卷【含答案】

八年级上册数学第一章试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 下列哪个数是负数?A. -3B. 0C. 3D. 65. 下列哪个数是立方数?A. 8B. 9C. 10D. 11二、判断题(每题1分,共5分)1. 2是偶数。

()2. 1是质数。

()3. -5是正数。

()4. 4的平方根是2。

()5. 1千等于1000。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 6的平方是______。

3. 10的立方是______。

4. 2的平方根是______。

5. 3的立方根是______。

四、简答题(每题2分,共10分)1. 请简述偶数和奇数的区别。

2. 请简述质数和合数的区别。

3. 请简述正数和负数的区别。

4. 请简述平方和立方的区别。

5. 请简述因数和倍数的区别。

五、应用题(每题2分,共10分)1. 小明有5个苹果,他吃掉了2个,还剩下多少个?2. 一个长方形的长度是6米,宽度是3米,求这个长方形的面积。

3. 一个正方形的边长是4厘米,求这个正方形的面积。

4. 一个数的平方是36,求这个数。

5. 一个数的立方是27,求这个数。

六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个数的平方是64,这个数是正数还是负数?为什么?2. 请分析并解答以下问题:一个数的立方是8,这个数是正数还是负数?为什么?七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。

2. 请用直尺和圆规画一个直径为6厘米的圆。

八、专业设计题(每题2分,共10分)1. 设计一个实验,验证物体在水平面上的滚动摩擦小于滑动摩擦。

2. 设计一个电路,当温度超过一定阈值时,自动报警。

鲁教版(五四制)八年级数学上册第一章综合测试卷含答案

鲁教版(五四制)八年级数学上册第一章综合测试卷含答案

鲁教版(五四制)八年级数学上册第一章综合测试卷一、选择题(每题3分,共36分)1.【2023·济宁任城区月考】下列从左至右的变形,属于因式分解的是( )A .4a 2-8a =a (4a -8)B .-x 2+y 2=(-x +y )(-x -y )C .x 2-x +14=⎝ ⎛⎭⎪⎫x -122D .x 2+1=x ⎝⎛⎭⎪⎫x +1x2.【2023·泰安泰山区月考】多项式8a 3b 2+12ab 3c 的公因式是( )A .abcB .4ab 2C .ab 2D .4ab 2c3.【2023·淄博张店区月考】下列式子中,分解因式结果为(3a -y )(3a+y )的多项式是( ) A .9a 2+y 2 B .-9a 2+y 2 C .9a 2-y 2 D .-9a 2-y 24.【2023·东营期末】下列各式中不能用公式法分解因式的是( )A .x 2-4B .-x 2-4C .x 2+x +14 D .-x 2+4x -45.将下列多项式因式分解,结果中不含因式x -1的是( )A .x (x -3)+(3-x )B .x 2-1C .x 2-2x +1D .x 2+2x +1 6.简便计算:(-2)100+(-2)101=( )A.-2100 B.-2101C.2100 D.-27.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的数字是()A.8,1 B.16,2C.24,3 D.64,88.已知a=2b-5,则代数式a2-4ab+4b2-5的值是() A.20 B.0C.-10 D.-309. 如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M表示其底面积与侧面积的差,则M可因式分解为()A.(b-6a)(b-2a)B.(b-3a)(b-2a)C.(b-5a)(b-a)D.(b-2a)210.【母题:教材P17复习题T5】248-1能被60到70之间的某两个整数整除,则这两个整数是()A.61和63 B.63和65C.65和67 D.64和6711.【2023·烟台期中】已知M=3x2-x+3,N=2x2+3x-1,则M,N的大小关系是()A.M≥N B.M>NC.M≤N D.M<N12.若(b-c)2=4(1-b)(c-1),则b+c的值是()A.-1 B.0 C.1 D.2二、填空题(每题3分,共18分)13.【2022·常州】分解因式:x2y+xy2=________.14.多项式9a2-4b2和9a2+12ab+4b2的公因式是________.15.若4x2-(k-1)x+9能用完全平方公式因式分解,则k的值为________.16.若关于x的二次三项式x2+kx+b因式分解为(x-1)(x-3),则k+b的值为________.17.已知a+b=2,则a2-b2+2a+6b+2的值为________.18.多项式4a2-9b n(其中n是小于10的自然数,b≠0)可以分解因式,则n能取的值共有______个.三、解答题(19题12分,20题6分,24,25题每题12分,其余每题8分,共66分)19.【2023·东营广饶县月考】因式分解:(1)y (y +4)-4(y +1); (2)(x 2+1)2-4x 2; (3)12x 2+xy +12y 2;(4)x (x -y )(a -b )-y (y -x )(b -a ).20.【母题:教材P 7习题T 4】用简便方法计算:(1)2 0232-2 0242; (2)2.22+4.4×17.8+17.82.21.已知x+y=5,(x-2)(y-2)=-3,求下列代数式的值.(1)xy;(2)x2+4xy+y2;(3)x2+xy+5y.22.阅读:已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2-b2)(a2+b2). ②∴c2=a2+b2. ③∴△ABC是直角三角形. ④请根据上述解题过程回答下列问题:(1)上述解题过程,从第几步(该步的序号)开始出现错误,错误的原因是什么?(2)请你将正确的解题过程写下来.23.小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,割去半径为r的四个小圆,如图所示,小刚测得R=6.8 dm,r=1.6 dm,他想知道剩余部分(阴影部分)的面积,你能利用所学的因式分解的知识帮他计算吗?请写出求解过程.(结果保留π)24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2.实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是________________.(2)现有足够多的如图C所示的正方形和长方形卡片.①若要拼出一个面积为(a+2b)(a+b)的长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形(每两张卡片之间既不重叠,也无空隙),使该长方形的面积为2a2+5ab+2b2,并利用图形面积对2a2+5ab+2b2进行因式分解.25.【2023·烟台芝罘区期中】整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2-4x)(x2-4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1-2-3-…-2023)×(2+3+…+2024)-(1-2-3-…-2024)×(2+3+…+2023).答案一、1.C 2.B3.C 4.B5.D【点拨】A.原式=(x-3)(x-1);B.原式=(x+1)(x-1);C.原式=(x-1)2;D.原式=(x+1)2.6.A【点拨】(-2)100+(-2)101=2100-2101=2100(1-2)=-2100. 7.B【点拨】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x -2)=(x2+4)(x2-4)=x4-16,则■=16.8.A【点拨】∵a=2b-5,∴a-2b=-5,∴a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=25-5=20.9.A【点拨】底面积为(b-2a)2,侧面积为a·(b-2a)·4=4a(b-2a),∴M=(b-2a)2-4a·(b-2a)=(b-2a)(b-2a-4a),=(b-2a)(b-6a).10.B【点拨】248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)×65×63.11.A【点拨】∵M-N=(3x2-x+3)-(2x2+3x-1)=3x2-x+3-2x2-3x+1=x2-4x+4=(x-2)2≥0,∴M≥N.12.D【点拨】∵(b-c)2=4(1-b)(c-1),∴b2-2bc+c2=4c-4-4bc+4b,∴(b2+2bc+c2)-4(b+c)+4=0,∴(b+c)2-4(b+c)+4=0,∴(b+c-2)2=0,∴b+c=2.二、13.xy(x+y)14.3a+2b【点拨】9a2-4b2=(3a+2b)(3a-2b),9a2+12ab+4b2=(3a+2b)2,∴公因式是3a+2b.15.13或-1116.-117.10【点拨】∵a+b=2,∴a2-b2+2a+6b+2=(a+b)(a-b)+2a+6b+2=2(a-b)+2a+6b+2=2a-2b+2a+6b+2=4a+4b+2=4(a+b)+2=4×2+2=10.18.5 【点拨】多项式4a 2-9bn (其中n 是小于10的自然数,b ≠0)可以分解因式,则n 能取的值为0,2,4,6,8,共5个.三、19.解:(1)原式=y 2+4y -4y -4=y 2-4=(y +2)(y -2).(2)原式=(x 2+1+2x )(x 2+1-2x )=(x +1)2(x -1)2.(3)原式=12(x 2+2xy +y 2)=12(x +y )2.(4)原式=x (x -y )(a -b )-y (x -y )(a -b )=(x -y )(a -b )(x -y )=(x -y )2(a -b ).20.解:(1)原式=(2 023+2 024)×(2 023-2 024)=4 047×(-1)=-4 047.(2)原式=2.22+2×2.2×17.8+17.82=(2.2+17.8)2=202=400.21.解:(1)∵(x -2)(y -2)=-3,∴xy -2(x +y )+4=-3.∵x +y =5,∴xy =3.(2)∵x +y =5,xy =3,∴x 2+4xy +y 2=(x +y )2+2xy =25+6=31.(3)x 2+xy +5y =x (x +y )+5y ,∵x +y =5,∴x 2+xy +5y =5x +5y =5(x +y )=5×5=25.22.解:(1)从第③步开始出现错误,错误的原因是忽略了a 2-b 2=0的可能.(2)正确的解题过程如下:∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)(c2-a2-b2)=0.∴c2-a2-b2=0或a2-b2=0.∴c2=a2+b2或a=b.∴△ABC是直角三角形或等腰三角形.23.解:剩余部分的面积为πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).将R=6.8 dm,r=1.6 dm代入上式,得π×(6.8+3.2)×(6.8-3.2)=36π(dm2).24.解:(1)(2n)2=4n2(2)①1;2;3②如图.2a2+5ab+2b2=(2a+b)(a+2b).25.解:(1)①没有;最后的结果为(x+1)4.②设x2-4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2-4x+4)2=(x-2)4.(2)设x=1-2-3-…-2 023,y=2+3+…+2 024,则1-2-3-…-2 024=x-2 024,2+3+…+2023=y-2 024,x+y=1+2 024=2 025,所以原式=xy-(x-2 024)(y-2 024)=xy-xy+2 024(x+y)-2 0242=2 024×2 025-2 0242=2 024(2 024+1)-2 0242=2 024.。

八年级(上)数学第一章测试题

八年级(上)数学第一章测试题

八年级(上)数学第一章 《勾股定理》测试题一、 选择题1、若一个直角三角形的一条直角边长是7cm ,比斜边短1cm ,则斜边长为( )A 、18cmB 、20cmC 、24cmD 、25cm2、一架2.5米长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角0.7m ,如果梯子的顶端延墙下滑0.4m ,那么梯脚移动的距离是( )A 、1.5mB 、0.9mC 、0.8mD 、0.5m3、若等腰三角形腰长为10cm ,底边长为16cm ,那么它的面积为( )A 、48cm 2B 、36 cm 2C 、24 cm 2D 、12 cm 24、观察下列几组数据:(1)8,15,17;(2)7,12,15;(3)12,15,20;(4)7,24,25.其中能作为直角三角形三边长的有( )A 、1组B 、2组C 、3组D 、4组5、如图,在Rt △ABC 中,∠C=900,D 为AC 上一点,且DA=DB=5,如果△DAB 的面积为10,那么DC 的长是( )A 、4 B 、3 C 、5 D 、4.56、如图,一块直角三角形的纸片,两直角边AC=6cm ,BC=8cm 。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A 、2cmB 、3cmC 、4cmD 、5cm7、在△ABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( )A 、42B 、32C 、42或32D 、37或338、已知一直角三角形的木板,三边的平方和为1800cm 2,则斜边长为( )A 、30mB 、80mC 、90mD 、120m9、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A 、900B 、600C 、450D 、30010、 已知χ,y 为正数,且()024322=+--y x ,如果以χ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积是( )A 、5B 、25C 、7D 、15二、填空题11、在锐角△ABC 中,A D ⊥BC ,AD=12,AC=13,BC=14,则AB= 。

2022年浙教版八年级数学上册第一章《三角形的初步认识》测试卷附答案解析

2022年浙教版八年级数学上册第一章《三角形的初步认识》测试卷附答案解析

2022年八年级数学上册第一章《三角形的初步认识》综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.如图,一只手握住了一个三角形的一部分,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.以上都有可能2.如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性3.木工要做一个三角形支架,现有两根木条的长度分别为12cm和5cm,则不能作为第三根木条的长度为()A.6cm B.9cm C.13cm D.16cm4.下列说法中正确的是()A.三角形的三条中线必交于一点B.直角三角形只有一条高C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部5.将一副三角板和一个直尺按如图所示的位置摆放,则∠1的度数为()度.A.45B.60C.75D.1056.下列尺规作图的语句正确的是()A.延长射线AB到D B.以点D为圆心,任意长为半径画弧C.作直线AB=3cm D.延长线段AB至C,使AC=BC7.下列命题是真命题的是()A.三角形的外角大于它的内角B.三角形的任意两边之和大于第三边C.内错角相等D.直角三角形的两角互余8.如图,在△ABC 和△ABD 中,已知AC =AD ,则添加以下条件,仍不能判定△ABC ≌△ABD 的是()A .BC =BDB .∠ABC =∠ABD C .∠C =∠D =90°D .∠CAB =∠DAB9.如图所示,△ABC ≌△AEF ,在下列结论中,不正确的是()A .∠EAB =∠FACB .BC =EF C .∠BAC =∠CAFD .CA 平分∠BCF 10.有下列说法,其中正确的有()①只有两个三角形才能完全重合;②如果两个图形全等,那么它们的形状和大小一定相同;③两个正方形一定是全等图形;④面积相等的两个图形一定是全等图形.A .1个B .2个C .3个D .4个二.填空题(共6小题,满分24分,每小题4分)11.如图,已知BD 是△ABC 的中线,AB =5,BC =3,且△ABD 的周长为12,则△BCD 的周长是.12.如图,△ABD ≌△ACE ,且点E 在BD 上,∠CAB =40°,则∠DEC =.13.如图,△ABC 中,∠B =80°,∠C =70°,将△ABC 沿EF 折叠,A 点落在形内的A ′,则∠1+∠2的度数为.14.对于命题“如果1290∠+∠=︒,那么12∠≠∠”,能说明它是假命题的反例是_____________15.如图所示,在△ABC 中,∠A =70°,内角∠ABC 和外角∠ACD 的平分线交于点E ,则∠E =.16.如图,CA ⊥BC ,垂足为C ,AC =3cm ,BC =9cm ,射线BM ⊥BQ ,垂足为B ,动点P 从C 点出发以1cm /s 的速度沿射线CQ 运动,点N 为射线BM 上一动点,满足PN =AB ,随着P 点运动而运动,当点P 运动秒时,△BCA 与点P 、N 、B 为顶点的三角形全等.三.解答题(共7小题,满分66分)17.(6分)已知a,b,c分别是三角形的三条边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|.18.(8分19.(8分)如图,CD交BF于点E,以点D为顶点,射线DC为一边,利用尺规作图法在DC的右侧作∠CDG,使∠CDG=∠B.(不写作法,保留作图痕迹)20.(10分)如图,点A、D、C、B在同一条直线上,△ADF≌△BCE,∠B=33°,∠F=27°,BC=5cm,CD=2cm.求:(1)∠1的度数.(2)AC的长.21.(10分)如图,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD于点E.(1)若∠C=50°,∠BAC=60°,求∠ADB的度数;(2)若∠BED=45°,求∠C的度数.22.(本题12分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°,求:(1)∠BAE的度数;(2)∠DAE的度数.23.(12分)如图,已知直线EF∥GH,给出下列信息:①AC⊥BC;②BC平分∠DCH;③∠ACD=∠DAC.(1)请在上述3条信息中选择其中两条作为条件,其余的一条信息作为结论组成一个真命题,你选择的条件是,结论是(只要填写序号),并说明理由;(2)在(1)的条件下,若∠ACG比∠BCH的2倍少3度,求∠DAC的度数.参考答案一.选择题(共10小题,满分30分,每小题3分)1.D .2.D .3.A .4.A .5.C .6.B .7.B .8.B .9.C .10.A .二.填空题(共5小题,满分20分,每小题4分)11.10.12.140°.13.60°.14.45°,45°15.35°.16.0或6或12或18.三.解答题(共8小题,满分70分)17.【解答】解:∵a ,b ,c 分别是三角形的三条边长,∴b +c >a ,c +a >b ,a +b >c ,∴b +c ﹣a >0,b ﹣c ﹣a <0,c ﹣a ﹣b <0,则|b +c ﹣a |+|b ﹣c ﹣a |+|c ﹣a ﹣b |=b +c ﹣a ﹣(b ﹣c ﹣a )﹣(c ﹣a ﹣b )=b +c ﹣a ﹣b +c +a ﹣c +a +b =a +b +c .18.证明:∵AB =CD ,∴AB +BC =CD +BC ,∴AC =BD ,∵CE//DF ,∴∠D =∠ECA ,在△AEC 与△BFD 中,∠A=∠FBDAC =BD ∠ECA =∠D,∴△AEC ≌△BFD(ASA),∴CE =DF .19.【解答】解:如图所示,∠CDG 即为所求.20.【解答】解:(1)∵△ADF ≌△BCE ,∠F =27°,∴∠E =∠F =27°,∵∠1=∠B +∠E ,∠B =33°,∴∠1=60°;(2)∵△ADF ≌△BCE ,BC =5cm ,∴AD =BC =5cm ,∵CD =2cm ,∴AC =AD +CD =7cm .21.【解答】解:(1)∵AD 平分∠BAC ,∠BAC =60°,∴.∵∠ADB 是△ADC 的外角,∠C =50°,∴∠ADB =∠C +∠DAC =80°;(2)∵AD 平分∠BAC ,BE 平分∠ABC ,∴∠BAC =2∠BAD ,∠ABC =2∠ABE .∵∠BED是△ABE的外角,∠BED=45°,∴∠BAD+∠ABE=∠BED=45°.∴∠BAC+∠ABC=2(∠BAD+∠ABE)=90°.∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=90°.22.解析:(1)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣30°=80°.∵AE平分∠BAC,∴4021=∠=∠BACBAE.(2)∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=90°﹣70°=20°.∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°.23.【解答】解:(1)选择的条件是②③,结论是①,理由如下:∵EF∥GH,∴∠ACG=∠DAC,∵∠ACD=∠DAC,∴∠ACG=∠ACD,∵BC平分∠DCH,∴∠DCB=∠BCH,∴∠ACG+∠BCH=∠ACD+∠DCB=×180°=90°,即∠ACB=90°,∴AC⊥BC;(2)设∠BCH=x°,则∠ACG=(2x﹣3)°,∵∠ACG+∠BCH=90°,∴x°+(2x﹣3)°=90°,解得x=31,∴∠ACG=(2x﹣3)°=59°,∴∠DAC=∠ACG=59°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第一章测试题 一、选择题 1、如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( )
A .5
B .4
C .3
D .2
1题 2题 3题 4题
2、如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠C B .AD=CB C .BE=DF D .AD ∥BC
3、 如图,给出下列四组条件:① AB=DE ,BC=EF ,AC=DF ;② AB=DE ,∠B=∠E ,BC
=EF ;
4、 ③ ∠B=∠E ,BC=EF ,∠C=∠F ;④ AB=DE ,AC=DF ,∠B=∠E .
其中,能使△ABC ≌△DEF 的条件共有( )组 组 组 组
4、如图 所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能..
是( ) A .∠B =∠C B. AD = AE C .∠ADC =∠AEB D. DC = BE
5、具有下列条件的两个等腰三角形,不能判断它们全等的是( )
A . 顶角、一腰对应相等
B . 底边、一腰对应相等
C . 两腰对应相等
D . 一底角、底边对应相等
6、如图所示, 分别表示△ABC 的三边长,则下面与△ 一定全等的三角形是( )
A B C D
7、已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下三个结论:
A . 1
B . 2
C . 3
D . 4
7题 8题 9题 9题
8、如图所示,90E F ∠=∠=,B C ∠=∠,AE AF =,
结论:①EM FN =;②CD DN =;
③FAN EAM
∠=∠;④ACN ABM
△≌△.其中正确的有
A.1个B.2个C.3个D.4个
9、如图,AO=BO,CO=DO,AD与BC交于E,则图中全等三角形的对数为()A、
2对B、3对C、4对D、5对
二、填空题
9、如图,点D、E分别在线段
AB

AC上,
AE=AD,不添加新的线段和字母,要使△ABE
≌△ACD,需添加的一个条件是(只写一个条件即可).
10、在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过
点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE= cm.
10题11题12题13题
11、如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
12、在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=_________度.
13、如图,直线l经过等边三角形ABC的顶点B,在l上取点D、E,使∠ADB=∠CEB=120°.若
AD=2cm,CE=5cm,则DE=_________cm.
三、解答题:14、如图,AC=DC,BC=EC,∠ACD = ∠BCE求证:∠A=∠D
15、如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.
16、如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE。

求证:BC=AE。

17、如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠
D,AD∥BC.求证:AD=BC.
D
E
C
B
A
18、如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF,AE=CF,BE=DF.求证:△ADE≌△CBF.
19、如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.
20、已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.
求证:⑴△ABC≌△DEF;⑵BE=CF.
21、已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.
22、如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC 的度数.
23、如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线l 的垂线,垂足分别为D,E,⑴、请你在图中找出一对全等三角形,并写出证明它们全等的过程.
⑵、求证:DE=AD-BE
24、如图,在△ABC中,∠ACB=900,AC=BC,CE⊥BE,CE与AB相交于点F,AD⊥CF于点D,且AD平分∠FAC,请写出图中与.△ACD全等的三角形,并分别加以证明。

25、如图,已知AC∥DF,且BE=CF.
(1)请你只添加一个
..条件,使△ABC≌△DEF,你添加的条件是;(2)添加条件后,证明△ABC≌△DEF.。

相关文档
最新文档