22.3二次函数y=ax2+bx+c的图象与性质(1)

合集下载

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)

22.3 实质问题与二次函数第 1课时教课目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y= ax2的关系式。

2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。

3.让学生体验二次函数的函数关系式的应用,提升学生用数学意识。

要点难点:要点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y= ax2、y= ax2+b x + c 的关系式是教课的要点。

难点:已知图象上三个点坐标求二次函数的关系式是教课的难点。

教课过程:一、创建问题情境如图,某建筑的屋顶设计成横截面为抛物线型( 曲线 AOB)的薄壳屋顶。

它的拱高AB 为4m,拱高 CO为 0.8m。

施工前要先制造建筑模板,如何画出模板的轮廓线呢?分析:为了画出吻合要求的模板,平时要先建立合适的直角坐标系,再写出函数关系式,而后依据这个关系式进行计算,放样画图。

以下列图,以AB的垂直均分线为y 轴,以过点 O 的 y 轴的垂线为 x 轴,建立直角坐标系。

这时,屋顶的横截面所成抛物线的极点在原点,对称轴是 y 轴,张口向下,所以可设它的函数关系式为:y = ax2 (a< 0) (1)AB因为 y 轴垂直均分AB,并交 AB于点 C,所以 CB2= 2(cm) ,又 CO= 0.8m,所以点 B =的坐标为 (2 ,- 0.8) 。

因为点 B 在抛物线上,将它的坐标代人(1) ,得-0.8=a×22所以a=-0.2所以,所求函数关系式是y=- 0.2x 2。

二、引申拓展问题 1:能不可以以A点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系 ?让学生认识建立直角坐标系的方法不是独一的,以 A 点为原点, AB所在的直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系也是可行的。

问题 2,若以 A 点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂直为y 轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则 A 点坐标为 (0 , 0) ,B 点坐标为 (4 , 0),OC 所在直线为抛物线的对称轴,所以有AC=CB, AC=2m, O点坐标为 (2 ; 0. 8) 。

二次函数y=ax2+bx+c的图象(1)y=a(x-h)2和y=a(x+h)2+k的图象和性质

二次函数y=ax2+bx+c的图象(1)y=a(x-h)2和y=a(x+h)2+k的图象和性质

X=1
想一想,二次函数y=-3(x+1)2+2与y=-3(x+1)22的图象和抛物线y=-3x² ,y=-3(x+1)2
二次函数y=-3(x+1)2+2与 y 3 x 1 2 y=-3(x+1)2-2的图象和抛物 线y=-3x² ,y=-3(x+1)2有什么 y 3 x 1 关系? 它的开口方向,对称轴 和顶点坐标分别是什么? y 3 x 1 2
?
(4)x取哪些值时,函数y=3(x-1)2的值随x值的 增大而增大?x取哪些值时,函数y=3(x-1)2的 值随x的增大而减少?
(3)函数y=3(x-1)2的图象
与y=3x2 的图象有什么关 系?它是轴对称图形吗?它 的对称轴和顶点坐标分别 是什么?
二次函数y=3(x-1)2 与y=3x2的图象形状 相同,可以看作是抛 物线y=3x2整体沿x轴 向右平移了1 个单位
二次函数y=3(x-1)2+2的 图象可以看作是抛物线 y=3x2先沿着x轴向右平移 1个单位,再沿直线x=1向 上平移2个单位后得到的.
y 3 x 1 2
2
y 3 x 1
2
对称轴仍是平行于y轴的直 线(x=1);增减性与y=3x2类似.
X=1 开口向上,当 X=1时有最小 值:且最小值=2.
议一义P45 17
我思,我进步
在同一坐标系中作出二次函数y=-3(x-1)2+2,y=-3(x1)2-2,y=-3x² 和y=-3(x-1)2的图象 二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=-3x² , y=-3(x-1)2的图象有什么关系?它们是轴对称图形吗? 它的开口方向、对称轴和顶点坐标分别是什么?当x取 哪些值时,y的值随x值的增大而增大?当x取哪些值时, y的值随x值的增大而减小?

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。

人教版九上数学精品教学课件 第二十二章 二次函数 第1课时 二次函数y=ax2+bx+c的图象和性质

人教版九上数学精品教学课件 第二十二章 二次函数 第1课时 二次函数y=ax2+bx+c的图象和性质

2a
,
4a

2a
4a
二次函数 的一般表 达式
二次函数的 顶点式
对称轴为
x b 2a

因此,抛物线的对称轴是
x b 2a
b 4ac b2
,顶点是
2a
,
4a

二次函数y=ax2+bx+c的图象:顶点坐标
b 2a
,4ac 4a
b2
y
增减性?
y
最大值
y ax2 bx c
y ax2 bx c
(3)会根据所给的自变量的取值范围画二次函数的图象.
推进新课
知识点1 二次函数y=ax2+bx+c 与y=a(x-h)2+k的关系
思考 探索二次函数函数y 1 x2 - 6x 21的图象和性质。
2
解:y
1 2
x2
6x
21

12(x 6)2 3

有哪几种画
图方法?
y
1 2
x2
6x
21
12(x 6)2 3
A.y1>y2>y3 B.y1<y2<y3
C.y2>y3>y1 D.y2<y3<y1
综合运用
3.如图,抛物线y=ax2-5ax+4a(a是常数)与x轴相交于点A,B, 且过点C(5,4). (1)求a的值和该抛物线顶点P的坐标; (2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二 象限,并写出平移后抛物线的解析式.
-4
顶点: (-1,-1)
-6
y
hO
k
x
y=a(x-h)2+k
怎么画二次函数 y=ax2+bx+c的图象?

新苏版初三上册数学《二次函数y=ax^2+bx+c的图象和性质(1)》名师教案

新苏版初三上册数学《二次函数y=ax^2+bx+c的图象和性质(1)》名师教案

新苏版初三上册数学22第一课时(卢文) 一、教学目标 (一)学习目标1.会用描点法画二次函数y=ax2+bx+c 的图象.2.会用配方法求抛物线y=ax2+bx+c 的顶点坐标、开口方向、对称轴、y 随x 的增减性及最大或最小值.3.经历探究二次函数y =ax2+bx +c 的图象的开口方向、对称轴和顶点坐标以及性质的过程,明白得二次函数y =ax2+bx +c 的性质.4.能运用二次函数的图象和性质解决简单的实际问题,深刻明白得数学建模思想以及数形结合的思想.(二)学习重点用描点法画出二次函数y =ax2+bx +c 的图象和通过配方确定抛物线的对称轴、顶点坐标及其性质。

(三)学习难点明白得二次函数y =ax2+bx +c(a ≠0)的图象和性质,会利用二次函数的图象性质解决简单的实际问题.二、教学设计 (一)课前设计 1.预习任务(1)二次函数y=a(x -h)2+k 的顶点坐标是(h,k),对称轴是x=h ,当a>0时,开口向上,现在二次函数有最小值,当x >h 时,y 随x 的增大而增大,当x <h 时,y 随x 的增大而减小;当a<0时,开口向下,现在二次函数有最大值,当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小.(2)用配方法将y=ax2+bx+c 化成y=a(x -h)2+k 的形式为224.24b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,则h=-2b a ,k=244ac b a-.则二次函数y=ax2+bx+c 的图象的顶点坐标是(-2b a,244ac b a-),对称轴是x=-2b a ,当x=-2ba时,二次函数y=ax2+bx+c 有最大(最小)值,当a>0时,函数y 有最小值,当a<0时,函数y 有最大值.2.预习自测(1)抛物线y =2x2-2x -1的开口________,对称轴是________. 【知识点】二次函数的性质.【解题过程】解:抛物线y =2x2-2x -1,∵2>0,∴开口向上,对称轴为:【思路点拨】把握二次函数的性质,正确经历抛物线对称轴公式是解题关键.【答案】向上,21=x(2)抛物线y =x2-2x +2的顶点坐标是________. 【知识点】二次函数的性质.【解题过程】解:将y =x2-2x +2配方得1)1(2+-=x y ,顶点坐标是(1,1).【思路点拨】将抛物线的一样式,用配方法转化为顶点式,依照顶点式的坐标特点,直截了当写出顶点坐标.【答案】(1,1)(3)二次函数y =21x2+2x +1的最_____值是________. 【知识点】二次函数的最值.【解题过程】解:将y =21x2+2x +1配方得1)2(212-+=x y ,∵21>0,∴其最小值是-1. 【思路点拨】把二次函数的解析式整理成顶点式形式,然后确定出最大值.【答案】小,-1二次函数y=ax2+bx+c 的图象如图所示,下列结论:① 4ac <b2;② a +c >b ;③ 2a+b >0.其中正确的有( ) A .①② B .①③ C .②③ D .①②③ 【知识点】二次函数图象与系数的关系.【思路点拨】依照抛物线与x 轴有两个交点即可判定①正确,依照x=﹣1,y <0,即可判定②错误,依照对称轴x >1,即可判定③正确,由此能够作出判定.【解题过程】解:∵抛物线与x 轴有两个交点, ∴△>0, ∴b2﹣4ac >0,∴4ac <b2,故①正确, ∵x=﹣1时,y <0, ∴a ﹣b+c <0,∴a+c <b ,故②错误, ∴对称轴x >1,a <0,∴﹣2ba>1, ∴﹣b <2a ,∴2a+b >0,故③正确. 故选B . 【答案】B (二)课堂设计 1.知识回忆(1)二次函数2(2)抛物线的平移规律: (h )左加右减,(k)上加下减 2.问题探究探究一 从旧知识过渡到新知识 ●活动① 复习配方填空:(1) ; (2) .生答:(1)2,5; (2)25,47总结规律:当二次项的系数为1时,常数项须配一次项系数一半的平方.【设计意图】复习配方,为新课作预备 ●活动② 以旧引新1.二次函数y =a(x -h)2+k 的图象,能够由函数y =ax2的图象先向________平移________个单位,再向________平移________个单位得到.生答:左或右,h ,上或下,k2.二次函数y =a(x -h)2+k 的图象的开口方向________,对称轴是________,顶点坐标是________.生答:a >0,向上;a<0,向下 x=h (h ,k)3.二次函数y =12x2-6x +21,你能专门容易地说出它的图象的开口方向、对称轴和顶点坐标,并画出图象吗?点拨:先将y =12x2-6x +21配方,再得出它的图象的开口方向、对称轴和顶点坐标,并画出图象,由此引出新课。

人教版初中数学22.3 实际问题与二次函数(第3课时) 课件

人教版初中数学22.3 实际问题与二次函数(第3课时) 课件

① 能够将实际距离准确 的转化为点的坐标;
② 选择运算简便的方法
课后作业
作业 内容
22.3 实际问题与二次函数/
教材作业 从课后习题中选取 自主安排 配套练习册练习
2. 如图,小李推铅球,如果铅球运行时离地面
的高度y(米)关于水平距离x(米)的函数解析式
为y
1 8
x2
1 2
x
32,那么铅球运动过程中y
最高点离地面的距离为 2 米.
O
x
课堂检测
22.3 实际问题与二次函数/
3. 某公园草坪的防护栏是由100段形状相同的抛物线形组成
的,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢
的支柱,防护栏的最高点距底部0.5m(如图),则这条防护
栏需要不锈钢00m
C.160m
D.200m
课堂检测
22.3 实际问题与二次函数/
能力提升题
某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一 面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物 线拱高为5.6m. (1)在如图所示的平面直角坐标系中,求抛物线的表达式.
81.5=a•4502+0.5.
y
解得
a
81 4502
1. 2500
故所求表达式为 y
1
x2 0.5(450 x 450).
2500
-450
O
450 x
课堂检测
22.3 实际问题与二次函数/
(2)计算距离桥两端主塔分别为100m,50m处垂直钢索的长.
y 1 3502 0.5 49.5(m).
2500
y
当x=450﹣50=400(m)时,得

专题22.3 二次函数的性质【六大题型】(人教版)(原卷版)

专题22.3 二次函数的性质【六大题型】(人教版)(原卷版)

专题22.3 二次函数的性质【六大题型】【人教版】【题型1 利用二次函数的性质判断结论】 (1)【题型2 利用二次函数的性质比较函数值】 (2)【题型3 二次函数的对称性的应用】 (3)【题型4 利用二次函数的性质求字母的范围】 (3)【题型5 利用二次函数的性质求最值】 (4)【题型6 二次函数给定范围内的最值问题】 (5)【题型1 利用二次函数的性质判断结论】【例1】(2022•新华区校级一模)已知函数y=2mx2+(1﹣4m)x+2m﹣1,下列结论错误的是()A.当m=0时,y随x的增大而增大B.当m=12时,函数图象的顶点坐标是(12,−14)C.当m=﹣1时,若x<54,则y随x的增大而减小D.无论m取何值,函数图象都经过同一个点【变式1-1】(2022秋•遂川县期末)关于抛物线y=x2﹣(a+1)x+a﹣2,下列说法错误的是()A.开口向上B.当a=2时,经过坐标原点OC.不论a为何值,都过定点(1,﹣2)D.a>0时,对称轴在y轴的左侧【变式1-2】(2022秋•金牛区期末)对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【变式1-3】(2022•赤壁市一模)对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是.(把你认为正确结论的序号都填上)【题型2 利用二次函数的性质比较函数值】【例2】(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【变式2-1】(2022秋•金安区校级月考)抛物线y=x2+x+2,点(2,a),(﹣1,﹣b),(3,c),则a,b,c的大小关系是()A.c>a>b B.b>a>cC.a>b>c D.无法比较大小【变式2-2】(2022春•鼓楼区校级月考)已知点A(b﹣m,y1),B(b﹣n,y2),C(b+m+n2,y3)都在二次函数y=﹣x2+2bx+c的图象上,若0<m<n,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y1<y3<y2【变式2-3】(2022•朝阳区校级一模)在平面直角坐标系xOy中,已知抛物线:y=ax2﹣2ax+4(a>0).若A(m﹣1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y3>y1>y2.结合图象,则m的取值范围是.【题型3 二次函数的对称性的应用】【例3】(2022秋•望江县期末)在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣1134…y…﹣6m n﹣6…则m、n的大小关系为()A.m<n B.m>n C.m=n D.无法确定【变式3-1】(2022秋•甘州区校级期末)二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【变式3-2】(2022•随州校级模拟)已知二次函数y=2x2﹣9x﹣34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值应当与()A.x=1时的函数值相等B.x=0时的函数值相等C.x=14的函数值相等D.x=94的函数值相等【变式3-3】(2022•临安区模拟)已知二次函数的解析式为y=(x﹣m)(x﹣1)(1≤m≤2),若函数过(a,b)和(a+6,b)两点,则a的取值范围()A.﹣2≤a≤−32B.﹣2≤a≤﹣1C.﹣3≤a≤−32D.0≤a≤2【题型4 利用二次函数的性质求字母的范围】【例4】(2022•西湖区一模)设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1B.0C.﹣1D.﹣2【变式4-1】(2022•盐城)若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.【变式4-2】(2022秋•鹿城区校级期中)已知抛物线y=﹣(x﹣2)2+9,当m≤x≤5时,0≤y≤9,则m 的值可以是()A.﹣2B.1C.3D.4【变式4-3】(2022•绵竹市模拟)若抛物线y=(x﹣m)(x﹣m﹣3)经过四个象限,则m的取值范围是()A.m<﹣3B.﹣1<m<2C.﹣3<m<0D.﹣2<m<1【题型5 利用二次函数的性质求最值】【例5】(2022秋•丹阳市期末)若实数m、n满足m+n=2,则代数式2m2+mn+m﹣n的最小值是_______.【变式5-1】(2022秋•宁明县期中)已知抛物线y=﹣x2﹣3x+t经过A(0,3).(1)求抛物线的解析式;(2)设点P(m,n)在该抛物线上,求m+n的最大值.【变式5-2】(2022•雁塔区校级四模)抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B 到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3B.m≤3或m≥4C.2<m<3D.3<m<4【变式5-3】(2021•永嘉县校级模拟)已知抛物线y=a(x﹣2)2+1经过第一象限内的点A(m,y1)和B (2m+1,y2),1<y1<y2,则满足条件的m的最小整数是()A.1B.2C.3D.4【题型6 二次函数给定范围内的最值问题】【例6】(2022秋•让胡路区期末)若二次函数y =﹣x 2+mx 在﹣1≤x ≤2时的最大值为3,那么m 的值是( ) A .﹣4或72B .﹣2√3或72C .﹣4 或2√3D .﹣2√3或2 √3【变式6-1】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【变式6-2】(2022•岳阳)已知二次函数y =mx 2﹣4m 2x ﹣3(m 为常数,m ≠0),点P (x p ,y p )是该函数图象上一点,当0≤x p ≤4时,y p ≤﹣3,则m 的取值范围是( ) A .m ≥1或m <0B .m ≥1C .m ≤﹣1或m >0D .m ≤﹣1【变式6-3】(2022秋•南充期末)若二次函数y =x 2﹣2x +5在m ≤x ≤m +1时的最小值为6,那么m 的值是 .。

人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
方法归纳
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在x轴下方。
⑷顶点坐标是( b , 4ac b2 )。
2a
4a
(5)二次函数有最大或最小值由a决定。
当x=- —2ba 时,y有最大(最小)
值 y= 4ac-b2
______________________
4a
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
的平方
整理:前三项化为平方形 式,后两项合并同类项
a x
b
2
4ac
b2
.
化简:去掉中括号
2a 4a
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax2 bx c的对称轴是:x b 2a
顶点坐标是:( b , 4ac b2 ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
下平移3个单位,得抛物线y=x2+bx+c,则( B )
A.b=2 c= 6
B.b=-6 , c=6
C.b=-8 c= 6
D.b=-8 , c=18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最值
y=2x2
y=2x2+1
y=2x2-1
☆合作探究☆
1、(1)填表
y=ax2
y=ax2+k
开口方向
a>0时开口_____;
a<0时开口_____.
顶点
对称轴
有最高(低)点
最值
a>0时,当x=______时,y有最____值为________;
a<0时,当x=______时,y有最____值为________.
2、抛物线y=-8x2与y=2x2开口较小的是______
二、导读
1.在课本13页画出函数y=2x2、y=2x2+1和y=2x2-1的图象。
2.通过对课本14页问题的思考,了解函数y=2x2+1和y=2x2-1的图象的开口方向、对称轴、顶点以及最值、增减性等特征.
填表
开口方向
顶点
对称轴
有最高(低)点
2.抛物线y=- x2-6可由抛物线y=- x2+2向____平移____个单位得到.
☆归纳反思☆
二次函数y=ax2与y=ax2+k的图象有哪些异同点:开口方向______开口大小______对称轴______顶点坐标______,把二次函数y=ax2图象向上平移k个单位的解析式_____#43;k与函数y=ax2的关系,体会数形结合的思想方法.
学习重点:1.二次函数y=ax2+k的图象和性质;
2.函数y=ax2+k与y=ax2的相互关系。
预设难点:正确理解二次函数y=ax2+k的性质,抛物线y=ax2+k与y=ax2的关系。
☆预习导航☆
一、链接:
1、二次函数y=3x2的图象是______,它的开口向_____,对称轴是_______,在对称轴的右侧,y随x的增大而________,函数y=-6x2当x=______时,有最______值,其最______值是________。
五河县“三为主”课堂九年级(上)数学导学案
课题:22.3二次函数y=ax2+bx+c的图象与性质(1)编号9S004
教学思路
(纠错栏)
教学思路
(纠错栏)
学习目标:
1.会用描点法画出二次函数y=ax2+k的图象。
2.能通过函数y=ax2+k的图象和解析式,正确说出其开口方向,对称轴以及顶点坐标等图象性质.
增减性
a>0时,当x<0时,函数值随x的增大而_____;当x>0时,函数值随x的增大而_____;
当a<0时x<0时,函数值随x的增大而_____;当x>0时,函数值随x的增大而_____;
(2)把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;
把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.
1.抛物线y=-2x2+8的开口______,对称轴______、顶点坐标是__________;
2.将函数y=-6x2-4向下平移2个单位后所得到的抛物线解析式____________.
3.抛物线y=4x2+1关于x轴对称的抛物线解析式为____________________.
相关文档
最新文档