2017年山西省晋中市高考数学二模试卷(理科)
山西晋城市2017-2018学年高三下学期第二次模拟考试数学(理)试题(二模) Word版含答案

2017-2018学年普通高中高三教学质量监测理科数学注意事项;1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2. 回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3. 回答第Ⅱ卷时,将答案写在答题卡上写在本试卷上无效。
4.考试结束后,将本试卷和答題卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={}R x y y x ∈-=,12| ,B={}0>|2x x x - ,则A ∩B= (A)(-1,+∞)(B )(-1,1) (C)(-1,0) (D )(O ,l)(2)若复数z 的共轭复数为z ,且满足i iz211-=+,其中i 为虚数单位,则复数z 的模为 (A )1 (B )3(C) 10 (D )4(3)下列满足“0)('0)()(,≤=-+∈∀x f x f x f R x 且”的函数是(A) ||)(x xe x f -= (B )x x x f sin )(+=(C) ⎩⎨⎧-≥+=0<),1lg(0),1lg()(x x x x x f (D )||)(2x x x f =(4)已知Sn 是等差数列{a n }的前n 项和,S 3+S 5=18,S 5= (A )14 (B )10(C) 9 (D )5(5)从1.2.3.4.5.6这六个数字中任取3个数,组成无重复数字的三位数,则十位数字比个位数字和百位数字都大的概率为 (A )61 (B )41 (C)31 (D )21(6)已知O 为原点坐标,F 为抛物线x y 42=的焦点,直线L :y=m(x-1)与抛物线交于A 、B 两点,点A 在第一象限,若|FA|=3|FB|,则 m 的值为(A )3 (B )3(C)33(D )31(7)如果执行如图所示的程序框图,那么输出的a = (A )2 (B )21(C) -1 (D )以上都不正确 (8)在正方体ABCD-A 1B 1C 1D 1中,E 为线段B 、C 的中点,若三棱锥E-ADD 1的外接球的体积为π36,则正方体的棱长为 (A )2 (B )22 (C) 33 (D )4 (9)已知212cos 21sin cos sin 32)(2++-=x x x x x f ,则下列结论错误..的是 (A ))(x f 在区间(0,6π)上单调递增 (B ))(x f 的一个对称中心为[1,0,12π-] (C) 当]3,0(π∈x 时,)(x f 的值域为[1,3](D )先将函数)(x f 的图像的纵坐标不变,横坐标缩短为原来的2)1倍,再向左平移8π个单位后得到函数)64cos(2π+=x y 的图像。
山西2017届高三第二次模拟测试数学文理试题Word版含答案

数学一、选择题.1.已知集合{}{}2|10,,|03,A x x x R B x x x R =-≥∈=≤<∈,则AB =( )A .{}|13,x x x R <<∈B .{}|13,x x x R ≤≤∈C .{}|13,x x x R ≤<∈D .{}|03,x x x R <<∈2.已知θ的终边过点()2,3,则7tan 4πθ⎛⎫+ ⎪⎝⎭等于( ) A .15- B .15C .-5D .5 3.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4 4.已知i 是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数a 的值可以是( )A .-2B .1C .2D .35.阅读如图所示的程序如图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是( )A .6n =B .6n <C .6n ≤D .8n ≤ 6. 4213532,4,25a b c ===,则( )A .b a c <<B .a b c <<C .b c a <<D .c a b <<7.(文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向上平移1个单位 D .向下平移1个单位7.(理科)()62x y -的展开式中,42x y 的系数为( )A .15B .-15C .60D .-608.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .123B .163.203.3239.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性相同的是( )A.(ln y x =+ B .2y x = C .tan y x = D .xy e =10.已知等差数列{}n a 的前n 项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为___________. A .15 B .16 C .314 D .1311.双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( ) A.1+.4-.5- D.3+ 12.设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a 的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭二、填空题13.(文科)与直线10x +-=垂直的直线的倾斜角为___________.(理科)曲线()2sin 0y x x π=≤≤与直线1y =围成的封闭图形的面积为___________.14.设,y x 满足约束条件2110y xx y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.15.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x =处的导数302f ⎛⎫'< ⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 16.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈,则2λμ-的取值范围是___________.三、解答题17.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<. 18.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超过x 的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)[)0,0.5,0.5,1,,4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.(理科)(本小题满分12分)在一次篮球定点投篮训练中,规定每人最多投3次,在A 处每投进一球得3分;在B 处每投进一球得2分,如果前两次得分之和超过3分就停止投篮;否则投第3次,某同学在A 处的抽中率10.25q =,在B 处的抽中率为2q ,该同学选择现在A 处投第一球,以后都在B 处投,且每次投篮都互不影响,用X 表示该同学投篮训练结束后所得的总分,其分布列为:X0 2 3 4 5P 0.03 2P 3P 4P 5P(1)求2q 的值;(2)求随机变量X 的数学期望()E X ;(3)试比较该同学选择上述方式投篮得分超过3分与选择都在B 处投篮得分超过3分的概率的大小.19.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值; (3)证明:取PB 中点G ,连结,AG NG .20.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点2P ⎛ ⎝,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率分别为12,k k ,且122k k +=,证明:直线AB 过定点. 21.已知函数()21ln ,2f x x ax x a R =-+∈.(1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明12x x +≥. 选做题22.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y'=⎧⎨'=⎩后得到曲线2C . (1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值. 23. (本小题满分10分)已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集;(2)若()3f x x ≤-的解集包含[]0,1,求实数a 的取值范围.参考答案一、选择题二、填空题 13.3π(文科),2233π-(理科);14. 73;15. 12;16.[]1,1- 三、解答题: 17.解析:(1)∵3339,S 22a ==, ∴()3312113111113233622q S a a a a q q a a a q a ⎧=⎧-=+=+=⎧=-⎪⎪⎪⇒⎨⎨⎨===⎪⎪⎪=⎩⎩⎩或, ∴131622n n n a a -⎛⎫==- ⎪⎝⎭或.(2)由题意知222222166log log log 22162n n nn b n a +====⎛⎫- ⎪⎝⎭,∴()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,∴()123111111111111142231414414n c c c c n n n n ⎛⎫⎛⎫++++=-+-++-=-=-< ⎪ ⎪+++⎝⎭⎝⎭.18.(文科)解析:(1)∵()0.50.080.160.40.520.120.080.042a 1⨯+++++++=, ∴0.3a =(2)由图可得月均用水量不低于3吨的频率为:()0.50.120.080.040.12,300.12 3.6⨯++=⨯=,∴全市居民中月均用水量不低于3吨的人数约为3.6万; (3)由图可得月均用水量不低于2.5吨的频率为:则0.850.732.50.5 2.90.30.5x -=+⨯=⨯吨.(理科)解析:(1)由题意可知,0X =对应的事件为“三次投篮没有一次投中”, ∴()()()2120110.03P X q q ==--=, ∵10.25q =,解得20.8q =;(2)根据题意()11220.750.20.80.24p p X C ===⨯⨯⨯=,()2230.250.20.01p p X ===⨯=,()2340.750.80.48p p X ===⨯=,()450.24p p X ===,∴()00.0320.2430.0140.4850.24 3.63E X =⨯+⨯+⨯+⨯+⨯=,(3)用C 表示事件“该同学在A 处投第一球,以后都在B 处投,得分超过3分”,用D 表示事件“该同学都在B 处投,得分超过3分”,()()()()2122450.48240.80.20.80.896P C P X P X P D C ==+====+⨯⨯=,∴()()P D P C >,即该同学选择都在B 处投篮得分超过3分的概率的大于该同学在A 处投第一球,以后都在B 处投,得分超过3分的概率.19.解:(1)∵N 为PC 的中点,∴1//2NG BC , 又22,43AM AD BC ===且//AD BC ,∴1//2AM BC ,则//NG AM ,∴四边形AMNG 为平行四边形,则//NM AG , ∵AG ⊂平面,PAB NM ⊄平面PAB , ∴//MN 平面PAB .(2)在三角形AMC 中,由22,3,cos 3AM AC MAC ==∠=,得 2222cos 5CM AC AM AC AN MAC =+-∠=, 222AM MC AC +=,则AM MC ⊥,∵PA ⊥底面,ABCD PA ⊂平面PAD ,∴平面ABCD ⊥平面PAD ,且平面ABCD平面PAD AD =,∴CM ⊥平面PAD ,则平面PNM ⊥平面PAD ,在平面PAD 内,过A 作AF PM ⊥,交PM 于F ,连结NF ,则ANF ∠为直线AN 与平面PMN 所成角。
【真卷】2017年山西省晋中市高考数学模拟试卷(理科)(5月份)

2017年山西省晋中市高考数学模拟试卷(理科)(5月份)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设全集U是实数集R,已知集合A={x|x2>2x},B={x|log2(x﹣1)≤0},则(∁U A)∩B=()A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤2}2.(5分)已知复数z满足,则z的共轭复数对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知数列{a n}为等比数列,且a1a13+2a72=5π,则cos(a2a12)的值为()A.B.C.D.4.(5分)我国南北朝时期数学家、天文学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”.“势”即是高,“幂”即是面积.意思是说如果两等高的几何体在同高处截得两几何体的截面积相等,那么这两个几何体的体积相等.已知某不规则几何体与如图所对应的几何体满足:“幂势同”,则该不规则几何体的体积为(图中的网格纸中的小正方形的边长为1)()A.4 B.8 C.16 D.205.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果是a=()A.2 B.4 C.6 D.86.(5分)将函数f(x)=2sin(ωx+)(ω>0)的图象向右平移个单位,得到函数y=g(x)的图象,若y=g(x)在[﹣,]上为增函数,则ω的最大值为()A.3 B.2 C.D.7.(5分)已知实数x,y满足,若使得目标函数z=ax+y取最大值的最优解有无数个,则实数a的值是()A.2 B.﹣2 C.1 D.﹣18.(5分)若圆C1(x﹣m)2+(y﹣2n)2=m2+4n2+10(mn>0)始终平分圆C2:(x+1)2+(y+1)2=2的周长,则+的最小值为()A.B.9 C.6 D.39.(5分)下列命题中,真命题的个数为①对任意的a,b∈R,a>b是a|a|>b|b|的充要条件;②在△ABC中,若A>B,则sinA>sinB;③非零向量,若,则向量与向量的夹角为锐角;④.()A.1 B.2 C.3 D.410.(5分)已知x、y是[0,1]上的两个随机数,则点M(x,y)到点(0,1)的距离小于其到直线y=﹣1的距离的概率为()A.B.C.D.11.(5分)已知双曲线的左、右焦点分别为F1,F2,O为坐标原点,A为右顶点,P为双曲线左支上一点,若存在最小值为12a,则双曲线一三象限的渐近线倾斜角的余弦值的最小值是()A.B.C.D.12.(5分)已知函数的图象上有且只有四个不同的点关于直线y=﹣1的对称点在直线y=kx﹣1上,则实数k的取值范围是()A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知数据x,y的取值如表:从散点图可知,y与x呈线性相关关系,已知第四组数据在回归直线上,则m的取值为.14.(5分)在的展开式中,x2的系数为.15.(5分)在四边形ABCD中,AB=7,AC=6,,CD=6sin∠DAC,则BD的最大值为.16.(5分)表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,S4=24,数列{b n}的前n项和T n=n2+a n.(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和B n.18.(12分)如图,在四棱锥P﹣ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.(1)求证:l∥EF;(2)求PB与平面ABCD所成角的正弦值为,求二面角P﹣AE﹣B的余弦值.19.(12分)在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?(2)若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.参考数据:参考公式:K2=,其中n=a+b+c+d.20.(12分)已知椭圆C:的右焦点在直线l:x﹣y﹣3=0上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为﹣.(1)求椭圆C的方程;(2)若直线t经过点P(1,0),且与椭圆C有两个交点A,B,是否存在直线l0:x=x0(其中x0>2)使得A,B到l0的距离d A,d B满足恒成立?若存在,求出x0的值,若不存在,请说明理由.21.(12分)已知函数f(x)=2a2lnx﹣x2,g(x)=﹣x2+2a3x+.(1)讨论函数f(x)在(1,e2)上零点的个数;(2)若h(x)=f(x)﹣g(x)有两个不同的零点x1,x2,求证:x1•x2>2e2.(参考数据:e取2.8,ln2取0.7,取1.4)请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)在平面直角坐标系xoy中,直线l:x+y﹣2=0,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=1,将曲线C1上所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍得到曲线C2,又直线l与曲线C2交于A,B两点.(1)求曲线C2的直角坐标方程;(2)设定点P(2,0),求的值.[选修4-5:不等式选讲]23.已知a>0,b>0,c>0函数f(x)=|x+a|+|x﹣b|+c.(1)当a=b=c=1时,求不等式f(x)>5的解集;(2)若f(x)的最小值为5时,求a+b+c的值,并求的最小值.2017年山西省晋中市高考数学模拟试卷(理科)(5月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.(5分)设全集U是实数集R,已知集合A={x|x2>2x},B={x|log2(x﹣1)≤0},则(∁U A)∩B=()A.{x|1<x<2}B.{x|1≤x<2}C.{x|1<x≤2}D.{x|1≤x≤2}【解答】解:由A中的不等式变形得:x2﹣2x>0,即x(x﹣2)>0,解得:x>2或x<0,∴A={x|x>2或x<0},∵全集U=R,∴∁U A={x|0≤x≤2},由B中的不等式变形得:log2(x﹣1)≤0=log21,得到0<x﹣1≤1,解得:1<x≤2,即B={x|1<x≤2},则(∁U A)∩B={x|1<x≤2}.故选:C.2.(5分)已知复数z满足,则z的共轭复数对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=,∴z=+i.则z的共轭复数﹣对应的点(,﹣)位于复平面内的第四象限.故选:D.3.(5分)已知数列{a n}为等比数列,且a1a13+2a72=5π,则cos(a2a12)的值为()A.B.C.D.【解答】解:∵数列{a n}为等比数列,且a1a13+2a72=5π,∴a1a13+2a72=3a72=5π,∴=,=,∴cos(a2a12)=cos=cos(2)=cos=.故选:D.4.(5分)我国南北朝时期数学家、天文学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”.“势”即是高,“幂”即是面积.意思是说如果两等高的几何体在同高处截得两几何体的截面积相等,那么这两个几何体的体积相等.已知某不规则几何体与如图所对应的几何体满足:“幂势同”,则该不规则几何体的体积为(图中的网格纸中的小正方形的边长为1)()A.4 B.8 C.16 D.20【解答】解:由题意可得,不规则几何体与三视图所对应的几何体的体积相同,根据三视图,可得该几何体是四棱柱,AH⊥平面ABCD,H∈AB,且该四棱柱的底面是长方形,长为BC=6,宽为AB=2,四棱锥的高为PH=4,其中,AH=2,如图所示:故它的体积为•(6•2)•4=16,故选:C.5.(5分)阅读如图所示的程序框图,运行相应的程序,输出的结果是a=()A.2 B.4 C.6 D.8【解答】解:模拟程序的运行,可得a=10,i=1不满足条件i≥5,不满足条件a是奇数,a=5,i=2不满足条件i≥5,满足条件a是奇数,a=16,i=3不满足条件i≥5,不满足条件a是奇数,a=8,i=4不满足条件i≥5,不满足条件a是奇数,a=4,i=5满足条件i≥5,退出循环,输出a的值为4.故选:B.6.(5分)将函数f(x)=2sin(ωx+)(ω>0)的图象向右平移个单位,得到函数y=g(x)的图象,若y=g(x)在[﹣,]上为增函数,则ω的最大值为()A.3 B.2 C.D.【解答】解:函数f(x)=2sin(ωx+)(ω>0)的图象向右平移个单位,可得g(x)=2sin[ω(x﹣)+]=2sin(ωx)在[﹣,]上为增函数,∴且,(k∈Z)解得:ω≤3﹣12k且,(k∈Z)∵ω>0,∴当k=0时,ω取得最大值为.故选:C.7.(5分)已知实数x,y满足,若使得目标函数z=ax+y取最大值的最优解有无数个,则实数a的值是()A.2 B.﹣2 C.1 D.﹣1【解答】解:不等式组表示的平面区域如图所示:由z=ax+y得y=﹣ax+z;当a=0时,直线化为y=z,此时取得最大值的最优解只有一个C点,不满足条件;当a>0时,直线y=﹣ax+z截距取得最大值,此时的最优解只有一个C点,不满足条件;当a<0时,直线y=﹣ax+z截距取得最大值时,z取的最大值,此时满足直线y=﹣ax+z与AC平行,由直线AC的斜率k=1,解得a=﹣1;综上,满足条件的a=﹣1.故选:D.8.(5分)若圆C1(x﹣m)2+(y﹣2n)2=m2+4n2+10(mn>0)始终平分圆C2:(x+1)2+(y+1)2=2的周长,则+的最小值为()A.B.9 C.6 D.3【解答】解:把两圆的方程相减即得两圆公共弦所在直线l方程为(m+1)x+(2n+1)y+5=0,由题意知直线l经过圆C2的圆心(﹣1,﹣1),因而m+2n=3.∴+=(+)(m+2n)=(5++)≥(5+4)=3,m=n时取等号.∴+的最小值为3,故选:D.9.(5分)下列命题中,真命题的个数为①对任意的a,b∈R,a>b是a|a|>b|b|的充要条件;②在△ABC中,若A>B,则sinA>sinB;③非零向量,若,则向量与向量的夹角为锐角;④.()A.1 B.2 C.3 D.4【解答】解:对于①,若a>b≥0,则a|a|>b|b|显然成立;若a≥0>b,a|a|>b|b|⇔a2>﹣b2⇔a2+b2>0,成立;若0>a>b,a|a|>b|b||⇔﹣a2>﹣b2⇔a2<b2,成立;故对任意的a,b∈R,a>b是a|a|>b|b|的充要条件,故①正确;对于②,在△ABC中,若A>B,则a>b,又由正弦定理知,a>b⇔2RsinA>2RsinB ⇔sinA>sinB,故②正确;对于③,非零向量,若,则向量与向量的夹角为锐角或0,故③错误;对于④,∵﹣==>0,∴>;同理可得,;∴,故④正确.综上所述,真命题的个数为3个,故选:C.10.(5分)已知x、y是[0,1]上的两个随机数,则点M(x,y)到点(0,1)的距离小于其到直线y=﹣1的距离的概率为()A.B.C.D.【解答】解:如图所示,正方形的面积为S=1×1=1,因为点M(x,y)到点(0,1)的距离小于其到直线y=﹣1的距离,所以<|y+1|,即x2<4y阴影部分的面积为S′=1﹣=1﹣=1﹣=,所以所求概率为.故选:D.11.(5分)已知双曲线的左、右焦点分别为F1,F2,O 为坐标原点,A为右顶点,P为双曲线左支上一点,若存在最小值为12a,则双曲线一三象限的渐近线倾斜角的余弦值的最小值是()A.B.C.D.【解答】解:设|PF1|﹣|OA|=m,则==+6a≥12a,当且仅当m=3a,取等号,∴|PF1|=4a,∴4a≥c﹣a,∴5a≥c,∴25a2≥a2+b2,∴≤2,设双曲线一三象限的渐近线倾斜角为α,则0<tanα≤2,∴cosα≥,∴双曲线一三象限的渐近线倾斜角的余弦值的最小值是,故选:A.12.(5分)已知函数的图象上有且只有四个不同的点关于直线y=﹣1的对称点在直线y=kx﹣1上,则实数k的取值范围是()A. B. C. D.【解答】解:直线y=kx﹣1关于直线y=﹣1的对称直线是y=﹣kx﹣1,则直线y=﹣kx﹣1与f(x)的图象有四个交点,作出y=f(x)与直线y=﹣kx﹣1的函数图象如图所示:设直线y=k1x﹣1与y=x2+x(x≤0)相切,切点为(x1,y1),则,解得x1=﹣1,y1=﹣,k1=﹣,设直线y=k2x﹣1与y=xlnx﹣3x(x>0)相切,切点为(x2,y2),则,解得x2=1,y2=﹣3,k2=﹣2,∴﹣2,∴.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知数据x,y的取值如表:从散点图可知,y与x呈线性相关关系,已知第四组数据在回归直线上,则m的取值为13.8.【解答】解:第四组数据在回归直线上,可得15.4=0.8×4+,∴=12.2∵=3,=,∴代入得=2.4+12.2,解得:m=13.8,故答案为13.8.14.(5分)在的展开式中,x2的系数为28.=.【解答】解:的展开式的通项公式:T r+1==(﹣1)k.的通项公式为:T k+1令=2,即r﹣3k=4,可得:k=0,r=4;k=1,r=7.∴x2的系数=﹣=28.故答案为:28.15.(5分)在四边形ABCD中,AB=7,AC=6,,CD=6sin∠DAC,则BD的最大值为8.【解答】解:由CD=6sin∠DAC,可得CD⊥AD.∴点D在以AC为直径的圆上(去掉A,B,C).∴当BD经过AC的中点O时取最大值,OB2=32+72﹣2×3×7cos∠BAC=25,解得OB=5,∴BD的最大值=5+AC=8.故答案为:8.16.(5分)表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为6.【解答】解:过O作OF⊥平面SAB,则F为△SAB的中心,过F作FE⊥SA于E点,则E为SA中点,取AB中点D,连结SD,则∠ASD=30°,设球O半径为r,则4πr2=40π,解得r=.连结OS,则OS=r=,OF=,∴SF==2=2.=SA2=6.∴DF=EF=,SE==.∴SA=2SE=2,S△SAB过O作OM⊥平面ABC,则当C,M,D三点共线时,C到平面SAB的距离最大,即三棱锥S﹣ABC体积最大.连结OC,∵平面SAB⊥平面ABC,∴四边形OMDF是矩形,∴MD=OF=,OM=DF=.∴CM==2.∴CD=CM+DM=3.∴三棱锥S﹣ABC体积V=S•CD=3=6.△SAB故答案为:6.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)已知等差数列{a n}的前n项和为S n,且a3=7,S4=24,数列{b n}的前n项和T n=n2+a n.(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和B n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,则由a3=7,S4=24,得,解得a1=3,d=2.∴a n=3+2(n﹣1)=2n+1.∵T n=n2+a n=n2+2n+1=(n+1)2,当n=1时,b1=4,当n≥2=n2,∴T n﹣1∴b n=T n﹣T n﹣1=2n+1,当n=1时,b1=3≠4,∴b n=,(2)当n=1时,;当n≥2时,.∴B1=2,当n≥2时,,则,得===.∴,验证n=1时成立,∴.18.(12分)如图,在四棱锥P﹣ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.(1)求证:l∥EF;(2)求PB与平面ABCD所成角的正弦值为,求二面角P﹣AE﹣B的余弦值.【解答】证明:(1)在平面PCD中,过E作EF∥CD,交PD于F,连结AF,则F即为平面ABE与棱PD的交点,在平面PCD中,过P作PG DC,连结CG、BG,则BG是平面PCD与平面PAB的交线l.∵EF∥CD,l∥CD,∴l∥EF.解:(2)取AD中点O,连结OP,∵在四棱锥P﹣ABCD中,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD ⊥平面ABCD,∴PO⊥底面ABCD,以O为原点,OA为x轴,在平面ABCD中,过O作AB的平行线为y轴,以OP 为z轴,建立空间直角坐标系,B(1,4,0),设P(0,0,t),(t>0),则=(﹣1,﹣4,t),∵PB与平面ABCD所成角的正弦值为,平面ABCD的法向量=(0,0,1),∴|cos<>|===,解得t=2,则P(0,0,2),C(﹣1,4,0),E(﹣),A(1,0,0),B(1,4,0),=(﹣,2,1),=(﹣1,0,2),=(0,4,0),设平面PAE的法向量=(x,y,z),则,取z=1,得=(2,1,1),设平面ABE的法向量=(a,b,c),则,取a=2,得=(2,0,3),设二面角P﹣AE﹣B的平面角为θ,则cosθ===.∴二面角P﹣AE﹣B的余弦值为.19.(12分)在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?(2)若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.参考数据:参考公式:K2=,其中n=a+b+c+d.【解答】解:(1)根据频数分布,填写2×2列联表如下;计算观测值K2==≈14.512>10.828,对照临界值表知,在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”;(2)根据题意,X所有可能取值有0,1,2,3,P(X=0)=•=,P(X=1)=•+•=,P(X=2)=•+•=,P(X=3)=•=,所以X的分布列是所以X的期望值是EX=0×+1×+2×+3×=.20.(12分)已知椭圆C:的右焦点在直线l:x﹣y﹣3=0上,且椭圆上任意两个关于原点对称的点与椭圆上任意一点的连线的斜率之积为﹣.(1)求椭圆C的方程;(2)若直线t经过点P(1,0),且与椭圆C有两个交点A,B,是否存在直线l0:x=x0(其中x0>2)使得A,B到l0的距离d A,d B满足恒成立?若存在,求出x0的值,若不存在,请说明理由.【解答】解:(1)由椭圆的焦点在x轴上,由椭圆的焦点在直线l:x﹣y﹣3=0,∴右焦点F2(,0),即c=,设P(x0,y0),M(x1,y1),N(﹣x1,﹣y1).则,,得到y 02=b2(1﹣),y12=b2(1﹣),∴k PM•k PN=•==﹣.即=,即a2=4b2,由a2﹣b2=c2=3,解得:a2=4,b2=1,∴椭圆C的方程;(2)设直线l的方程为y=k(x﹣1),,整理得:(1+4k2)x2﹣8k2x+4k2﹣4=0,设A(x1,y1),B(x2,y2)(x1>x2),即有x1+x2=,x1x2=,存在直线l0:x=x0(其中x0>2),使得A,B到l0的距离d A,d B满足:恒成立,∴=,即为2x1x2+2x0﹣(1+x0)(x1+x2)=0,即有+2x0﹣(1+x0)•=0,即为8k2﹣8+2x0(1+4k2)﹣8k2(1+x0)=0,∴2x0=8,解得x0=4>2.故存在这样的直线l:x=4.21.(12分)已知函数f(x)=2a2lnx﹣x2,g(x)=﹣x2+2a3x+.(1)讨论函数f(x)在(1,e2)上零点的个数;(2)若h(x)=f(x)﹣g(x)有两个不同的零点x1,x2,求证:x1•x2>2e2.(参考数据:e取2.8,ln2取0.7,取1.4)【解答】(1)解:∵f(x)=2a2lnx﹣x2,∴f′(x)=.∵x>0,a>0,∴当0<x<a时,f′(x)>0,当x>a时,f′(x)<0.∴f(x)在(0,a]上是增函数,在[a,+∞)上是减函数.∴f(x)max=f(a)=a2(2lna﹣1),讨论函数f(x)的零点情况如下.①a2(2lna﹣1)<0,即0<a<时,函数f(x)无零点,在(1,e2)上也无零点;②当a2(2lna﹣1)=0,即a=时,函数f(x)在(0,+∞)内有唯一零点a,而1<a<e2,∴f(x)在(1,e2)内有一个零点;③当a2(2lna﹣1)>0,即a>时,由于f(1)=﹣1<0,f(a)=a2(2lna﹣1)>0.f(e2)=(2a﹣e2)(2a+e2),当2a﹣e2<0时,即<a<时,1<<a<<e2,f(e2)<0,由单调性可知,函数f(x)在(1,a)内有唯一零点x1、在(a,e2)内有唯一零点x2满足,∴f(x)在(1,e2)内有两个零点;当2a﹣e2≥0时,即a≥>时,f(e2)≥0,而且f()=a2﹣e>0,f(1)=﹣1<0,由单调性可知,无论a≥e2还是a<e2,f(x)在(1,)内有唯一的一个零点,在[,e2)内没有零点,从而f(x)在(1,e2)内只有一个零点;综上所述,有:当0<a<时,函数f(x)无零点;当a=或a≥时,函数f(x)有一个零点;当<a<时,函数f(x)有两个零点.(2)证明:h(x)=f(x)﹣g(x)=2a2lnx﹣x2+x2﹣2a3x﹣=.由h(x)=0,得,由题意知,,两式相加得,两式相减得,即,∴,即,不妨令0<x1<x2,记t=>1,令F(t)=(t>1),则F′(t)=>0,∴F(t)=在(1,+∞)上单调递增,则F(t)=>F(1)=0,∴lnt>,则>,∴=>2,又<lnx1x2==,∴>2,即>1,令G(x)=lnx﹣,则x>0时,G′(x)=>0,∴G(x)在(0,+∞)上单调递增,又ln﹣=ln2+1≈0.85<1,∴G()=>1>,则,即x 1•x2>2e2.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B铅笔将答题卡上相应的题号涂黑.[选修4-4:参数方程与极坐标系]22.(10分)在平面直角坐标系xoy中,直线l:x+y﹣2=0,以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1:ρ=1,将曲线C1上所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍得到曲线C2,又直线l与曲线C2交于A,B两点.(1)求曲线C2的直角坐标方程;(2)设定点P(2,0),求的值.【解答】解:(1)曲线C1:ρ=1,即直角坐标方程:x2+y2=1.将曲线C1上所有点的横坐标伸长为原来的倍,纵坐标伸长为原来的2倍得到曲线C2,可得与曲线C2的方程为:=1,化为:.(2)直线l的参数方程为:,代入曲线C2的方程为:3t2+4t﹣8=0.∴t1+t2=﹣,t1•t2=﹣.∴=+====.[选修4-5:不等式选讲]23.已知a>0,b>0,c>0函数f(x)=|x+a|+|x﹣b|+c.(1)当a=b=c=1时,求不等式f(x)>5的解集;(2)若f(x)的最小值为5时,求a+b+c的值,并求的最小值.【解答】解:(1)当a=b=c=1时,不等式f(x)>5即|x+1|+|x﹣1|+1>5,化为:|x+1|+|x﹣1|>4.①x≥1时,化为:x+1+x﹣1>4,解得x>2.②﹣1<x<1时,化为:x+1﹣(x﹣1)>4,化为:0>2,解得x∈∅.③x≤﹣1时,化为:﹣(x+1)﹣(x﹣1)>4,化为:x<﹣2.综上可得:不等式f(x)>5的解集为:(﹣∞,﹣2)∪(2,+∞).(2)不妨设a≥b>0.①x>b时,f(x)=x+a+x﹣b+c=2x+a﹣b+c,②﹣a≤x≤b时,f(x)=a+x﹣(x﹣b)+c=a+b+c,③x<﹣a时,f(x)=﹣(a+x)+b﹣x+c=﹣2x﹣a+b+c.可知:﹣a≤x≤b时,f(x)取得最小值a+b+c=5.∴=(a+b+c)≥×=,当且仅当a═b=c=时取等号.∴的最小值为.赠送初中数学几何模型【模型三】双垂型:图形特征:运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
山西省晋中市高考数学二模试卷

山西省晋中市高考数学二模试卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共12分)1. (1分) (2017高三上·泰州开学考) 集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=________.2. (1分)(2018·如皋模拟) 复数,其中为虚数单位,则的虚部为________.3. (1分) (2019高一下·上海期末) 函数的最小正周期 ________.4. (1分) (2016高二上·如东期中) 已知焦点均在x轴上的双曲线C1 ,与双曲线C2的渐近线方程分别为y=土k1x 与y=±k2x,记双曲线C1的离心率e1 ,双曲线C2的离心率e2 ,若k1k2=1,则e1e2的最小值为________.5. (1分) (2017高一下·红桥期末) 已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为________.6. (1分)(2016·江苏) 已知实数x , y满足,则x2+y2的取值范围是________.7. (1分)在平面直角坐标系xOy中,若直线l:(t为参数)过椭圆C:(φ为参数)的右顶点,则常数a的值为________。
8. (1分) (2019高三上·上海月考) 设为的反函数,则的最大值为________.9. (1分)(2017高二下·东城期末) 若,则的值为________.10. (1分) (2016高二下·日喀则期末) 荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示,假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是________.11. (1分) (2018高二上·凌源期末) 已知函数,则关于的不等式的解集为________.12. (1分) (2017高一上·定州期末) 定义:f1(x)=f(x),当n≥2且x∈N*时,fn(x)=f(fn﹣1(x)),对于函数f(x)定义域内的x0 ,若正在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n~周期点,已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是________(写出所有正确命题的编号)①1是f(x)的一个3~周期点;②3是点的最小正周期;③对于任意正整数n,都有fn()= ;④若x0∈(,1],则x0是f(x)的一个2~周期点.二、选择题 (共4题;共8分)13. (2分)(2017·山东模拟) “p∨q为真”是“p为真”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件14. (2分) (2018高一上·寻乌期末) 如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为()A .B .C .D .15. (2分) (2016高一下·双流期中) 如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且 =0,则△MEF的面积的取值范围为()A .B . [1,2]C .D .16. (2分) (2016高二下·南阳期末) 从6名身高不同的同学中选出5名从左至右排成一排照相,要求站在偶数位置的同学高于相邻奇数位置的同学,则可产生不同的照片数为()A . 96B . 98C . 108D . 120三、解答题 (共5题;共55分)17. (15分) (2019高二上·湖南期中) 如图,在三棱柱中,底面,、、、分别为,、、,的中点,且,, .(1)证明:平面;(2)证明:;(3)求直线与平面所成角的正弦值.18. (10分)(2017·扬州模拟) 一缉私艇巡航至距领海边界线l(一条南北方向的直线)3.8海里的A处,发现在其北偏东30°方向相距4海里的B处有一走私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航速是走私船最大航速的3倍,假设缉私艇和走私船均按直线方向以最大航速航行.(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin17°≈ ,≈5.7446)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.19. (5分) (2017高二下·宜昌期末) 已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB关于x轴对称,求k的值.20. (10分)(2013·湖南理) 已知a>0,函数.(1)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(2)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.21. (15分) (2018高一下·四川期中) 已知数列中,,且(且).(1)求的值;(2)求通项公式;(3)设数列的前项和为,试比较与的大小关系.参考答案一、填空题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共4题;共8分)13-1、14-1、15-1、16-1、三、解答题 (共5题;共55分) 17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、。
2017年名校高考数学二模试卷(理科)(解析版)

2017年名校高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x∈N|1<x<lnk},集合A中至少有3个元素,则()A.k>e3B.k≥e3C.k>e4D.k≥e42.i为虚数单位,若(a,b∈R)与(2﹣i)2互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣73.已知f(x)=sinx﹣x,命题p:∃x∈(0,),f(x)<0,则()A.p是假命题,¬p::∀x∈(0,),f(x)≥0B.p是假命题,¬p::∃x∈(0,),f(x)≥0C.P是真命题,¬p::∀x∈(0,),f(x)≥0D.p是真命题,¬p::∃x∈(0,),f(x)≥04.在等差数列{a n}中,a1+3a8+a15=60,则2 a﹣a10的值为()A.6 B.8 C.12 D.135.我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为()A.15 B.31 C.63 D.1276.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3cm B.4cm C.5cm D.6cm7.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114 B.10 C.150 D.508.若等边△ABC的边长为3,平面内一点M满足=+,则•的值为()A.﹣B.﹣2 C.D.29.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有()A.18种B.24种C.48种D.36种10.已知双曲线﹣=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是()A.(1,)B.(1,2)C.(,+∞)D.(2,+∞)11.如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0,<φ<π)的部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为2,则f(﹣1)=()A.﹣2 B.2 C.﹣D.12.已知函数f(x)=,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1•x2的取值范围是()A.[4﹣2ln2,+∞)B.(,+∞)C.(﹣∞,4﹣2ln2]D.(﹣∞,)二、填空题:本大题共4小题,每小题5分,共20分).13.设a=(cosx﹣sinx)dx,则二项式(a﹣)6的展开式中含x2项的系数为.14.已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若•=0,则k= .15.已知函数f(x)=ax2+bx+c(a>0)有两个零点1,2,数列{x n}满足x n+1=x n﹣,设a n=ln,若a1=,x n>2,则数列{a n}的通项公式a n= .16.已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为4,求c.18.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;(Ⅱ)若将频率视为概率,回答下列问题:(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.19.如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.20.已知椭圆E: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为,过点M (m,0)(m>)作斜率不为0的直线l,交椭圆E于A,B两点,点P(,0),且•为定值.(Ⅰ)求椭圆E的方程;(Ⅱ)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax,a∈R.(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;(Ⅱ)设g(x)=f(x)+,若g(x)有极大值点x1,求证:>a.[选修4-4:坐标系与参数方程选讲]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求+的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若关于x的方程=a的解集为空集,求实数a的取值范围.2017年河南省商丘市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合A={x∈N|1<x<lnk},集合A中至少有3个元素,则()A.k>e3 B.k≥e3 C.k>e4 D.k≥e4【考点】元素与集合关系的判断.【分析】首先确定集合A,由此得到lnk>4,由此求得k的取值范围.【解答】解:∵集合A={x∈N|1<x<lnk},集合A中至少有3个元素,∴A={2,3,4,…},∴lnk>4,∴k>e4.故选:C.2.i为虚数单位,若(a,b∈R)与(2﹣i)2互为共轭复数,则a﹣b=()A.1 B.﹣1 C.7 D.﹣7【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数相等的条件求得a,b的值,则答案可求.【解答】解:∵=,(2﹣i)2=4﹣4i﹣1=3﹣4i,又(a,b∈R)与(2﹣i)2互为共轭复数,∴b=3,a=﹣4,则a﹣b=﹣7.故选:D.3.已知f(x)=sinx﹣x,命题p:∃x∈(0,),f(x)<0,则()A.p是假命题,¬p::∀x∈(0,),f(x)≥0B.p是假命题,¬p::∃x∈(0,),f(x)≥0C.P是真命题,¬p::∀x∈(0,),f(x)≥0D.p是真命题,¬p::∃x∈(0,),f(x)≥0【考点】命题的否定.【分析】直接利用特称命题否定是全称命题写出结果.【解答】解:f(x)=sinx﹣x,x∈(0,),f′(x)=cosx﹣1<0,∴f(x)是(0,)上是减函数,∵f(0)=0,∴f(x)<0,∴命题p:∃x∈(0,),f(x)<0是真命题,¬p:∀x∈(0,),f(x)≥0,故选:C.4.在等差数列{a n}中,a1+3a8+a15=60,则2a﹣a10的值为()A.6 B.8 C.12 D.13【考点】等差数列的通项公式.【分析】由已知条件利用等差数列的通项公式求解.【解答】解:在等差数列{a n}中,∵a1+3a8+a15=60,∴a1+3(a1+7d)+a1+14d=5(a1+7d)=60,∴a1+7d=12,2a﹣a10=2(a1+8d)﹣(a1+9d)=a1+7d=12.故选:C.5.我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为()A.15 B.31 C.63 D.127【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量v的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的x=2,n=5,故v=1,i=4,v=1×2+1=3i=3,v=3×2+1=7i=2,v=7×2+1=15i=1,v=15×2+1=31i=0,v=31×2+1=63i=﹣1,跳出循环,输出v的值为63,故选:C6.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3cm B.4cm C.5cm D.6cm【考点】由三视图求面积、体积.【分析】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r.【解答】解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,则10﹣r+10﹣r=10cm,∴r=10﹣5≈3cm.故选:A.7.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114 B.10 C.150 D.50【考点】几何概型;简单线性规划.【分析】作出两平面区域,计算两区域的公共面积,得出芝麻落在区域Γ内的概率.【解答】解:作出平面区域Ω如图:则区域Ω的面积为S△ABC==区域Γ表示以D()为圆心,以为半径的圆,则区域Ω和Γ的公共面积为S′=+=.∴芝麻落入区域Γ的概率为=.∴落在区域Γ中芝麻数约为360×=30π+20≈114.故选A.8.若等边△ABC的边长为3,平面内一点M满足=+,则•的值为()A.﹣B.﹣2 C.D.2【考点】平面向量数量积的运算.【分析】如图所示,建立直角坐标系.利用向量坐标运算性质、数量积运算性质即可得出.【解答】解:如图所示,建立直角坐标系:B(0,),A(,0),C(﹣,0).=(,),=(3,0)=+=(2,).=(,),∴=(﹣1,),=(,﹣)则•=﹣=﹣2.故选:B.9.高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置,)其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一班的乘坐方式共有()A.18种B.24种C.48种D.36种【考点】排列、组合的实际应用.【分析】分类讨论,第一类,同一班的2名同学在甲车上;第二类,同一班的2名同学不在甲车上,再利用组合知识,问题得以解决.【解答】解:由题意,第一类,同一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C32=3,然后分别从选择的班级中再选择一个学生为C21C21=4,故有3×4=12种.第二类,同一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C31=3,然后再从剩下的两个班级中分别选择一人为C21C21=4,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选:B.10.已知双曲线﹣=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是()A.(1,)B.(1,2)C.(,+∞)D.(2,+∞)【考点】双曲线的简单性质.【分析】由右顶点M在以AB为直径的圆的外,得|MF|>|AF|,将其转化为关于a、b、c的式子,再结合平方关系和离心率的公式,化简整理得e2﹣e﹣2<0,解之即可得到此双曲线的离心率e的取值范围.【解答】解:由于双曲线﹣=1(a>0,b>0),则直线AB方程为:x=﹣c,因此,设A(﹣c,y0),B(﹣c,﹣y0),∴=1,解之得y0=,得|AF|=,∵双曲线的右顶点M(a,0)在以AB为直径的圆外,∴|MF|>|AF|,即a+c>,将b2=c2﹣a2,并化简整理,得2a2+ac﹣c2>0两边都除以a2,整理得e2﹣e﹣2<0,∵e>1,∴解之得1<e<2.故选:B.11.如图,将绘有函数f(x)=2sin(ωx+φ)(ω>0,<φ<π)的部分图象的纸片沿x轴折成直二面角,若AB之间的空间距离为2,则f(﹣1)=()A.﹣2 B.2 C.﹣D.【考点】点、线、面间的距离计算;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据图象过点(0,1),结合φ的范围求得φ的值,再根据A、B两点之间的距离,求得T的值,可得ω的值,从而求得函数的解析式,从而求得f(﹣1)的值.【解答】解:由函数的图象可得2sinφ=1,可得sinφ=,再根据<φ<π,可得φ=.再根据A、B两点之间的距离为=2,求得T=4,再根据T==4,求得ω=.∴f(x)=2sin(x+),f(﹣1)=2sin(﹣+)=,故选:D.12.已知函数f(x)=,若F(x)=f[f(x)+1]+m有两个零点x1,x2,则x1•x2的取值范围是()A.[4﹣2ln2,+∞)B.(,+∞)C.(﹣∞,4﹣2ln2]D.(﹣∞,)【考点】分段函数的应用.【分析】由题意可知:当x≥1时,f(x)+1≥1,f[f(x)+1]=ln(f(x)+1),当x<1,f(x)=1﹣>,f[f(x)+1]=ln(f(x)+1),f[f(x)+1]=ln(f(x)+1)+m=0,则x1x2=e t(2﹣2t),t>,设g(t)=e t(2﹣2t),t>,求导,利用导数求得函数的单调性区间,即可求得x1x2的取值范围.【解答】解:当x≥1时,f(x)=lnx≥0,∴f(x)+1≥1,∴f[f(x)+1]=ln(f(x)+1),当x<1,f(x)=1﹣>,f(x)+1>,f[f(x)+1]=ln(f(x)+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e﹣m,f(x)=e﹣m﹣1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e﹣m﹣1,当x<1时,1﹣=e﹣m﹣1,令t=e﹣m﹣1>,则lnx2=t,x2=e t,1﹣=t,x1=2﹣2t,∴x1x2=e t(2﹣2t),t>,设g(t)=e t(2﹣2t),t>,求导g′(t)=﹣2te t,t∈(,+∞),g′(t)<0,函数g(t)单调递减,∴g(t)<g()=,∴g(x)的值域为(﹣∞,),∴x1x2取值范围为(﹣∞,),故选:D.二、填空题:本大题共4小题,每小题5分,共20分).13.设a=(cosx﹣sinx)dx,则二项式(a﹣)6的展开式中含x2项的系数为12 .【考点】二项式系数的性质.【分析】根据微积分基本定理首先求出a的值,然后再根据二项式的通项公式求出r的值,问题得以解决.【解答】解:由于a=(cosx﹣sinx)dx=(sinx+cosx)|=﹣1﹣1=﹣2,∴(﹣2﹣)6=(2+)6的通项公式为T r+1=2r C6r•x3﹣r,令3﹣r=2,求得r=1,故含x2项的系数为2C61=12.故答案为:1214.已知抛物线C:y2=4x与点M(0,2),过C的焦点,且斜率为k的直线与C交于A,B两点,若•=0,则k= 8 .【考点】直线与抛物线的位置关系.【分析】设直线AB的方程,代入抛物线方程,利用韦达定理及向量数量积的坐标运算(x1,y1﹣2)(x2,y2﹣2)=0,即可求得k的值.【解答】解:抛物线C :y 2=4x 的焦点为F (1,0),∴直线AB 的方程为y=k (x ﹣1),设A (x 1,y 1),B (x 2,y 2),联立方程组,整理得:k 2x 2﹣(2k 2+4)x +k 2=0,则x 1+x 2==2+.x 1x 2=1.∴y 1+y 2=k (x 1+x 2)﹣2k=,y 1y 2=k 2(x 1﹣1)(x 2﹣1)=k 2[x 1x 2﹣(x 1+x 2)+1]=﹣4,∵•=0,(x 1,y 1﹣2)(x 2,y 2﹣2)=0,即x 1x 2+y 1y 2﹣2(y 1+y 2)+4=0,解得:k=8.故答案为:1.15.已知函数f (x )=ax 2+bx +c (a >0)有两个零点1,2,数列{x n }满足x n +1=x n ﹣,设a n =ln ,若a 1=,x n >2,则数列{a n }的通项公式a n = 2n ﹣2(n ∈N*) .【考点】数列与函数的综合.【分析】由题意可得f (x )=a (x ﹣1)(x ﹣2),求出导数,可得x n +1=,求得a n +1=ln =2ln=2a n ,运用等比数列的通项公式即可得到所求.【解答】解:函数f (x )=ax 2+bx +c (a >0)有两个零点1,2, 可得f (x )=a (x ﹣1)(x ﹣2), f′(x )=a (2x ﹣3),则x n +1=x n ﹣=x n ﹣=,由a 1=,x n >2,则a n +1=ln=ln=2ln =2a n ,即有a n =a 1qn ﹣1=•2n ﹣1=2n ﹣2.故答案为:2n ﹣2(n ∈N*).16.已知f(x)=x3﹣3x+2+m(m>0),在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是直角三角形,则m的取值范围是0<m<3+4.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】利用导数求得f(x)=x3﹣3x+3+m(m>0),在区间[0,2]上的最小值、最大值,由题意构造不等式解得范围.【解答】解:f(x)=x3﹣3x+3+m,求导f′(x)=3x2﹣3由f′(x)=0得到x=1或者x=﹣1,又x在[0,2]内,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m+1,f(x)max=f(2)=m+5,f(0)=m+3.∵在区间[0,2]上存在三个不同的实数a,b,c,使得以f(a),f(b),f(c)为边长的三角形是构成直角三角形,∴(m+1)2+(m+1)2<(m+5)2,即m2﹣6m﹣23<0,解得3﹣4<m<3+4又已知m>0,∴0<m<3+4.故答案为:0<m<3+4.三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程.17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b(1+cosC)=c(2﹣cosB).(Ⅰ)求证:a,c,b成等差数列;(Ⅱ)若C=,△ABC的面积为4,求c.【考点】正弦定理.【分析】(Ⅰ)由正弦定理,三角形内角和定理,两角和的正弦函数公式化简已知可得sinA+sinB=2sinC,从而可求a+b=2c,即a,c,b成等差数列;(Ⅱ)由已知利用三角形面积公式可求ab=16,进而利用余弦定理可得:c2=(a+b)2﹣3ab,结合a+b=2c,即可解得c的值.【解答】(本题满分为12分)解:(Ⅰ)∵b(1+cosC)=c(2﹣cosB),∴由正弦定理可得:sinB+sinBcosC=2sinC﹣sinCcosB,可得:sinBcosC+sinCcosB+sinB=2sinC,∴sinA+sinB=2sinC,∴a+b=2c,即a,c,b成等差数列;(Ⅱ)∵C=,△ABC的面积为4=absinC=ab,∴ab=16,∵由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2﹣ab=(a+b)2﹣3ab,∵a+b=2c,∴可得:c2=4c2﹣3×16,解得:c=4.18.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪70元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成5元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如表频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(Ⅰ)现从甲公司记录的100天中随机抽取两天,求这两天送餐单数都大于40的概率;(Ⅱ)若将频率视为概率,回答下列问题:(i)记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)记“抽取的两天送餐单数都大于40”为事件M,可得P(M)=.(Ⅱ)(ⅰ)设乙公司送餐员送餐单数为a,可得当a=38时,X=38×5=190,以此类推可得:当a=39时,当a=40时,X的值.当a=41时,X=40×5+1×7,同理可得:当a=42时,X=214.所以X的所有可能取值为190,1195,200,207,214.可得X的分布列及其数学期望.(ⅱ)依题意,甲公司送餐员日平均送餐单数为38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.可得甲公司送餐员日平均工资,与乙数学期望比较即可得出.【解答】解:(Ⅰ)记“抽取的两天送餐单数都大于40”为事件M,则P(M)==.(Ⅱ)(ⅰ)设乙公司送餐员送餐单数为a,则当a=38时,X=38×5=190,当a=39时,X=39×5=195,当a=40时,X=40×5=200,当a=41时,X=40×5+1×7=207,当a=42时,X=40×5+2×7=214.所以X的所有可能取值为190,195,200,207,214.故X的分布列为:∴E(X)=190×+195×+200×+207×+214×=.(ⅱ)依题意,甲公司送餐员日平均送餐单数为38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5.所以甲公司送餐员日平均工资为70+4×39.5=228元.由(ⅰ)得乙公司送餐员日平均工资为192.2元.因为192.2<228,故推荐小明去甲公司应聘.19.如图,在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,A1A=4,A1E=.(Ⅰ)证明:A1D⊥平面A1BC;(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)先证AE⊥平面A1BC,再证A1D∥AE即可‘’(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】证明:(Ⅰ)∵在三棱柱ABC﹣A1B1C1中,D,E分别是B1C1、BC的中点,∠BAC=90°,AB=AC=2,∴A1D∥AE,AE⊥BC,AE=BE=,∵A1A=4,A1E=.∴A1E2+AE2=,∴AE⊥A1E,∵A1E∩BC=E,∴AE⊥平面A1BC,∵A1D∥AE,∴A1D⊥平面A1BC.解:(Ⅱ)如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),设平面A1BD的法向量为=(x,y,z),由,可取.设平面B1BD的法向量为=(x,y,z),由,可取.cos<>=又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.20.已知椭圆E: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为,过点M (m,0)(m>)作斜率不为0的直线l,交椭圆E于A,B两点,点P(,0),且•为定值.(Ⅰ)求椭圆E的方程;(Ⅱ)求△OAB面积的最大值.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(Ⅰ)由抛物线方程求出抛物线的焦点坐标,即椭圆左焦点坐标,结合椭圆离心率可得长半轴长,再由b2=a2﹣c2求出短半轴,则椭圆E的标准方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0由•为定值,解得m,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积s=即可求得最值【解答】解:(Ⅰ)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,又椭圆E的离心率为,得a=,于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0,,==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.要使•为定值,则,解得m=1或m=(舍)当m=1时,|AB|=|y1﹣y2|=,点O到直线AB的距离d=,△OAB面积s==.∴当t=0,△OAB面积的最大值为,21.已知函数f(x)=lnx﹣2ax,a∈R.(Ⅰ)若函数y=f(x)存在与直线2x﹣y=0垂直的切线,求实数a的取值范围;(Ⅱ)设g(x)=f(x)+,若g(x)有极大值点x1,求证:>a.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,问题转化为x=在(0,+∞)上有解,求出a的范围即可;(Ⅱ)求出g(x)的解析式,通过讨论a的范围,问题转化为证明x1lnx1+1>ax12,令h(x)=﹣﹣x+xlnx+1,x∈(0,1),根据函数的单调性证明即可.【解答】(Ⅰ)解:因为f′(x)=﹣2a,x>0,因为函数y=f(x)存在与直线2x﹣y=0垂直的切线,所以f′(x)=﹣在(0,+∞)上有解,即﹣2a=﹣在(0,+∞)上有解,也即x=在(0,+∞)上有解,所以>0,得a>,故所求实数a的取值范围是(,+∞);(Ⅱ)证明:因为g(x)=f(x)+x2=x2+lnx﹣2ax,因为g′(x)=,①当﹣1≤a≤1时,g(x)单调递增无极值点,不符合题意,②当a>1或a<﹣1时,令g′(x)=0,设x2﹣2ax+1=0的两根为x1和x2,因为x1为函数g(x)的极大值点,所以0<x1<x2,又x1x2=1,x1+x2=2a>0,所以a>1,0<x1<1,所以g′(x1)=x12﹣2ax1+=0,则a=,要证明+>a,只需要证明x1lnx1+1>ax12,因为x1lnx1+1﹣ax12=x1lnx1﹣+1=﹣﹣x1+x1lnx1+1,0<x1<1,令h(x)=﹣x3﹣x+xlnx+1,x∈(0,1),所以h′(x)=﹣x2﹣+lnx,记P(x)=﹣x2﹣+lnx,x∈(0,1),则P′(x)=﹣3x+=,当0<x<时,p′(x)>0,当<x<1时,p′(x)<0,所以p(x)max=p()=﹣1+ln<0,所以h′(x)<0,所以h(x)在(0,1)上单调递减,所以h(x)>h(1)=0,原题得证.[选修4-4:坐标系与参数方程选讲]22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(Ⅰ)写出直线l的普通方程和圆C的直角坐标方程;(Ⅱ)设点P(4,3),直线l与圆C相交于A,B两点,求+的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)把直线l的参数方程消去参数t可得,它的直角坐标方程;把圆C的极坐标方程依据互化公式转化为直角坐标方程.(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,得,结合根与系数的关系进行解答.【解答】解:(Ⅰ)由直线l的参数方程为(t为参数),得直线l的普通方程为x+y﹣7=0.又由ρ=6sinθ得圆C的直角坐标方程为x2+(y﹣3)2=9;(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,得,设t1,t2是上述方程的两实数根,所以t1+t2=4,t1t2=7,∴t1>0,t2>0,所以+=.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|+|2x+1|.(Ⅰ)解不等式f(x)>5;(Ⅱ)若关于x的方程=a的解集为空集,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)分类讨论求得原不等式解集.(Ⅱ)由分段函数f(x)的解析式可得f(x)的单调性,由此求得函数f(x)的值域,求出的取值范围.再根据关于x的方程=a的解集为空集,求得实数a的取值范围.【解答】解:(Ⅰ)解不等式|x﹣2|+|2x+1|>5,x≥2时,x﹣2+2x+1>5,解得:x>2;﹣<x<2时,2﹣x+2x+1>5,无解,x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,故不等式的解集是(﹣∞,﹣)∪(2,+∞);(Ⅱ)f(x)=|x﹣2|+|2x+1|=,故f(x)的最小值是,所以函数f(x)的值域为[,+∞),从而f(x)﹣4的取值范围是[﹣,+∞),进而的取值范围是(﹣∞,﹣]∪(0,+∞).根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].。
2017届高三二模理科参考答案(1)

2017届高三二模考试试题参考答案及评分标准理科数学一、选择题(题本大题共12道小题,每小题5分,共60分,在每题给出的四答案中,其中只有一项符合题目要求.)1-5: D C C B D 6-10: B C D B D 11-12:D D二、填空题(本大题共4小题,每小题5分共20分.把答案直接填在题中横线上.) 13. -3 14. 3 15. 0.7 16.己酉年三、解答题(本大题共6小题,共70分。
解答应写出文字说明,证明过程或演算步骤。
)17.解:(1)∵nn n a a S +=22∴2n 1n 1n 12S a a +++=+……………………………………………………..2分∴ 22n 1n n 1n 1n n 2S 2S (a a )(a a )+++-=+-+…………………………….3分 即n 1n n 1n (a a )(a a 1)0+++--=∵ n a 0>∴n 1n a a 0++>∴n 1n a a 1+-=…………………………………………………………..4分令n 1=,则21112S a a =+ ∴1a 1=或1a 0=∵ n a 0>∴1a 1=…………………………………………………………………………………………5分∴ 数列{}n a 是以1为首项,以为公差1的等差数列∴ n 1a a (n 1)d n =+-=,*n N ∈…………………………………………………………………6分 (2)由(1)知:nnn n 2nn2a 111b (1)(1)()n n 1a a +=-=-+++…………………8分∴数列{}n b 的前2016项的和为n 122016T b b b =+++L111111111(1)()()()()223342015201620162017=-+++-++-+++L 1111111111223342015201620162017=--++--+--++L …………………………………………………………………………10分112017=-+20162017=-……………………………………………………………………12分18.解:(1)证明:法一:取PD 的中点N ,连接MN ,CN.在△PAD 中,N 、M 分别为棱PD 、PA 的中点∴1MN AD 2P1BC AD 2Q P ∴ 四边形BCNM 是平行四边形∴BM CN P∵BM ⊂平面PCD ,CN ⊄平面PCD ∴BM//平面PCD ………………5分(法二:连接EM ,BE.在△PAD 中,E 、M 分别为棱AD 、PA 的中点∴MN PD P ∵AD//BC ,1BC CD AD 12=== ∴ 四边形BCDE 是平行四边形∴BE CD P ∵BE ME E ⋂=,,MN PD P ,BE CD P ∴平面BEM//平面PCD ∵BM ⊂平面BEM ∴BM//平面PCD )(2)以A 为原点,以,的方向分别为x 轴,z 轴的正方向建立空间直角坐标系xyz A -…………………………6分则)0,0,0(A ,)0,1,2(C ,)0,0,1(E . ∵点P 在底面ABCD 上的射影为A ∴PA ⊥平面ABCD∵︒=∠45ADP ∴ PA AD 2== ∴)2,0,0(P∴)2,0,1(-=,)0,1,1(=,)2,0,0(=……..7分设平面PAC 的一个法向量m (a,b,c)=r, 则c 02a b 2c 0⎧=⎨+-=⎩设a 1=,则m (1,2,0)=-r……………………………………..9分设平面PCE 的一个法向量为),,(z y x n =ρ,则⎩⎨⎧=+=-02y x z x ,设2=x ,则)1,2,2(-=n ………………………………10分∴m n cos m,n 5m n•<>==v vv v v v ……………………..11分由图知:二面角A PC E --是锐二面角,设其平面角为θ,则cos cos m,n θ=<>=u u v v …………………………12分19.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1)目标函数为 10001200z x y =+. …………………………………………….2分 12W =时,由(1)表示的可行域和目标函数几何意义知当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=. 15W =时当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=. 18W =时,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.………………………………….5分 故最大获利Z 的分布列为…………………………………………………………………….7分因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯=…………………………8分 (Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+= ……………………………………………….10分 所以3天中至少有1天最大获利超过10000元的概率为3311(1)10.30.973.p p =--=-=……………………………………………………12分20.解:(1)设动圆的圆心为E (x,y)则PE =222(x 2)y 4x ++=+∴2y4x =-即:动圆圆心的轨迹E 的方程为2y4x =-…………………………….4分(2)当直线AB 的斜率不存在时,AB ⊥x轴,此时,A ((2,---∴AB CD ==12S S ==∴12S S +=………………………….5分当直线AB 的斜率存在时,设直线AB 的斜率为k ,则k 0≠, 直线AB 的方程是y k(x 2)=+,k 0≠. 设1122A (x ,y ),B (x ,y ),联立方程2y k (x 2)y 4x⎧=+⎨=-⎩,消去y ,得:22k (x 2)4x 0(k 0)++=≠,即:2222k x 4(k 1)x 4k 0(k 0)+++=≠ ∴216(2k 1)0∆=+>,21224(k 1)x x k++=-,12x x 4= ………………………………………………………………………………………………………………….7分由1122A (x ,y ),B (x ,y )知,直线AC 的方程为11y y x x =,直线AC 的方程为22y y x x =, ∴ 12122y 2y C (2,),D (2,)x x ∴ 21121212k (x x )y y CD 22x x x x -=-=∴111S (2x )CD 2=-⋅,221S (2x )CD2=-⋅……………………………………..9分∴12121S S [4(x x )]CD 0)2+=-+⋅=≠ 令21t k=,则t 0>,3212S S 4(2t),t 0+=+>由于 函数32y 4(2t)=+在(0,)+∞上是增函数……………………………………………11分∴ y >12S S +>综上所述,12S S +≥∴112S S +的最小值为12分21.解:(1)函数)(x f 的定义域为)(+∞,0 由已知:),(0)12)(1()2(21)(>++-=-+-='x x x ax a ax x x f…………………………………………………………………………………………………….2分当a x 10<<时,0)(>'x f 所以,函数)(x f 在)10a ,(上是增函数; 当a x 1>时,0)(<'x f 所以,函数)(x f 在)1∞+,(a上是减函数,综上所述:函数)(x f 的增区间是)10a ,(,函数)(x f 的减区间是)1∞+,(a.………………………………………………………………………………………………………………3分(2)设)1()1()(x af x a f xg --+=,则ax ax ax x g 2)1ln()1ln()(---+= …………………………………………………………………………………………………………………..……….5分∴2223122-1111)(x a x a a ax ax x g -=-++='…………………………………………..6分当ax 10<<时,012)(2223>-='x a x a x g ,又0)0(=g ∴0)(>x g故当a x 10<<时,).1()1(x a f x a f ->+……………………………………………………………8分(3) 由(1)知:函数)(x f 的最大值为)1(a f ,且0)1(>a f ……………………………………9分不妨设21210),0,(B ),0,(A x x x x <<,则2110x ax <<<由(2)知:0)()-11()-2(111=>+=x f x a a f x a f …………………………………….10分从而,12-2x a x >所以,.12210ax x x >+=由(1)知:.0)(0<'x f ………………………………………………………………………………………12分请考生在22、23两题中任选一题作答,如果多做,则按多做第一题计分。
【数学】山西省晋中市2017届高考二模试卷(理)(解析版)

山西省晋中市2017届高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=()A.(﹣2,0)B.(0,2)C.(﹣1,2)D.(﹣2,﹣1)2.(5分)i是虚数单位,若复数z满足z i=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.33.(5分)已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.334.(5分)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣5.(5分)函数的图象大致为()A.B.C.D.6.(5分)某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π7.(5分)执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为()A.1 B.2 C.3 D.48.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.9.(5分)已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y+1≥0;P2:∀(x,y)∈D,2x﹣y+2≤0;P3:∃(x,y)∈D,≤﹣4;P4:∃(x,y)∈D,x2+y2≤2.其中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P410.(5分)已知抛物线y2=4x的焦点为F,过焦点F的直线交抛物线于A、B两点,O为坐标原点,若△AOB的面积为,则|AB|=()A.24 B.8 C.12 D.1611.(5分)已知函数f(x)=sinωx﹣cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,] B.(,] C.(,] D.(,] 12.(5分)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sin x+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若两个非零向量满足,则向量与的夹角是.14.(5分)已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为.15.(5分)我们可以利用数列{a n}的递推公式a n=(n∈N+),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a64+a65=.16.(5分)已知数列{a n}中,a1=﹣1,a n+1=2a n+3n﹣1(n∈N*),则其前n项和S n=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足=.(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.18.(12分)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C 三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X的分布列与期望.19.(12分)如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.20.已知椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1(1)求椭圆C的方程;(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.21.已知函数f(x)=2ln x+ax﹣(a∈R)在x=2处的切线经过点(﹣4,ln2)(1)讨论函数f(x)的单调性;(2)若不等式>mx﹣1恒成立,求实数m的取值范围.22.(14分)已知椭圆的长轴长为6,离心率为,F2为椭圆的右焦点.(Ⅰ)求椭圆的标准方程;(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q 两点,判断△PF2Q的周长是否为定值并说明理由.23.已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.参考答案一、选择题1.C【解析】由x+1>0,得x>﹣1∴A=(﹣1,+∞),B={x||x|<2}=(﹣2,2)∴A∩B=(﹣1,2).故选:C2.C【解析】复数z满足z i=﹣1+i,可得z===1+i.复数z的实部与虚部的和是:1+1=2.故选:C.3.D【解析】由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.则S11==11×3=33.故选:D.4.A【解析】由题意,正方形的面积为22=4.圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1﹣,故选:A.5.D【解析】f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D6.B【解析】由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,r==,球的表面积4πr2=4π×=π.故选:B.7.D【解析】模拟执行程序,可得程序框图的功能是计算并输出分段函数S=的值,做出函数的图象,由题意可得:输出的s∈[0,4],当m=0时,n∈[2,4],n﹣m∈[2,4],当n=4时,m∈[0,2],n﹣m∈[2,4],所以实数n﹣m的最大值为4.故选:D.8.D【解析】由题意,几何体为圆柱与圆锥的组合体,该几何体的表面积为2π•1•2+π•12+++1=,故选D.9.C【解析】不等式组的可行域如图,p1:A(﹣2,0)点,﹣2+0+1=﹣1,故∀(x,y)∈D,x+y≥0为假命题;p2:A(﹣1,3)点,﹣2﹣3+2=﹣3,故∀(x,y)∈D,2x﹣y+2≤0为真命题;p3:C(0,2)点,=﹣3,故∃(x,y)∈D,≤﹣4为假命题;p4:(﹣1,1)点,x2+y2=2故∃(x,y)∈D,x2+y2≤2为真命题.可得选项p2,p4正确.故选:C.10.A【解析】抛物线y2=4x焦点为F(1,0),设过焦点F的直线为:y=k(x﹣1),由,可得y2﹣y﹣4=0,y A+y B=,y A y B=﹣4,|y A﹣y B|=△AOB的面积为2,可得:×1×|y A﹣y B|=2,解得k2=,|AB|=×|y A﹣y B|=24.故选:A.11.B【解析】f(x)=2sin(ωx﹣),作出f(x)的函数图象如图所示:令2sin(ωx﹣)=﹣1得ωx﹣=﹣+2kπ,或ωx﹣=+2kπ,∴x=+,或x=+,k∉Z,设直线y=﹣1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,则x A=,x B=,∵方程f(x)=﹣1在(0,π)上有且只有四个实数根,∴x A<π≤x B,即<π≤,解得.故选B.12.D【解析】由题意,若集合M={(x,y)|y=f(x)}满足:对于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此.所以,若M是“垂直对点集”,那么在M图象上任取一点A,过原点与直线OA垂直的直线OB总与函数图象相交于点B.对于①:M={(x,y)|y=},其图象是过一、二象限,且关于y轴对称,所以对于图象上的点A,在图象上存在点B,使得OB⊥OA,所以①符合题意;对于②:M={(x,y)|y=sin x+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sin x+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sin x+1的图象相交.所以M={(x,y)|y=sin x+1}是“垂直对点集”,故②符合题意;对于③:M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.故③符合题意;对于④:M={x,y)|y=log2x},对于函数y=log2x,过原点做出其图象的切线OT(切点T在第一象限),则过切点T做OT的垂线,则垂线必不过原点,所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故④不符合题意.故选:D.二、填空题13.120°【解析】∵==∴,∴(+)•(﹣)=﹣2||2,设的夹角为θcosθ=∵θ∈[0°,180°]∴θ=120°故答案为120°14.﹣x2=1【解析】根据题意,双曲线的一条渐近线方程为y=2x,则可以设其方程为x2﹣=m,(m ≠0),又由其经过点,则有1﹣=m,解可得m=﹣1,则其方程为:x2﹣=﹣1,其标准方程为:﹣x2=1,故答案为:﹣x2=1.15.66【解析】由题得:这个数列各项的值分别为1,1,3,1,5,3,7,1,9,5,11,3…∴a64+a65=a32+65=a16+65=a8+65=a4+65=1+65=66.故答案为:66.16.2n+2﹣4﹣【解析】∵a n+1=2a n+3n﹣1(n∈N*),a1=﹣1,∴a2=0.n≥2时,a n=2a n﹣1+3n﹣4,相减可得:a n+1﹣a n=2a n﹣2a n﹣1+3,化为:a n+1﹣a n+3=2(a n﹣a n﹣1+3),∴数列{a n﹣a n﹣1+3}为等比数列,首项为4,公比为2.∴a n﹣a n﹣1+3=4×2n﹣2,∴a n﹣a n﹣1=2n﹣3.∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n﹣3+2n﹣1﹣3+…+22﹣3﹣1,=﹣3(n﹣1)﹣1=2n+1﹣3n﹣2.∴其前n项和S n=﹣3×﹣2n=2n+2﹣4﹣.故答案为:2n+2﹣4﹣.三、解答题17.解:(Ⅰ)∵,所以(2c﹣b)•cos A=a•cos B由正弦定理,得(2sin C﹣sin B)•cos A=sin A•cos B.整理得2sin C•cos A﹣sin B•cos A=sin A•cos B.∴2sin C•cos A=sin(A+B)=sin C.在△ABC中,sin C≠0.∴,.(Ⅱ)由余弦定理,.∴b2+c2﹣20=bc≥2bc﹣20∴bc≤20,当且仅当b=c时取“=”.∴三角形的面积.∴三角形面积的最大值为.18.解:(1)由题意得:P(A)==0.35,P(B)==0.45,P(C)==0.2,∴甲乙两人采用不同分期付款方式的概率:p=1﹣[P(A)•P(A)+P(B)•P(B)+P(C)•P(C)]=0.635.(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,则X的可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.1225,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.∴X的分布列为:X 2 3 4 5 6P0.1225 0.315 0.3425 0.18 0.04E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7.19.证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴BE⊥AC,∴AC⊥平面BEFD,∵AC⊂平面ACF,∴平面ACF⊥平面BEFD.解:(2)设AC与BD的交点为O,由(1)得AC⊥BD,分别以OA,OB为x轴,y轴,建立空间直角坐标系,∵BE⊥平面ABCD,∴BE⊥BD,∵DF∥BE,∴DF⊥BD,∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2.设OA=a,(a>0),由题设得A(a,0,0),C(﹣a,0,0),E(0,),F(0,﹣,2),设m=(x,y,z)是平面AEF的法向量,则,取z=2,得=(),设是平面CEF的一个法向量,则,取,得=(﹣,1,2),∵二面角A﹣EF﹣C是直二面角,∴=﹣+9=0,解得a=,∵BE⊥平面ABCD,∴∠BAE是直线AE与平面ABCD所成的角,∴AB==2,∴tan.∴直线AE与平面ABCD所成角的正切值为.20.解:(1)∵椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,∴由题意得,解得a2=4,b2=3,∴椭圆C的方程为.(2)假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣,0),∵PM=MN,∴P(,2m),Q(),∴直线QM的方程为y=﹣3kx+m,设A(x1,y1),由,得(3+4k2)x2+8kmx+4(m2﹣3)=0,∴,∴,设B(x2,y2),由,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,∴x2+=,∴x2=﹣,∵点N平分线段A1B1,∴,∴﹣=﹣,∴k=,∴P(±2m,2m),∴,解得m=,∵|m|=<b=,∴△>0,符合题意,∴直线l的方程为y=.21.解:(1),令x=2,∴f'(2)=1+a+f'(2),∴a=﹣1,设切点为(2,2ln2+2a﹣2f'(2)),则y﹣(2ln2+2a﹣2f'(2))=f'(2)(x﹣2),代入(﹣4,2ln2)得:2ln2﹣2ln2﹣2a+2f'(2)=﹣6f'(2),∴,∴,∴f(x)在(0,+∞)单调递减;(2)恒成立,令,∴φ(x)在(0,+∞)单调递减,∵φ(1)=0,∴,∴在(0,+∞)恒大于0,∴m≤0.22.解:(I)根据已知,设椭圆的标准方程为,∴2a=6,a=3,,c=1;b2=a2﹣c2=8,(II)△PF2Q的周长是定值,设P(x1,y1),Q(x2,y2),则,,∵0<x1<3,∴,在圆中,M是切点,∴,∴,同理|QF2|+|QM|=3,∴|F2P|+|F2Q|+|PQ|=3+3=6,因此△PF2Q的周长是定值6.23.解:(1)∵,∴,∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,∴|m|≤1,∴﹣1≤m≤1,∴实数m的最大值为1;(2)当时,=∴,∴或,∴,∴实数a的取值范围是.。
山西省晋中市2017届高考适应性调研考试数学试题(理)含答案

2017年3月高考适应性调研考试高三数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U R =,{3,2,1,0,1,2}A =---,{|1}B x x =≥,则U AC B =( )A .{1,2}B .{1,0,1,2}-C .{3,2,1,0}---D .{2}2.在复平面中,复数421(1)1i i +++对应的点在( ) A .第一象限 B .第二象限 C . 第三象限 D .第四象限3.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,则“sin sin A B >”是“a b >”的( ) A .充分不必要条件 B .必要不充分条件 C . 充要条件 D . 既不充分也不必要条件4.若1sin()3πα-=,且2παπ≤≤,则sin 2α的值为( )A .9-B .9- C. 9 D .95.执行下面的程序框图,则输出K 的值为( )A . 98B . 99 C. 100 D .1016.李冶(1192~1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边形到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算) A .10步,50步 B .20步,60步 C.30步,70步 D .40步,80步7.某几何体的三视图如图所示,则该几何体的体积是( )A . 16B . 20 C. 52 D .60 8.已知函数()sin(2)12f x x π=+,'()f x 是()f x 的导函数,则函数'2()()y f x f x =+的一个单调递减区间是( ) A .7[,]1212ππB .5[,]1212ππ-C. 2[,]33ππ- D .5[,]66ππ- 9.若332(||)a x x dx -=+⎰,则在a的展开式中,x 的幂函数不是整数的项共有( )A .13项B . 14项 C. 15项 D .16项10.在平面直角坐标系中,不等式组22200x y x y x y r ⎧+≤⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为( )A . -1 B.17-C. 13 D .75- 11.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,过点1F 且垂直于x 轴的直线与该双曲线的左支交于,A B 两点,22,AF BF 分别交y 轴于,P Q 两点,若2PQF ∆的周长为12,则ab 取得最大值时该双曲线的离心率为( )A B D 12.已知函数22()1xf x eax bx =-+-,其中,a b R ∈,e 为自然对数的底数,若(1)0f =,'()f x 是()f x 的导函数,函数'()f x 在区间(0,1)内有两个零点,则a 的取值范围是( )A .22(3,1)e e -+ B .2(3,)e -+∞ C. 2(,22)e -∞+ D .22(26,22)e e -+第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设样本数据122017,,,x x x 的方差是4,若21(1,2,,2017)i i y x i =-=,则122017,,,y y y 的方差为 .14.在平面内将点(2,1)A 绕原点按逆时针方向旋转34π,得到点B ,则点B 的坐标为 .15.设二面角CD αβ--的大小为45,A 点在平面α内,B 点在CD 上,且45ABC ∠=,则AB 与平面β所成的角的大小为 . 16.非零向量,m n 的夹角为3π,且满足||||(0)n m λλ=>,向量组123,,x x x 由一个m 和两个n 排列而成,向量组123,,y y y 由两个m 和一个n 排列而成,若112233x y x y x y ++所有可能值中的最小值为24m ,则λ= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的前n 项和为n S ,若14m S -=-,0m S =,214m S +=(2m ≥ 且*m N ∈).(1)求m 的值; (2)若数列{}n b 满足2log 2nn a b =*()n N ∈,求数列{(6)}n n a b +的前n 项和.18. 如图,三棱柱ABC DEF -中,侧面ABED 是边长为2的菱形,且3ABE π∠=,2BC =,四棱锥F ABED -的体积为2,点F 在平面ABED 内的正投影为G ,且G 在AE 上点M 是线段CF 上,且14CM CF =.(1)证明:直线//GM 平面DEF ; (2)求二面角M AB F --的余弦值.19. 交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题: (1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950a =,记X 为某同学家的一辆该品牌车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元: ①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.20. 设,,M N T 是椭圆2211612x y +=上三个点,,M N 在直线8x =上的射影分别为11,M N . (1)若直线MN 过原点O ,直线,MT NT 斜率分别为12,k k ,求证:12k k 为定值; (2)若,M N 不是椭圆长轴的端点,点L 坐标为(3,0),11M N L ∆与MNL ∆面积之比为5,求MN 中点K 的轨迹方程.21. 已知函数()ln(1)f x m x =+,()(1)1xg x x x =>-+. (1)讨论函数()()()F x f x g x =-在(1,)-+∞上的单调性;(2)若()y f x =与()y g x =的图象有且仅有一条公切线,试求实数m 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin x a a y a ββ=+⎧⎨=⎩(0a >,β为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程3cos()32πρθ-=.(1)若曲线C 与l 只有一个公共点,求a 的值; (2),A B 为曲线C 上的两点,且3AOB π∠=,求OAB ∆的面积最大值.23.选修4-5:不等式选讲设函数()|1||21|f x x x =--+的最大值为m . (1)作出函数()f x 的图象;(2)若22223a c b m ++=,求2ab bc +的最大值.试卷答案一、选择题1-5:CDCAB 6-10:BBACD 11、12:DA二、填空题13. 16 14. (,22-15. 30 16. 83三、解答题17.(1)由已知得:14m m m a S S -=-=, 且12214m m m m a a S S ++++=-=,设数列{}n a 的公差为d ,则有2314m a d +=, ∴2d =,由0m S =,得1(1)202m m ma -+⨯=,即11a m =- ∴1(1)214m a a m m =+-⨯=-= ∴5m =(2)由(1)知,14a =-,2d =,∴26n a n =-,∴23log n n b -=,得32n n b -=. ∴32(6)222n n n n a b n n --+=⨯=⨯设数列{(6)}n n a b +的前n 项和为n T∴10321222(1)22n n n T n n ---=⨯+⨯++-⨯+⨯① 012121222(1)22n n n T n n --=⨯+⨯++-⨯+⨯②①–②,得:1212222n n n T n ---=+++-⨯112(12)212n n n ---=-⨯-111222n n n --=--⨯∴1*1(1)2()2n n T n n N -=-+∈ 18.(1)因为四棱锥F ABED -的体积为2,即14223F ABED V FG -=⨯⨯=,所以FG =又BC EF ==,所以32EG =,即点G 是靠近A 的四等分点, 过点G 作//GK AD 交DE 于点K ,所以3344GK AD CF == 又34MF CF =,所以MF GK =且//MF GK 所以四边形MFKG 为平行四边形所以//GM FK ,所以直线//GM 平面DEF .(2)设,AE BD 的交点为O ,OB 所在直线为x 轴,OE 所在直线为y 轴,过点O 作平面ABED 的垂线为z 轴,建立空间直角坐标系,如图所示,(0,1,0)A -,B,1(0,2F -,5(,44M -,(1,0)BA =-,5(44BM =--,1(2BF =-, 设平面ABM ,ABF 的法向量为,m n ,00m BA m BM ⎧=⎪⎨=⎪⎩,则(1,1)m =-,00n BA n BF ⎧=⎪⎨=⎪⎩,则1(1,3,)2n =- 785cos 85||||m n m n θ==,即为所求. 19.(1)由题意可知:X 的可能取值为0.9,0.8,0.7,,1.1,1.3a a a a a a 由统计数据可知:1(0.9)6P X a ==,1(0.8)12P X a ==,1(0.7)12P X a ==,1()3P X a ==, 1( 1.1)4P X a ==,1( 1.3)12P X a ==所以X 的分布列为:所以11111111.9113050.90.80.7 1.1 1.39426121234121212a EX a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯==≈(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故的概率为13,三辆车中至多有一辆事故车的概率为3123112(1)()333P C =-+2027=②设Y 为该销售商购进并销售一辆二手车的利润,Y 的可能取值为-5000,10000 所以Y 的分布列为:所以500010000500033EY =-⨯+⨯=所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为10050EY ⨯=万元20.(1)设(,)M p q ,(,)N p q --,00(,)T x y ,则22012220y q k k x p-=- 又2222001161211612p q x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得:22220001612x p y q --+=, 即22022034y q x p -=-- 1234k k =-(2)设直线MN 与x 轴相交于点(,0)R r ,1|3|||2MNL M N S r y y ∆=-- 111115||2M N L M N S y y ∆=- 由于115M N L MNL S S ∆∆=且11||||M N M N y y y y -=-,得11115||5|3|||22M N M N y y r y y -=--,4r =(舍去)或2r = 即直线MN 经过点(2,0)F ,设1122(,),(,)M x y N x y ,00(,)K x y ①当直线MN 垂直于x 轴时,弦MN 中点为(2,0)F②当直线MN 与x 轴不垂直时,设MN 的方程为(2)y k x =-,则2211612(2)x y y k x ⎧+=⎪⎨⎪=-⎩2222(34)1616480k x k x k ⇒+-+-=21221634k x x k +=+,2122164834k x x k -=+,202834k x k =+,02634ky k-=+, 消去k ,整理得:22004(1)1(0)3y x y -+=≠ 综上所述,点K 的轨迹方程为224(1)1(0)3y x x -+=>. 21.(1)'''221(1)1()()()1(1)(1)m m x F x f x g x x x x +-=-=-=+++,1x >-, 当0m ≤时,'()0F x <,函数()F x 在(1,)-+∞上单调递减; 当0m >时,令'()0F x <11x m ⇒<-+,函数()F x 在1(1,1)m--+上单调递减; '()0F x >11x m ⇒>-+,函数()F x 在1(1,)m-++∞上单调递增,综上所述,当0m ≤时,()F x 的单减区间是(1,)-+∞;当0m >时,()F x 的单减区间是1(1,1)m--+; 单增区间是1(1,)m-++∞. (2)函数()ln(1)f x m x =+在点(,ln(1))a m a +处的切线方程为ln(1)()1my m a x a a -+=-+, 即ln(1)11m may x m a a a =++-++ 函数()1x g x x =+在点1(,1)1b b -+处的切线方程为211(1)()1(1)y x b b b --=-++, 即2221(1)(1)b y x b b =+++. ()y f x =与()y g x =的图象有且仅有一条公切线所以2221(1)1(1)ln(1)(2)1(1)m a b ma b m a a b ⎧=⎪++⎪⎨⎪+-=⎪++⎩有唯一一对(,)a b 满足这个方程组,且0m >由(1)得:21(1)a m b +=+代入(2)消去a ,整理得: 22ln(1)ln 101m b m m m b +++--=+,关于(1)b b >-的方程有唯一解 令2()2ln(1)ln 11g b m b m m m b =+++--+ '22222[(1)1]()1(1)(1)m m b g b b b b +-=-=+++方程组有 解时,0m >,所以()g b 在1(1,1)m --+单调递减,在1(1,)m -++∞单调递增 所以min 1()(1)ln 1g b g m m m m=-+=-- 因为b →+∞,()g b →+∞,1b →-,()g b →+∞,只需ln 10m m m --=令()ln 1m m m m σ=--'()ln m m σ=-在0m >为单减函数且1m =时,'()0m σ=,即max ()(1)0m σσ==所以1m =时,关于b 的方程22ln(1)ln 101m b m m m b +++--=+有唯一解 此时0a b ==,公切线方程为y x =22.(1)曲线C 是以(,0)a 为圆心,以a 为半径的圆直线l的直角坐标方程为30x +-=由直线l 与圆C 只有一个公共点,则可得|3|2a a -= 解得:3a =-(舍),1a =所以:1a =(2)曲线C 的极坐标方程为2cos a ρθ=(0a >)设A 的极角为θ,B 的极角为3πθ+,则21||||sin 2cos ||2cos()||cos cos()|2333OAB S OA OB a a πππθθθθ∆==+=+21cos cos()cos cos 32πθθθθθ+=-1cos 21222θθ+=111(cos 22)2224θθ=-+11cos(2)234πθ=++ 所以当6πθ=-时,11cos(2)234πθ++取得最大值34. OAB ∆的面积最大值24a . 23.(1)12,21()3,122,1x x f x x x x x ⎧+≤-⎪⎪⎪=--<<⎨⎪--≥⎪⎪⎩画出图象如图,(2)由(1)知,32m =∵2222222323()2()242m a c b a b c b ab bc ==++=+++≥+, ∴324ab bc +≤,∴2ab bc +的最大值为34, 当且仅当12a b c ===时,等号成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山西省晋中市高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=lg(x+1)},B={x||x|<2},则A∩B=()A.(﹣2,0)B.(0,2) C.(﹣1,2)D.(﹣2,﹣1)2.(5分)i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.33.(5分)已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.334.(5分)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣5.(5分)函数的图象大致为()A.B.C.D.6.(5分)某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π7.(5分)执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(A.1 B.2 C.3 D.48.(5分)某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.9.(5分)已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y+1≥0;P2:∀(x,y)∈D,2x﹣y+2≤0;P3:∃(x,y)∈D,≤﹣4;P4:∃(x,y)∈D,x2+y2≤2.其中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P410.(5分)已知抛物线y2=4x的焦点为F,过焦点F的直线交抛物线于A、B两点,O为坐标原点,若△AOB的面积为,则|AB|=()A.24 B.8 C.12 D.1611.(5分)已知函数f(x)=sinωx﹣cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,]B.(,]C.(,]D.(,]12.(5分)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若两个非零向量满足,则向量与的夹角是.14.(5分)已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为.15.(5分)我们可以利用数列{a n}的递推公式a n=(n∈N+),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a64+a65=.16.(5分)已知数列{a n}中,a1=﹣1,a n+1=2a n+3n﹣1(n∈N*),则其前n项和S n=.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足=.(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.18.(12分)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X 的分布列与期望.19.(12分)如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.20.已知椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P 两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1(1)求椭圆C的方程;(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.21.已知函数f(x)=2lnx+ax﹣(a∈R)在x=2处的切线经过点(﹣4,ln2)(1)讨论函数f(x)的单调性;(2)若不等式>mx﹣1恒成立,求实数m的取值范围.22.(14分)已知椭圆的长轴长为6,离心率为,F2为椭圆的右焦点.(Ⅰ)求椭圆的标准方程;(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.23.已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.2017年山西省晋中市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•晋中二模)已知集合A={x|y=lg(x+1)},B={x||x|<2},则A ∩B=()A.(﹣2,0)B.(0,2) C.(﹣1,2)D.(﹣2,﹣1)【解答】解:由x+1>0,得x>﹣1∴A=(﹣1,+∞),B={x||x|<2}=(﹣2,2)∴A∩B=(﹣1,2).故选:C2.(5分)(2017•晋中二模)i是虚数单位,若复数z满足zi=﹣1+i,则复数z的实部与虚部的和是()A.0 B.1 C.2 D.3【解答】解:复数z满足zi=﹣1+i,可得z===1+i.复数z的实部与虚部的和是:1+1=2.故选:C.3.(5分)(2017•晋中二模)已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A.66 B.55 C.44 D.33【解答】解:由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.则S11==11×3=33.故选:D.4.(5分)(2017•晋中二模)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1﹣B.C.D.1﹣【解答】解:由题意,正方形的面积为22=4.圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1﹣,故选:A.5.(5分)(2017•晋中二模)函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D6.(5分)(2017•晋中二模)某几何体的三视图如图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A.4πB.πC.πD.20π【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的底面是边长为2的正三角形,侧棱长是2,三棱柱的两个底面的中心的中点与三棱柱的顶点的连线就是外接球的半径,r==,球的表面积4πr2=4π×=π.故选:B.7.(5分)(2017•晋中二模)执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(A.1 B.2 C.3 D.4【解答】解:模拟执行程序,可得程序框图的功能是计算并输出分段函数S=的值,做出函数的图象,由题意可得:输出的s∈[0,4],当m=0时,n∈[2,4],n﹣m∈[2,4],当n=4时,m∈[0,2],n﹣m∈[2,4],所以实数n﹣m的最大值为4.故选:D.8.(5分)(2017•晋中二模)某几何体的三视图如图所示,则该几何体的表面积为()A.6π+1 B.C.D.【解答】解:由题意,几何体为圆柱与圆锥的组合体,该几何体的表面积为2π•1•2+π•12+++1=,故选D.9.(5分)(2017•晋中二模)已知D=,给出下列四个命题:P1:∀(x,y)∈D,x+y+1≥0;P2:∀(x,y)∈D,2x﹣y+2≤0;P3:∃(x,y)∈D,≤﹣4;P4:∃(x,y)∈D,x2+y2≤2.其中真命题的是()A.P1,P2B.P2,P3C.P2,P4D.P3,P4【解答】解:不等式组的可行域如图,p1:A(﹣2,0)点,﹣2+0+1=﹣1,故∀(x,y)∈D,x+y≥0为假命题;p2:A(﹣1,3)点,﹣2﹣3+2=﹣3,故∀(x,y)∈D,2x﹣y+2≤0为真命题;p3:C(0,2)点,=﹣3,故∃(x,y)∈D,≤﹣4为假命题;p4:(﹣1,1)点,x2+y2=2故∃(x,y)∈D,x2+y2≤2为真命题.可得选项p2,p4正确.故选:C.10.(5分)(2017•晋中二模)已知抛物线y2=4x的焦点为F,过焦点F的直线交抛物线于A、B两点,O为坐标原点,若△AOB的面积为,则|AB|=()A.24 B.8 C.12 D.16【解答】解:抛物线y2=4x焦点为F(1,0),设过焦点F的直线为:y=k(x﹣1),由,可得y2﹣y﹣4=0,y A+y B=,y A y B=﹣4,|y A﹣y B|=△AOB的面积为2,可得:×1×|y A﹣y B|=2,解得k2=,|AB|=×|y A﹣y B|=24.故选:A.11.(5分)(2017•晋中二模)已知函数f(x)=sinωx﹣cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为()A.(,]B.(,]C.(,]D.(,]【解答】解:f(x)=2sin(ωx﹣),作出f(x)的函数图象如图所示:令2sin(ωx﹣)=﹣1得ωx﹣=﹣+2kπ,或ωx﹣=+2kπ,∴x=+,或x=+,k∉Z,设直线y=﹣1与y=f(x)在(0,+∞)上从左到右的第4个交点为A,第5个交点为B,则x A=,x B=,∵方程f(x)=﹣1在(0,π)上有且只有四个实数根,∴x A<π≤x B,即<π≤,解得.故选B.12.(5分)(2017•晋中二模)已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”,给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=sinx+1};③={(x,y)|y=2x﹣2};④M={(x,y)|y=log2x}其中是“垂直对点集”的序号是()A.②③④B.①②④C.①③④D.①②③【解答】解:由题意,若集合M={(x,y)|y=f(x)}满足:对于任意A(x1,y1)∈M,存在B(x2,y2)∈M,使得x1x2+y1y2=0成立,因此.所以,若M是“垂直对点集”,那么在M图象上任取一点A,过原点与直线OA垂直的直线OB总与函数图象相交于点B.对于①:M={(x,y)|y=},其图象是过一、二象限,且关于y轴对称,所以对于图象上的点A,在图象上存在点B,使得OB⊥OA,所以①符合题意;对于②:M={(x,y)|y=sinx+1},画出函数图象,在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故②符合题意;对于③:M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,所以,据图可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.故③符合题意;对于④:M={x,y)|y=log2x},对于函数y=log2x,过原点做出其图象的切线OT(切点T在第一象限),则过切点T做OT的垂线,则垂线必不过原点,所以对切点T,不存在点M,使得OM⊥OT,所以M={(x,y)|y=log2x}不是“垂直对点集”;故④不符合题意.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)(2017•晋中二模)若两个非零向量满足,则向量与的夹角是120°.【解答】解:∵==∴,∴(+)•(﹣)=﹣2||2,设的夹角为θcosθ=∵θ∈[0°,180°]∴θ=120°故答案为120°14.(5分)(2017•晋中二模)已知双曲线经过点,其一条渐近线方程为y=2x,则该双曲线的标准方程为﹣x2=1.【解答】解:根据题意,双曲线的一条渐近线方程为y=2x,则可以设其方程为x2﹣=m,(m≠0),又由其经过点,则有1﹣=m,解可得m=﹣1,则其方程为:x2﹣=﹣1,其标准方程为:﹣x2=1,故答案为:﹣x2=1.15.(5分)(2017•晋中二模)我们可以利用数列{a n}的递推公式a n=(n∈N+),求出这个数列各项的值,使得这个数列中的每一项都是奇数,则a64+a65=66.【解答】解:由题得:这个数列各项的值分别为1,1,3,1,5,3,7,1,9,5,11,3…∴a64+a65=a32+65=a16+65=a8+65=a4+65=1+65=66.故答案为:66.16.(5分)(2017•晋中二模)已知数列{a n}中,a1=﹣1,a n+1=2a n+3n﹣1(n∈N*),则其前n项和S n=2n+2﹣4﹣.【解答】解:∵a n+1=2a n+3n﹣1(n∈N*),a1=﹣1,∴a2=0.n≥2时,a n=2a n﹣1+3n﹣4,相减可得:a n+1﹣a n=2a n﹣2a n﹣1+3,化为:a n+1﹣a n+3=2(a n﹣a n﹣1+3),∴数列{a n﹣a n﹣1+3}为等比数列,首项为4,公比为2.∴a n﹣a n﹣1+3=4×2n﹣2,∴a n﹣a n﹣1=2n﹣3.∴a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2n﹣3+2n﹣1﹣3+…+22﹣3﹣1,=﹣3(n﹣1)﹣1=2n+1﹣3n﹣2.∴其前n项和S n=﹣3×﹣2n=2n+2﹣4﹣.故答案为:2n+2﹣4﹣.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•晋中二模)在△ABC中,角A,B,C的对边分别为a,b,c,且满足=.(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【解答】解:(Ⅰ)∵,所以(2c﹣b)•cosA=a•cosB由正弦定理,得(2sinC﹣sinB)•cosA=sinA•cosB.整理得2sinC•cosA﹣sinB•cosA=sinA•cosB.∴2sinC•cosA=sin(A+B)=sinC.在△ABC中,sinC≠0.∴,.(Ⅱ)由余弦定理,.∴b2+c2﹣20=bc≥2bc﹣20∴bc≤20,当且仅当b=c时取“=”.∴三角形的面积.∴三角形面积的最大值为.18.(12分)(2017•晋中二模)某知名品牌汽车深受消费者喜爱,但价格昂贵.某汽车经销商推出A、B、C三种分期付款方式销售该品牌汽车,并对近期100位采用上述分期付款的客户进行统计分析,得到如下的柱状图.已知从A、B、C 三种分期付款销售中,该经销商每销售此品牌汽车1俩所获得的利润分别是1万元,2万元,3万元.现甲乙两人从该汽车经销商处,采用上述分期付款方式各购买此品牌汽车一辆.以这100位客户所采用的分期付款方式的频率代替1位客户采用相应分期付款方式的概率.(1)求甲乙两人采用不同分期付款方式的概率;(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,求X 的分布列与期望.【解答】解:(1)由题意得:P(A)==0.35,P(B)==0.45,P(C)==0.2,∴甲乙两人采用不同分期付款方式的概率:p=1﹣[P(A)•P(A)+P(B)•P(B)+P(C)•P(C)]=0.635.(2)记X(单位:万元)为该汽车经销商从甲乙两人购车中所获得的利润,则X的可能取值为2,3,4,5,6,P(X=2)=P(A)P(A)=0.35×0.35=0.1225,P(X=3)=P(A)P(B)+P(B)P(A)=0.35×0.45+0.45×0.35=0.315,P(X=4)=P(A)P(C)+P(B)P(B)+P(C)P(A)=0.35×0.2+0.45×0.45+0.2×0.35=0.3425,P(X=5)=P(B)P(C)+P(C)P(B)=0.45×0.2+0.2×0.45=0.18,P(X=6)=P(C)P(C)=0.2×0.2=0.04.∴X的分布列为:E(X)=0.1225×2+0.315×3+0.3425×4+0.18×5+0.04×6=3.7.19.(12分)(2017•晋中二模)如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.【解答】证明:(1)∵四边形ABCD是菱形,∴AC⊥BD,∵BE⊥平面ABCD,∴BE⊥AC,∴AC⊥平面BEFD,∵AC⊂平面ACF,∴平面ACF⊥平面BEFD.解:(2)设AC与BD的交点为O,由(1)得AC⊥BD,分别以OA,OB为x轴,y轴,建立空间直角坐标系,∵BE⊥平面ABCD,∴BE⊥BD,∵DF∥BE,∴DF⊥BD,∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2.设OA=a,(a>0),由题设得A(a,0,0),C(﹣a,0,0),E(0,),F(0,﹣,2),设m=(x,y,z)是平面AEF的法向量,则,取z=2,得=(),设是平面CEF的一个法向量,则,取,得=(﹣,1,2),∵二面角A﹣EF﹣C是直二面角,∴=﹣+9=0,解得a=,∵BE⊥平面ABCD,∴∠BAE是直线AE与平面ABCD所成的角,∴AB==2,∴tan.∴直线AE与平面ABCD所成角的正切值为.20.(2017•晋中二模)已知椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q 是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1(1)求椭圆C的方程;(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.【解答】解:(1)∵椭圆C:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D在椭圆C上,∴由题意得,解得a2=4,b2=3,∴椭圆C的方程为.(2)假设存在这样的直线l:y=kx+m,∴M(0,m),N(﹣,0),∵PM=MN,∴P(,2m),Q(),∴直线QM的方程为y=﹣3kx+m,设A(x1,y1),由,得(3+4k2)x2+8kmx+4(m2﹣3)=0,∴,∴,设B(x2,y2),由,得(3+36k2)x2﹣24kmx+4(m2﹣3)=0,∴x2+=,∴x2=﹣,∵点N平分线段A1B1,∴,∴﹣=﹣,∴k=,∴P(±2m,2m),∴,解得m=,∵|m|=<b=,∴△>0,符合题意,∴直线l的方程为y=.21.(2017•晋中二模)已知函数f(x)=2lnx+ax﹣(a∈R)在x=2处的切线经过点(﹣4,ln2)(1)讨论函数f(x)的单调性;(2)若不等式>mx﹣1恒成立,求实数m的取值范围.【解答】解:(1),令x=2,∴f'(2)=1+a+f'(2),∴a=﹣1,设切点为(2,2ln2+2a﹣2f'(2)),则y﹣(2ln2+2a﹣2f'(2))=f'(2)(x﹣2),代入(﹣4,2ln2)得:2ln2﹣2ln2﹣2a+2f'(2)=﹣6f'(2),∴,∴,∴f(x)在(0,+∞)单调递减;(2)恒成立,令,∴φ(x)在(0,+∞)单调递减,∵φ(1)=0,∴,∴在(0,+∞)恒大于0,∴m≤0.22.(14分)(2017•晋中二模)已知椭圆的长轴长为6,离心率为,F2为椭圆的右焦点.(Ⅰ)求椭圆的标准方程;(Ⅱ)点M在圆x2+y2=8上,且M在第一象限,过M作圆x2+y2=8的切线交椭圆于P,Q两点,判断△PF2Q的周长是否为定值并说明理由.【解答】解:(I)根据已知,设椭圆的标准方程为,∴2a=6,a=3,,c=1;b2=a2﹣c2=8,(4分)(II)△PF2Q的周长是定值,设P(x1,y1),Q(x2,y2),则,,∵0<x1<3,∴,(7分)在圆中,M是切点,∴,(11分)∴,同理|QF2|+|QM|=3,(13分)∴|F2P|+|F2Q|+|PQ|=3+3=6,因此△PF2Q的周长是定值6.…(14分)23.(2017•晋中二模)已知函数(1)若不等式f(x)﹣f(x+m)≤1恒成立,求实数m的最大值;(2)当a<时,函数g(x)=f(x)+|2x﹣1|有零点,求实数a的取值范围.【解答】解:(1)∵,∴,∴f(x)﹣f(x+m)=|x﹣a|﹣|x+m﹣a|≤|m|,∴|m|≤1,∴﹣1≤m≤1,∴实数m的最大值为1;(2)当时,=∴,∴或,∴,∴实数a的取值范围是.参与本试卷答题和审题的老师有:whgcn;qiss;沂蒙松;刘长柏;w3239003;lcb001;陈远才;zhczcb;zlzhan;wdnah;danbo7801;双曲线;xintrl;刘老师;铭灏2016(排名不分先后)菁优网2017年5月3日。