2018届高三理科数学一轮复习 绝对值不等式
2018年高三理科数学复习选修4-5 不等式选讲

选修4-5不等式选讲考点1不等式的性质1.已知a,b,c均为正数,证明: a2+b2+c2+(++)2≥6, 并确定a,b,c为何值时,等号成立.考点2绝对值不等式2.设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>2;(2)求函数g(x)=ln f(x)的值域.3.已知函数f(x)=2|x+a|-|x-1|(a>0).(1)若函数f(x)与x轴围成的三角形的面积的最小值为4,求实数a的取值范围;(2)若对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.4.已知m>1,且关于x的不等式m-|x-2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.5.设函数f(x)=-+-的最大值为M.(1)求实数M的值;(2)求关于x的不等式|x-|+|x+2|≤M的解集.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求实数a的取值范围.考点3证明不等式的基本方法7.已知a>0,b>0,求证:+≥+.8.已知a,b∈R,且a+b=1,求证:(a+2)2+(b+2)2≥.9.已知a,b,c均为正实数.求证:(1)(a+b)(ab+c2)≥4abc;(2)若a+b+c=3,则++≤3.考点4柯西不等式10.已知x,y是两个不相等的正实数,求证:(x2y+x+y2)·(xy2+y+x2)>9x2y2.答案1.解法一因为a,b,c均为正数,所以a2+b2+c2≥3(abc)①,因为++≥3(abc)-,所以(++)2≥9(abc)-②.故a2+b2+c2+(++)2≥3(abc)+9(abc)-.又3(abc)+9(abc)-≥2=6③,所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)=9(abc)-时,③式等号成立,即当a=b=c=时,原式等号成立.解法二因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,所以a2+b2+c2≥ab+bc+ac①.同理,++≥++②.故a2+b2+c2+(++)2=a2+b2+c2++++++≥ab+bc+ac+++≥6③.所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原不等式等号成立.2.(1)由题意知f(x)=|x-1|+|x-2|=-,, ,, -,当x<1时,由f(x)>2,得3-2x>2,解得x<,所以x<; 当1≤x≤2时,f(x)>2无解;当x>2时,由f(x)>2,得2x-3>2,解得x>,所以x>.综上,不等式f(x)>2的解集为(-∞,)∪(,+∞).(2)因为f(x)=|x-1|+|x-2|,则f(x)≥1,又函数y=ln x在其定义域内为增函数.所以函数g(x)=ln f(x)的值域为[0,+∞).3.(1)由题意可得f(x)=---, -,-, -,,画出函数f(x)的图象,如图D 1所示,图D 1函数f(x)与x轴围成的三角形为△ABC,易求得A(-2a-1,0),B(-,0),C(-a,-a-1).所以S△ABC=[--(-2a-1)]×|-a-1|=(a+1)2≥4(a>0),解得a≥-1.(2)由图D 1可知,f(x)min=f(-a)=-a-1.对任意的x∈R都有f(x)+2≥0,即f(x)min+2≥0,即-a-1+2≥0,解得a≤1,又a>0,所以实数a的取值范围为(0,1].4.(1)∵m>1,不等式m-|x-2|≥1可化为|x-2|≤m-1,∴1-m≤x-2≤m-1,即3-m≤x≤m+1.∵不等式m-|x-2|≥1的解集为[0,4],∴-,,即m=3.(2)由(1)知a+b=3,解法一(利用基本不等式)∵(a+b)2=a2+b2+2ab≤(a2+b2)+(a2+b2)=2(a2+b2),∴a2+b2≥,∴a2+b2的最小值为.解法二(消元法求二次函数的最值)∵a+b=3,∴b=3-a,∴a2+b2=a2+(3-a)2=2a2-6a+9=2(-)+≥,∴a2+b2的最小值为.5.(1)f(x)=-+-≤2(-)(-)=3,当且仅当x=时等号成立.故函数f(x)的最大值M=3.(2)由(1)知M=3.由绝对值三角不等式可得|x-|+|x+2|≥|(x-)-(x+2)|=3.所以不等式|x-|+|x+2|≤3的解集就是方程|x-|+|x+2|=3的解.由绝对值的几何意义得,当且仅当-2x≤,|x-|+|x+2|=3,所以不等式|x- 2 |≤M 的解集为{x|-2 ≤x ≤ .6.(1)当a=-3时,f (x )≥3⇔|x-3|+|x-2|≥3⇔ ,- 或 , 或 , - ,解得x ≤1或x ≥4. 故当a=-3时,不等式f (x )≥3的解集为{x|x ≤1或x ≥4}.(2)由题意可得f (x )≤|x-4|在区间[1,2]上恒成立⇔|x+a|+2-x ≤4-x 在区间[1,2]上恒成立⇔-2-x ≤a ≤2-x 在区间[1,2]上恒成立⇔-3≤a ≤0,即实数a 的取值范围是[-3,0].7.解法一 (作差比较法)因为a>0,b>0,所以 +-( + )= ) ) = )( - ≥0, 所以 +≥ + . 解法二 (作商比较法)因为a>0,b>0,所以 = ) ) ( )= )( ) ( )== - ) ≥1,所以 +≥ + . 8.解法一 (放缩法)因为a+b=1,所以(a+2)2+(b+2)2≥2[( ) ( ) ]2= [(a+b )+4]2=(当且仅当a+2=b+2,即a=b= 时,等号成立). 解法二 (反证法)假设(a+2)2+(b+2)2< ,则 a 2+b 2+4(a+b )+8< .因为a+b=1,则b=1-a ,所以a 2+(1-a )2+12< .所以(a- )2<0,这与(a- )2≥0矛盾,故假设不成立.所以(a+2)2+(b+2)2≥ . 9.(1)要证(a+b )(ab+c 2)≥4abc ,可证a 2b+ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a-c )2+a (c-b )2≥0,当且仅当a=b=c 时,取等号, 由已知,上式显然成立,故不等式(a+b )(ab+c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知· ≤ =,当且仅当a +1=2时,取等号,·≤=,当且仅当b+1=2时,取等号,·≤=,当且仅当c+1=2时,取等号,以上三式相加,得(++)≤=6,所以++≤3,当且仅当a=b=c=1时,取等号.10.因为x,y是正实数,所以x2y+x+y2≥33xy,当且仅当x2y=x=y2,即x=y=1时,等号成立;同理:xy2+y+x2≥3=3xy,当且仅当xy2=y=x2,即x=y=1 时,等号成立.所以(x2y+x+y2)(xy2+y+x2)≥9x2y2,当且仅当x=y=1时,等号成立.因为x≠y,所以(x2y+x+y2)(xy2+y+x2)>9x2y2.。
高三一轮复习课件绝对值不等式的解法(共16张PPT)

谢 谢观 看
人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,心中都要怀着一粒信念的种子,有什么样的眼界和胸襟,就看到什么样的风景。你的心有多宽,你的舞台就有多大;你的格 局有多大,你的心就能有多宽。我很平凡,却不简单,只要我想要,就会通过自己的努力去得到。羡慕别人不如自己拥有,现在的努力奋斗成就未来的自己。人生要学会储蓄。你若耕耘,就储 存了一次丰收;你若努力,就储存了一个希望;你若微笑,就储存了一份快乐。你能支取什么,取决于你储蓄了什么。没有储存友谊,就无法支取帮助;没有储存学识,就无法支取能力;没有 储存汗水,就无法支取成长。想要取之不尽的幸福,要储蓄感恩和付出。人生之路并非只有坦途,也有不少崎岖与坎坷,甚至会有一时难以跨越的沟坎儿。在这样的紧要关头我们只有一种选择: 再向前跨出一步!尽管可能非常艰难,但请相信:只要坚持下去,你的人生会无比绚丽!弯得下腰,才抬得起头。在人生路上,不是所有的门都很宽阔,有的门需要你弯腰侧身才进得去。所以, 必要时要能够弯得下自己的腰,才可能在人生路上畅通无阻。跟着理智走,要有勇气;跟着感觉走,就要有倾其所有的决心。从不曾放弃追求,从不愿放弃自己的所有,一路走下来,路过太多的 风景,领略太多的是是非非,才渐渐明白,人活着不只为了自己,而活着,却要活出自己你不会的东西,觉得难的东西,一定不要躲。先搞明白,后精湛,你就比别人优秀了。因为大部分人都 不舍得花力气去钻研,自动淘汰,所以你执着的努力,就占了大便宜。女生年轻时的奋斗不是为了嫁个好人,而是为了让自己找一份好工作,有一个在哪里都饿不死的一技之长,有一份不错的 收入。因为:只有当你经济独立了,才能做到说走就走,才能灵魂独立,才能有资本选择自己想要伴侣和生活。成功没有快车道,幸福没有高速路,一份耕耘一份收获,所有的成功都来自不倦 的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。也许你要早上七点起床,晚上十二点睡觉,日复一日,踽踽独行。但只要笃定而动情地活着,即使生不逢时,你人生最坏的结果,也只是大 器晚成。无论遇到什么困难,受到什么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!无论遇到什么困难,受到什 么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!行动力,是我们对平庸生活最好的回击。人与人之所以拉开距离, 就在于行动力。不行动,梦想就只是好高骛远;不执行,目标就只是海市蜃楼。想做一件事,最好的开始就是现在。每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄 悄酝酿着乐观,培养着豁达,坚持着善良,只要在路上,就没有到达不了的远方!每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄悄酝酿着乐观,培养着豁达,坚持 着善良,只要在路上,就没有到达不了的远方!自己丰富才能感知世界丰富,自己善良才能感知社会美好,自己坦荡才能感受生活喜悦,自己成功才能感悟生命壮观!前进的理由只要一个,后 退的理由却有一百个。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发,是什么让你坚持到 现在,勿忘初心。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发,是什么让你坚持到现在, 勿忘初心。人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的,上天会还你,善良,终有 好报;坚持,必有收获!人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的,上天会还你, 善良,终有好报;坚持,必有收获!不要凡事都依靠别人。在这个世界上,最能让你依靠的人是自己,最能拯救你的人也只能是自己。要想事情改变,首先要改变自己。只有改变自己,才会最 终改变别人。有位哲人说得好:如果你不能成为大道,那就当一条小路;如果你不能成为太阳,那就当一颗星星。生活有一百种过法,别人的故事再好,始终容不下你。活成什么样子,自己决 定。不要羡慕别人,你有更好的,只是你还不知道。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没放弃,比我
高考数学含绝对值的不等式的解法

三 灵与肉
我站在镜子前,盯视着我的面孔和身体,不禁惶惑起来。我不知道究竟盯视者是我,还是被 盯视者是我。灵
魂和肉体如此不同,一旦相遇,彼此都觉陌生。我的耳边响起帕斯卡尔的话 语:肉体不可思议,灵魂更不可思议,最不可思议的是肉体居然能和灵魂结合在一起。 人有一个肉体似乎是一件尴尬事。那个丧子的母亲终于停止哭泣,端起饭碗,因为她饿了。 那个含情脉脉的姑娘不得不离
您一定愿意静静地听这个生命说:'我愿意静静地听您说话…… '我从不愿把您想像成一个思想家或散文家,您不会为此生气吧。 "也许再过好多年之后,我已经老了,那时候,我相信为了年轻时读过的您的那些话语,我 要用心说一声:谢谢您!" 信尾没有落款,只有这一行字:"生
命本来没有名字吧,我是,你是。"我这才想到查看信 封,发现那上面也没有寄信人的地址,作为替代的是"时光村落"四个字。我注意了邮戳, 寄自河北怀来。
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a
0,
a
0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
卡尔的话:肉体是奇妙的,灵魂更奇妙,最奇妙的是肉体居然能和灵魂 结合在一起。
四 动与静
喧哗的白昼过去了,世界重归于宁静。我坐在灯下,感到一种独处的满足。 我承认,我需要到世界上去活动,我喜欢旅行、冒险、恋爱、奋斗、成功、失败。日子过得
平平淡淡,我会无聊,过得冷冷清清,我会寂寞。但是,我更需要宁静的独处,更喜欢过一 种沉思的生活。总是活得轰轰烈烈热热闹闹,没有时间和自己待一会儿,我就会非常不安, 好像丢了魂一样。 我身上必定有两个自我。一个好动,什么都要尝试,什么都想经历。另一个喜静,
2018高考数学考点突破—绝对值不等式

绝对值不等式【考点梳理】1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a -b)(b-c)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解;②利用零点分段法求解;③构造函数,利用函数的图象求解.【考点突破】考点一、绝对值不等式的解法【例1】已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.[解析] (1)由题意得f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5. 故f (x )>1的解集为{x |1<x <3}, f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或1<x <3或x >5. 【类题通法】1.本题用零点分段法画出分段函数的图象,结合图象的直观性求出不等式的解集,体现数形结合思想的应用.2.解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论.此外还常利用绝对值的几何意义求解. 【对点训练】设函数f (x )=|x -a |.(1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4. [解析] (1)当a =2时,不等式为|x -2|+|x -1|≥4, ①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4, 不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4, 解得x ≤-12.综上可得,不等式的解集为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫72,+∞.(2)证明:因为f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2]. 所以⎩⎨⎧a -1=0,a +1=2,解得a =1,所以1m +12n =1(m >0,n >0), 所以m +2n =(m +2n )⎝ ⎛⎭⎪⎫1m +12n=2+m 2n +2nm ≥2+2m 2n ·2n m =4,当且仅当m =2,n =1时取等号.考点二、绝对值三角不等式性质的应用【例2】对于任意的实数a (a ≠0)和b ,不等式|a +b |+|a -b |≥M ·|a |恒成立,记实数M 的最大值是m .(1)求m 的值;(2)解不等式|x -1|+|x -2|≤m .[解析] (1)不等式|a +b |+|a -b |≥M ·|a |恒成立, 即M ≤|a +b |+|a -b ||a |对于任意的实数a (a ≠0)和b 恒成立,只要左边恒小于或等于右边的最小值.因为|a +b |+|a -b |≥|(a +b )+(a -b )|=2|a |, 当且仅当(a -b )(a +b )≥0时等号成立, |a |≥|b |时,|a +b |+|a -b ||a |≥2成立,也就是|a +b |+|a -b ||a |的最小值是2,即m =2.(2)|x -1|+|x -2|≤2.法一:利用绝对值的意义得:12≤x ≤52.法二:①当x <1时,不等式为-(x -1)-(x -2)≤2, 解得x ≥12,所以x 的取值范围是12≤x <1. ②当1≤x ≤2时,不等式为(x -1)-(x -2)≤2, 得x 的取值范围是1≤x ≤2.③当x >2时,原不等式为(x -1)+(x -2)≤2,2<x ≤52.综上可知,不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤52. 【类题通法】1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab ≥0时,|a +b |=|a |+|b |;当ab ≤0时,|a -b |=|a |+|b |;当(a -b )(b -c )≥0时,|a -c |=|a -b |+|b -c |.(2)对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.2.第(2)问易出现解集不全或错误.对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏. 【对点训练】对于任意实数a ,b ,已知|a -b |≤1,|2a -1|≤1,且恒有|4a -3b +2|≤m ,求实数m 的取值范围.[解析] 因为|a -b |≤1,|2a -1|≤1, 所以|3a -3b |≤3,⎪⎪⎪⎪⎪⎪a -12≤12,所以|4a -3b +2|=⎪⎪⎪⎪⎪⎪(3a -3b )+⎝ ⎛⎭⎪⎫a -12+52 ≤|3a -3b |+⎪⎪⎪⎪⎪⎪a -12+52≤3+12+52=6,则|4a -3b +2|的最大值为6,所以m ≥|4a -3b +2|max =6,m 的取值范围是[6,+∞).考点三、绝对值不等式的综合应用【例3】已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. [解析] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得f (x )=⎩⎨⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1).因此△ABC 的面积S =12|AB |·(a +1)=23(a +1)2.由题设得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞). 【类题通法】1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.第(2)问求解要抓住三点:(1)分段讨论,去绝对值符号,化f (x )为分段函数;(2)数形结合求△ABC 的三个顶点坐标,进而得出△ABC 的面积;(3)解不等式求a 的取值范围. 【对点训练】已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,恒有f (x )+g (x )≥3,求实数a 的取值范围.[解析] (1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|(2x-a)+(1-2x)|+a=|1-a|+a,当x=12时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.①当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2. 所以a的取值范围是[2,+∞).。
高考数学一轮复习必备 含绝对值的不等式

第51课时:第六章 不等式——含绝对值的不等式课题:含绝对值的不等式一.复习目标:1.理解含绝对值的不等式的性质,及其中等号成立的条件,能运用性质论证一些问题;2.会解一些简单的含绝对值的不等式.二.知识要点:1.含绝对值的不等式的性质:①||||||||||a b a b a b -≤+≤+,当 时,左边等号成立;当 0 ab ≥时,右边等号成立.②||||||||||a b a b a b -≤-≤+,当 时,左边等号成立;当 时,右边等号成立.③进而可得:||||||||||a b a b a b -≤±≤+.2.绝对值不等式的解法:①0a >时,|()|()()f x a f x a f x a >⇔><-或;|()|()f x a a f x a <⇔-<<;②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.三.课前预习:1.不等式|lg ||||lg |x x x x -<+的解集为 ( )()A (0,)+∞ ()B (0,1) ()C (1,)+∞ ()D (1,10)2.不等式1|21|2x ≤-<的解集为 ( )()A 13(,0)[1,)22- ()B 13{01}22x x -<<≤≤且 ()C 13(,0][1,)22- ()D 13{01}22x x -<≤≤<且 3.()f x 为R 上的增函数,()y f x =的图象过点(0,1)A -和下面哪一点时,能确定不等式|(1)|1f x -<的解集为{|14}x x << ( )()A (3,1) ()B (4,1) ()C (3,0) ()D (4,0)4.已知集合{||1|}A x x a =-≤,{||3|4}B x x =->,且A B φ=,则a 的取值范围是 .5.设有两个命题:①不等式|||1|x x m +->的解集是R ;②函数()(73)xf x m =--是减函数,如果这两个命题中有且只有一个是真命题,则实数m 的取值范围是 .四.例题分析:例1.已知01x <<,01a <<,试比较|log (1)|a x -和|log (1)|a x +的大小.例2.求证:||||||1||1||1||a b a b a b a b +≤+++++.例3.设,,a b c R ∈,已知二次函数2()f x ax bx c =++,2()g x cx bx a =++,且当||1x ≤时,|()|2f x ≤,(1)求证:|(1)|2g ≤;(2)求证:||1x ≤时,|()|4g x ≤.例4.设m 等于||a 、||b 和1中最大的一个,当||x m >时,求证:2||2a b x x +<.五.课后作业:1.若,a b R ∈,且||||a c b -<,则 ( ) ()A ||||||a b c <+ ()B ||||||a b c >- ()C a b c <+ ()D a b c >-2.若0m >,则||x a m -<且||y a m -<是||2x y m -<的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 既不充分也不必要条件3.已知函数()f x 、()g x ,设不等式|()||()|f x g x a +<(0)a >的解集是M ,不等式|()()|f x g x a +<(0)a >的解集是N ,则集合M 、N 的关系是 ( )()A N M ≠⊂ ()B M N = ()C M N ⊆ ()D M N ≠⊂4.不等式||22x x x x≥++的解集是 . 5.不等式|4||3|x x a -+-<的解集不是空集,则a 的取值范围是 .6.若实数,a b 满足0ab >,则①||||a b a +>;②||||a b b +<;③||||a b a b +<-;④||||a b a b +>-.这四个式子中,正确的是 .7.解关于x 的不等式2||x a a -<(a R ∈).8.解不等式:(1)2|1121|x x x -+>;(2)|3||21|12x x x +-->+. 9.设有关于x 的不等式lg(|3||7|)x x a ++->,(1)当1a =时,解这个不等式;(2)当a 为何值时,这个不等式的解集为R .10.设二次函数2()f x ax bx c =++对一切[1,1]x ∈-,都有|()|1f x ≤, 求证:(1)||1a c +≤;(2)对一切[1,1]x ∈-,都有|2|4ax b +≤.。
2018-2019学年高中数学 第一章 不等式的基本性质和证明的基本方法 1.3 绝对值不等式的

1.3 绝对值不等式的解法1.3.1 |ax+b|≤c,|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式的解法1.理解绝对值的几何意义,会用数轴上的点表示绝对值不等式的范围.2.会解含一个绝对值符号和含两个绝对值符号共四种类型的绝对值不等式.自学导引1.设x,a为实数,|x-a|表示数轴上的点x与点a之间的距离;|x|表示数轴上的点x与原点之间的距离.当x≥0时,|x|=x;当x<0时,|x|=-x.2.|x|>a (a>0)⇔x>a或x<-a.3.|x|<a (a>0)⇔-a<x<a.4.a<0时,|x|≤a的解集为∅;|x|≥a的解集为R.5.|f(x)|<a (a>0)⇔-a<f(x)<a.6.|f(x)|>a (a>0)⇔f(x)>a或f(x)<-a.7.|f(x)|<g(x)⇔-g(x)<f(x)<g(x).8.|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x).9.|f(x)|<|g(x)|⇔f2(x)<g2(x).10.|f(x)|>|g(x)|⇔f2(x)>g2(x).基础自测1.已知全集U=R,且A={x||x-1|>2},B={x|x2-6x+8<0},则(∁U A)∩B等于( )A.[-1,4)B.(2,3)C.(2,3]D.(-1,4)解析A={x||x-1|>2}={x|x<-1或x>3},B={x|x2-6x+8<0}={x|2<x<4},∁U A={x|-1≤x≤3},∴(∁U A)∩B={x|2<x≤3},故选C.答案 C2.不等式1<|x+1|<3的解集为( )A.(0,2)B.(-2,0)∪(2,4)C.(-4,0)D.(-4,-2)∪(0,2)解析原不等式可化为1<x+1<3或-3<x+1<-1,解得:0<x<2或-4<x<-2故应选D.答案 D3.若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x |-53<x <13,则a =________.解析 根据绝对值不等式的性质及不等式的解集求解. ∵|ax -2|<3,∴-1<ax <5.当a >0时,-1a <x <5a,与已知条件不符;当a =0时,x ∈R ,与已知条件不符;当a <0时,5a <x <-1a ,又不等式的解集为⎩⎨⎧⎭⎬⎫x |-53<x <13,故a =-3.答案 -3知识点1 解|ax +b |≤c 、|ax +b |≥c 型不等式 【例1】 解不等式:(1)|x -a |≤b (b >0);(2)|x -a |≥b (b >0). 解 (1)|x -a |≤b (b >0)⇔-b ≤x -a ≤b ⇔a -b ≤x ≤b +a .所以原不等式的解集为{x |a -b ≤x ≤a +b }. (2)|x -a |≥b ⇔x -a ≥b 或x -a ≤-b ⇔x ≥a +b 或x ≤a -b .所以原不等式的解集为{x |x ≥a +b 或x ≤a -b }.●反思感悟:对于|ax +b |≤c 或(ax +b )≥c 型不等式的化简,要特别注意a 为负数时,可以先把a 化为正数.1.解不等式:(1)2|x |+1>7;(2)|1-2x |<5. 解 (1)2|x |+1>7⇔2|x |>6 ⇔|x |>3⇔x >3或x <-3.∴不等式的解集为{x |x >3或x <-3}. (2)|1-2x |<5⇔|2x -1|<5⇔-5<2x -1<5 ⇔-4<2x <6⇔-2<x <3. ∴不等式的解集为{x |-2<x <3}. 知识点2 解|f (x )|<|g (x )|型不等式 【例2】 解不等式|x -a |<|x -b | (a ≠b ).解 由|x -a |<|x -b |两边平方得:(x -a )2<(x -b )2. 整理得:2(a -b )x >a 2-b 2.因a ≠b ,当a >b 时,x >a +b2;当a <b 时,x <a +b2.∴不等式的解集为:当a >b 时,⎩⎨⎧⎭⎬⎫x |x >12(a +b );当a <b 时,⎩⎨⎧⎭⎬⎫x |x <12(a +b ). ●反思感悟:解含有绝对值符号的不等式关键是去掉绝对值符号,把绝对值不等式转化为我们熟悉的一元一次不等式或一元二次不等式.2.解不等式|x 2-2x +3|<|3x -1|. 解 x 2-2x +3=(x -1)2+2>0,|x 2-2x +3|<|3x -1|⇔x 2-2x +3<|3x -1| ⇔3x -1>x 2-2x +3或3x -1<-x 2+2x -3⇔x 2-5x +4<0或x 2+x +2<0.由x 2-5x +4<0,得:1<x <4,由x 2+x +2<0,得:⎝ ⎛⎭⎪⎫x +122+74<0,该不等式解集为∅.所以原不等式的解集为(1,4). 知识点3 解|x -a |+|x -b |≥c 、|x -a |+|x -b | ≤c 型不等式【例3】 解不等式|x +3|-|2x -1|<x2+1.解 ①x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知:原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2. ●反思感悟:对含有多个绝对值符号的不等式的解法通常用分段讨论法,去掉绝对值符号,将不等式化为整式不等式求解,去掉绝对值符号的依据是绝对值的定义,找到分界点(即零值点).令绝对值内的数为零,分成若干段,最后原不等式的解集是各段解集的并集.3.设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.(1)证明 由a >0,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a-(x -a )=1a+a ≥2.所以f (x )≥2.(2)解 f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.课堂小结解绝对值不等式的基本思想是设法去掉绝对值符号,去绝对值符号的常用手段有3种:(1)根据实数的绝对值的意义:|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0).(2)根据不等式的性质: |x |<a ⇔-a <x <a (a >0).(3)根据|a |2=a 2(a ∈R ),不等式两边同时平方,当然应注意不等式两边平方的前提.随堂演练1.不等式|x -1|-|x -5|<2的解集是( ) A.(-∞,4) B.(-∞,1) C.(1,4)D.(1,5)解析 利用零点分区间法解绝对值不等式. ①当x ≤1时,原不等式可化为1-x -(5-x )<2, ∴-4<2,不等式恒成立,∴x ≤1.②当1<x <5时,原不等式可化为x -1-(5-x )<2, ∴x <4,∴1<x <4.③当x ≥5时,原不等式可化为x -1-(x -5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4),故选A. 答案 A2.不等式|x -1|+|x -2|≤3的最小整数解是( ) A.0 B.-1 C.1 D.2解析 (1)x ≥2则不等式化为x -1+x -2=2x -3≤3, 解得2≤x ≤3.∵x ∈Z ,∴x =2或x =3.(2)1≤x <2,则不等式化为x -1+2-x =-1≤3, 则x ∈[1,2).∵x ∈Z ,∴x =1.(3)x <1,则不等式化为1-x +2-x =3-2x ≤3,解得x ≥0. ∵x ∈Z 且取最小整数,∴x =0.综上所得:x =0. 答案 A3.不等式|2x -1|-|x -2|<0的解集为________.解析 |2x -1|-|x -2|<0⇔|2x -1|<|x -2|⇔(2x -1)2<(x -2)2⇔4x 2-4x +1<x 2-4x +4⇔3x 2<3⇔-1<x <1. 答案 (-1,1)4.不等式|x -1|+|x +2|≥5的解集为________.解析 思路一:利用数轴对x 进行分类讨论去掉绝对值符号,再解不等式.思路二:借助数轴,利用绝对值的几何意义求解.方法一:要去掉绝对值符号,需要对x 与-2和1进行大小比较,-2和1可以把数轴分成三部分.当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解;当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2.综上,不等式的解集为{x |x ≤-3或x ≥2}.方法二:|x -1|+|x +2|表示数轴上的点x 到点1和点-2的距离的和,如图所示,数轴上到点1和点-2的距离的和为5的点有-3和2,故满足不等式|x -1|+|x +2|≥5的x 的取值为x ≤-3或x ≥2,所以不等式的解集为{x |x ≤-3或x ≥2}. 答案 {x |x ≤-3或x ≥2}基础达标1.如果1x <2和|x |>13同时成立,那么x 的取值范围是( )A.-13<x <12B.x >12或x <-13C.x >12D.x <-13或x >13解析 解不等式1x <2得x <0或x >12.解不等式|x |>13得x >13或x <-13.∴x 的取值范围为x >12或x <-13.答案 B2.若集合A ={x ||2x -1|<3},B ={x |2x +13-x <0},则A ∩B =( )A.{x |-1<x <-12或2<x <3}B.{x |2<x <3}C.{x |-12<x <2}D.{x |-1<x <-12}解析 |2x -1|<3⇒-3<2x -1<3⇒-1<x <2,A ={x |-1<x <2},2x +13-x<0⇒(2x +1)(3-x )<0⇒ (2x +1)(x -3)>0⇒x <-12或x >3,∴B ={x |x <-12或x >3}.结合数轴:∴A ∩B ={x |-1<x <-12}.答案 D3.设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件解析 先求不等式的解集,再根据充分条件、必要条件的判断方法进行判断. |x -2|<1⇔1<x <3,x 2+x -2>0⇔x >1或x <-2. 由于{x |1<x <3}是{x |x >1或x <-2}的真子集,所以“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件. 答案 A4.若不等式|ax +2|<6的解集为(-1,2),则实数a 等于________. 解析 由|ax +2|<6可知-8<ax <4.当a >0时,-8a <x <4a.∵解集为(-1,2),∴有⎩⎪⎨⎪⎧-8a =-14a=2,∴⎩⎪⎨⎪⎧a =1,a =2矛盾,故a 不可能大于0.当a =0,则x ∈R 不符合题意. 当a <0时,4a <x <-8a.∵解集为(-1,2), ∴有⎩⎪⎨⎪⎧4a =-1-8a =2,∴⎩⎪⎨⎪⎧a =-4,a =-4.故a =-4. 答案 -45.若不等式|x -1|<a 成立的充分条件是0<x <4,则a ∈____________. 解析 由题意得0<x <4⇒|x -1|<a ,则 ①0<x ≤1,|x -1|=1-x ,∴0≤1-x <1. ②1<x <4,|x -1|=x -1,∴0<x -1<3. 综合①,②得|x -1|<3,∴a ∈[3,+∞). 答案 [3,+∞)6.解不等式x +|2x +3|≥2.解 原不等式可化为⎩⎪⎨⎪⎧x <-32,-x -3≥2或⎩⎪⎨⎪⎧x ≥-32,3x +3≥2. 解得x ≤-5或x ≥-13.综上,原不等式的解集是⎩⎨⎧⎭⎬⎫x |x ≤-5或x ≥-13.综合提高7.不等式(1+x )(1-|x |)>0的解集为( ) A.{x |0≤x <1} B.{x |x <0且x ≠-1} C.{x |-1<x <1} D.{x |x <1且x ≠-1} 解析 不等式可化为⎩⎪⎨⎪⎧x ≥0,(1+x )(1-x )>0,或⎩⎪⎨⎪⎧x <0,(1+x )(1+x )>0, ∴0≤x <1或x <0且x ≠-1.∴x <1且x ≠-1. 答案 D8.若不等式|x -2|+|x +3|>a ,对于x ∈R 均成立,那么实数a 的取值范围是( ) A.(-∞,5) B.[0,5) C.(-∞,1)D.[0,1]解析 由绝对值的几何意义知|x -2|+|x +3|表示的是x 与数轴上的点A (-3)及B (2)两点距离之和,A 、B 两点的距离为5,线段AB 上任一点到A 、B 两点距离之和也是5.数轴上其它点到A 、B 两点距离之和都大于5, ∴|x -2|+|x +3|≥5,∵x ∈R ,∴a <5. 答案 A9.已知a ∈R ,若关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,则a 的取值范围是________.解析 ∵关于x 的方程x 2+x +⎪⎪⎪⎪⎪⎪a -14+|a |=0有实根,∴Δ=1-4⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪a -14+|a |≥0,∴⎪⎪⎪⎪⎪⎪a -14+|a |≤14.当a ≤0时,⎪⎪⎪⎪⎪⎪a -14+|a |=14-2a ≤14,∴a =0;当0<a ≤14时,⎪⎪⎪⎪⎪⎪a -14+|a |=14-a +a ≤14成立,∴0<a ≤14;当a >14时,⎪⎪⎪⎪⎪⎪a -14+|a | =a -14+a =2a -14≤14,∴a ≤14,a 不存在.综上可知0≤a ≤14.答案 0≤a ≤1410.不等式2<|2x +3|≤4的解集为________. 解析 2<2x +3≤4,转化为2<2x +3≤4或-4≤2x +3<-2, 解得-12<x ≤12或-72≤x <-52,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x ≤12或-72≤x <-52.答案 ⎩⎨⎧⎭⎬⎫x |-12<x ≤12或-72≤x <-5211.求不等式|log 13x |+⎪⎪⎪⎪⎪⎪log 313-x ≥1的解.解 因为对数必须有意义,所以先解不等式组⎩⎪⎨⎪⎧x >0,13-x>0,解得0<x <3. 又原不等式可化为|log 3x |+|log 3(3-x )|≥1. (1)当0<x ≤1时,不等式化为-log 3x +log 3(3-x )≥log 33, ∴3-x ≥3x ,∴x ≤34,结合前提条件,得0<x ≤34.(2)当1<x ≤2时,即log 3x +log 3(3-x )≥log 33, ∴x 2-3x +3≤0,∴x ∈∅.(3)当2<x <3时,log 3x -log 3(3-x )≥log 33, ∴x ≥3(3-x ).∴x ≥94,结合前提条件,得94≤x <3.综上所述,原不等式的解集为⎝ ⎛⎦⎥⎤0,34∪⎣⎢⎡⎭⎪⎫94,3.12.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).。
高考一轮复习理科数学课件绝对值不等式的解法及其应用

知识点梳理和归纳总结
01
绝对值不等式的定义 和性质
明确绝对值不等式的概念,掌握其基 本性质,如正数的绝对值是其本身, 负数的绝对值是它的相反数,0的绝 对值是0。
02
绝对值不等式的解法
熟练掌握绝对值不等式的解法,包括 分段讨论法、平方法、几何意义法等 ,能够根据不同的题型选择合适的解 法。
03
绝对值不等式的应用
了解绝对值不等式在解决实际问题中 的应用,如求解最值问题、证明不等 式等。
针对性地进行专项训练和模拟考试
专项训练
针对绝对值不等式的各类题型进行专 项训练,如含参绝对值不等式、绝对 值三角不等式等,提高解题速度和准 确率。
模拟考试
定期进行模拟考试,模拟真实考试环 境,检验自己的备考效果,查漏补缺 。
其他相关定理和性质介绍
绝对值的非负性
对于任意实数x,都有|x|≥0,且 |x|=0当且仅当x=0。
绝对值的单调性
对于任意实数x、y,若x≤y,则 |x|≤|y|。但反之不成立,即若|x|≤|y|
,不能推出x≤y。
绝对值的几何意义
在数轴上,一个数到原点的距离叫 做该数的绝对值。因此,绝对值与 距离、长度等几何概念密切相关。
绝对值不等式分类
03
根据不等号方向分类
可分为严格不等式(如$|x|<a$)和非严 格不等式(如$|x|leq a$)。
根据涉及绝对值个数分类
可分为单一绝对值不等式(如$|x-1|<2$ )和多个绝对值不等式(如$|x1|+|x+2|geq 3$)。
根据解法不同分类
可分为可直接去绝对值符号求解的不等式 和需要讨论绝对值内部表达式正负情况求 解的不等式。
高三数学第一轮复习 第3课时-含绝对值的不等式的解法教案

一.课题:含绝对值的不等式的解法二.教学目标:掌握一些简单的含绝对值的不等式的解法.三.教学重点:解含绝对值不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组),难点是含绝对值不等式与其它内容的综合问题及求解过程中,集合间的交、并等各种运算.四.教学过程:(一)主要知识:1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离2.当0c >时,||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<; 当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈.(二)主要方法:1.解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;2.去掉绝对值的主要方法有:(1)公式法:|| (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.(2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.(三)例题分析:例1.解下列不等式:(1)4|23|7x <-≤;(2)|2||1|x x -<+;(3)|21||2|4x x ++->.解:(1)原不等式可化为4237x <-≤或7234x -≤-<-,∴原不等式解集为17[2,)(,5]22-- . (2)原不等式可化为22(2)(1)x x -<+,即12x >,∴原不等式解集为1[,)2+∞. (3)当12x ≤-时,原不等式可化为2124x x --+->,∴1x <-,此时1x <-; 当122x -<<时,原不等式可化为2124x x ++->,∴1x >,此时12x <<; 当2x ≥时,原不等式可化为2124x x ++->,∴53x >,此时2x ≥. 综上可得:原不等式的解集为(,1)(1,)-∞-+∞ .例2.(1)对任意实数x ,|1||2|x x a ++->恒成立,则a 的取值范围是(,3)-∞;(2)对任意实数x ,|1||3|x x a --+<恒成立,则a 的取值范围是(4,)+∞. 解:(1)可由绝对值的几何意义或|1||2|y x x =++-的图象或者绝对值不等式的性质|1||2||1||2||12|3x x x x x x ++-=++-≥++-=得|1||2|3x x ++-≥,∴3a <;(2)与(1)同理可得|1||3|4x x --+≤,∴4a >.例3.(《高考A 计划》考点3“智能训练第13题”)设0,0a b >>,解关于x 的不等式:|2|ax bx -≥.解:原不等式可化为2ax bx -≥或2ax bx -≤-,即()2a b x -≥①或2()2a b x x a b+≤⇒≤+②,当0a b >>时,由①得2x a b ≥-,∴此时,原不等式解为:2x a b ≥-或2x a b≤+; 当0a b =>时,由①得x φ∈,∴此时,原不等式解为:2x a b≤+; 当0a b <<时,由①得2x a b ≤-,∴此时,原不等式解为:2x a b≤+. 综上可得,当0a b >>时,原不等式解集为22(,][,)a b a b-∞+∞+- , 当0a b <≤时,原不等式解集为2(,]a b-∞+. 例4.已知{||23|}A x x a =-<,{|||10}B x x =≤,且A B ⊂≠,求实数a 的取值范围. 解:当0a ≤时,A φ=,此时满足题意;当0a >时,33|23|22a a x a x -+-<⇒<<,∵A B ⊂≠, ∴3102173102a a a -⎧≥-⎪⎪⇒≤⎨+⎪≤⎪⎩,综上可得,a 的取值范围为(,17]-∞.例5.(《高考A 计划》考点3“智能训练第15题”)在一条公路上,每隔100km 有个仓库(如下图),共有5个仓库.一号仓库存有10t 货物,二号仓库存20t ,五号仓库存40t ,其余两个仓库是空的.现在想把所有的货物放在一个仓库里,如果每吨货物运输1km 需要0.5元运输费,那么最少要多少运费才行? 解:以一号仓库为原点建立坐标轴,则五个点坐标分别为12345:0,:100,:200,:300,:400A A A A A ,设货物集中于点:B x ,则所花的运费5||10|100|20|200|y x x x =+-+-,当0100x ≤≤时,259000y x =-+,此时,当100x =时,min 6500y =;当100400x <<时,57000y x =-+,此时,50006500y <<;当400x ≥时,359000y x =-,此时,当400x =时,min 5000y =.综上可得,当400x =时,min 5000y =,即将货物都运到五号仓库时,花费最少,为5000元.(四)巩固练习:1.||11x x x x >++的解集是(1,0)-;|23|3x x ->的解集是3(,)5-∞; 2.不等式||1||||a b a b +≥-成立的充要条件是||||a b >; 3.若关于x 的不等式|4||3|x x a -++<的解集不是空集,则a ∈(7,)+∞; 4.不等式22|2log |2|log |x x x x -<+成立,则x ∈(1,)+∞ .五.课后作业:《高考A 计划》考点3,智能训练4,5,6,8,12,14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)求不等式 f(x)≥x2-8x+15 的解集.
解:由(1)可知, 当 x≤2 时,f(x)≥x2-8x+15 即为 x2-8x+18≤0,解集 为空集; 当 2<x<5 时,f(x)≥x2-8x+15 即为 x2-10x+22≤0,解 集为{x|5- 3≤x<5}; 当 x≥5 时,f(x)≥x2-8x+15 即为 x2-8x+12≤0,解集 为{x|5≤x≤6}. 综上, 不等式 f(x)≥x2-8x+15 的解集为{x|5- 3≤x≤6}.
能力练通
抓应用体验的“得”与“失”
1.求不等式|x-1|-|x-5|<2 的解集.
解:不等式|x-1|-|x-5|<2 等价于
x<1, -x-1+x-5<2 x>5, 或 x-1-x-5<2, x>5, 或 4<2, 1≤x≤5, 或 x-1+x-5<2 x<1, 即 -4<2 1≤x≤5, 或 2x<8
(3)|x-a|+|x-b|≥c,|x-a|+|x-b|≤c(c>0)型不等式 的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解. ③构造函数,利用函数的图象求解.
考点贯通
抓高考命题的“形”与“神”
绝对值不等式的解法
[典例]
解下列不等式:
(1)|2x+1|-2|x-1|>0. x (2)|x+3|-|2x-1|<2+1.
a>0 x|-a<x<a
a=|x>a或x<-a
(2)|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法: ①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c 或 ax+b≤-c .
1 1 解得 x>4,所以原不等式的解集为x|x>4.
x (2)|x+3|-|2x-1|<2+1.
[解] ①当 x<-3 时,
x 原不等式化为-(x+3)-(1-2x)<2+1, 解得 x<10,∴x<-3. 1 ②当-3≤x<2时, x 原不等式化为(x+3)-(1-2x)<2+1, 2 2 解得 x<-5,∴-3≤x<-5.
第一节 绝对值不等式
本节主要包括 2 个知识点: 1.绝对值不等式的解法; 2.绝对值三角不等式.
淮北一中数学组
突破点(一)
基础联通
绝对值不等式的解法
抓主干知识的“源”与“流”
(1)含绝对值的不等式|x|<a 与|x|>a 的解集
不等式 |x|<a |x|>a
[解]
2
(1)法一:原不等式可化为|2x+1|>2|x-1|,两边平方
2
1 得 4x +4x+1>4(x -2x+1),解得 x>4,所以原不等式的解集为
1 x|x> . 4
1 x<- , 2 法二:原不等式等价于 -2x+1+2x-1>0 1 - ≤x≤1, x>1, 2 或 或 2x+1-2x-1>0. 2x+1+2x-1>0
考点贯通
抓高考命题的“形”与“神”
证明绝对值不等式
4.已知函数 f(x)=|x-a|+3x,其中 a>0. (1)当 a=1 时,求不等式 f(x)≥3x+2 的解集; (2)若不等式 f(x)≤0 的解集为{x|x≤-1},求 a 的值.
解:(1)当 a=1 时,f(x)≥3x+2 可化为|x-1|≥2. 由此可得 x≥3 或 x≤-1. 故不等式 f(x)≥3x+2 的解集为{x|x≥3 或 x≤-1}.
故原不等式的解集为 {x|x<1} ∪ {x|1≤x<4} ∪ ∅
={x|x<4}.
2.解不等式 x+|2x+3|≥2.
3 3 x<- , x≥- , 2 2 解:原不等式可化为 或 -x-3≥2 3x+3≥2. 1 解得 x≤-5 或 x≥-3.
1 所以原不等式的解集是x|x≤-5或x≥-3.
(2)若不等式 f(x)≤0 的解集为{x|x≤-1},求 a 的值.
解:由 f(x)≤0 得|x-a|+3x≤0. 此不等式可化为
x≥a, x-a+3x≤0 x<a, 或 a-x+3x≤0,
x≥ a , x<a, 即 或 a a x≤ 4 x≤-2.
3.已知函数 f(x)=|x-2|-|x-5|. (1)证明:-3≤f(x)≤3; (2)求不等式 f(x)≥x2-8x+15 的解集.
解:(1)证明:f(x)=|x-2|-|x-5| -3,x≤2, =2x-7,2<x<5, 3,x≥5. 所以-3≤f(x)≤3.
当 2<x<5 时,-3<2x-7<3,
1 ③当 x≥2时, x 原不等式化为(x+3)+(1-2x)<2+1, 解得 x>2,∴x>2.
2 综上可知,原不等式的解集为x|x<-5或x>2.
[方法技巧]
绝对值不等式的常用解法
(1)基本性质法: 对 a∈R+,|x|<a⇔-a<x<a, |x|>a⇔x<-a 或 x>a. (2)平方法:两边平方去掉绝对值符号. (3)零点分区间法: 含有两个或两个以上绝对值符号的不等式, 可用零点分 区间法去掉绝对值符号, 将其转化为与之等价的不含绝对值 符号的不等式(组)求解.
a 结合 a>0,解得 x≤-2, 即不等式 f(x)≤0
a 的解集为x|x≤-2.
∵不等式 f(x)≤0 的解集为{x|x≤-1}, a ∴-2=-1,故 a=2.
突破点(二)
基础联通
绝对值三角不等式
抓主干知识的“源”与“流”
绝对值三角不等式定理 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且 仅当 ab≥0 时,等号成立. (2)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+ |b-c|,当且仅当 (a-b)(b-c)≥0 时,等号成立.