2.3-2.4《直线的参数方程及渐开线与摆线》 课件(人教A版选修4-4)
合集下载
2.3-2.4直线的参数方程及渐开线与摆线- 课件36896

3.当φ =2π 时,圆的渐开线 xy==66((scions-+csoisn))上的点是( )
(A)(6,0)
(B)(6,6π )
(C)(6,-12π )
(D)(-π ,12π )
【解析】选C.当φ =2π时,得
x y= =6 6((scions22-+ 22 co sisn22))==-612,
得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2=3 2 .
12.(14分)已知双曲线 x 2 - y 2 = 1 ,过点P(2,1)的直线交双曲
|-3 -=0 |1.
1+(-2 2 )2
8.(2019·天津高考)已知圆C的圆心是直线
x y
= =
t 1
+
(t为参数)
t
与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为___
_______.
【解析】将直线的参数方程化为普通方程为x-y+1=0.
由题意可得圆心(-1,0),则圆心到直线x+y+3=0的距离即为圆
(t为参数),下列命题中错误的是(
t
)
(A)直线经过点(7,-1)
(B)直线的斜率为 3
4
(C)直线不过第二象限
(D)|t|是定点M0(3,-4)到该直线上对应点M的距离 【解析】选D.直线的普通方程为3x-4y-25=0,由普通方程可 知,A、B、C正确,由于参数方程不是标准式, 故|t|不具有上述几何意义,故选D.
2.3-2.4直线的参数方程及渐开线与摆线- 课件36237

故点(6,-12π)为所求.
4.直线
x
=
1
+
1 2
t
(t为参数)和圆x2+y2=16交于A、B两点,则
y
=
-
3
3+
3t 2
AB的中点坐标为( )
(A)(3,-3) (C)( 3 ,-3)
(B)(- 3 ,3) (D)(3,- 3 )
【解析】
5.以t为参数的方程
x
=
得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2=3 2 .
12.(14分)已知双曲线 x 2 - y 2 = 1 ,过点P(2,1)的直线交双曲
2t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ . (1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一: (1)由ρ= 2 s5inθ ,得x2+y2- y2 =50, 即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
2
线于P1,P2,求线段P1P2的中点M的轨迹方程.
【解析】
|-3 -=0 |1.
4.直线
x
=
1
+
1 2
t
(t为参数)和圆x2+y2=16交于A、B两点,则
y
=
-
3
3+
3t 2
AB的中点坐标为( )
(A)(3,-3) (C)( 3 ,-3)
(B)(- 3 ,3) (D)(3,- 3 )
【解析】
5.以t为参数的方程
x
=
得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2=3 2 .
12.(14分)已知双曲线 x 2 - y 2 = 1 ,过点P(2,1)的直线交双曲
2t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ . (1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一: (1)由ρ= 2 s5inθ ,得x2+y2- y2 =50, 即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
2
线于P1,P2,求线段P1P2的中点M的轨迹方程.
【解析】
|-3 -=0 |1.
2.3-2.4直线的参数方程及渐开线与摆线- 课件36974

的半径,故r= 2 = ,2所以圆的方程为(x+1)2+y2=2.
2
答案:(x+1)2+y2=2
9.已知直线l过点P(1,2),其参数方程为
x y
= =
1 2
+
t
t
(t是参数),
直线l与直线2x+y-2=0交于点Q,求|PQ|=_______.
【解析】 答案:
三、解答题(共40分)
3.当φ =2π 时,圆的渐开线 xy==66((scions-+csoisn))上的点是( )
(A)(6,0)
(B)(6,6π )
(C)(6,-12π )
(D)(-π ,12π )
【解析】选C.当φ =2π时,得
x y= =6 6((scions22-+ 22 co sisn22))==-612,
|-3 -=0 |1.
1+(-2 2 )2
8.(2019·天津高考)已知圆C的圆心是直线
x y
= =
t 1
+
(t为参数)
t
与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为___
_______.
【解析】将直线的参数方程化为普通方程为x-y+1=0.
由题意可得圆心(-1,0),则圆心到直线x+y+3=0的距离即为圆
得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
2
答案:(x+1)2+y2=2
9.已知直线l过点P(1,2),其参数方程为
x y
= =
1 2
+
t
t
(t是参数),
直线l与直线2x+y-2=0交于点Q,求|PQ|=_______.
【解析】 答案:
三、解答题(共40分)
3.当φ =2π 时,圆的渐开线 xy==66((scions-+csoisn))上的点是( )
(A)(6,0)
(B)(6,6π )
(C)(6,-12π )
(D)(-π ,12π )
【解析】选C.当φ =2π时,得
x y= =6 6((scions22-+ 22 co sisn22))==-612,
|-3 -=0 |1.
1+(-2 2 )2
8.(2019·天津高考)已知圆C的圆心是直线
x y
= =
t 1
+
(t为参数)
t
与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为___
_______.
【解析】将直线的参数方程化为普通方程为x-y+1=0.
由题意可得圆心(-1,0),则圆心到直线x+y+3=0的距离即为圆
得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
人教版高中数学选修4-4课件:2.3直线的参数方程 2.4 渐开线与摆线

么曲线.
(2)若曲线C1和C2相交于A,B两点,求|AB|.
【解题探究】(1)如何将参数方程化为普通方程? 提示:消去参数即得曲线的普通方程. (2)如何求线段的长度? 提示:利用直线参数方程的几何意义计算线段长度.
【解析】经过点M(1,-3)且倾斜角为 的直线,以定点
M到动点P的位移t为参数的参数方程是
(t为参数)即为
(t为参数)
答案:
(t为参数)
【知识探究】
探究点 直线的参数方程、渐近线与摆线
1.直线的参数方程中,参数的几何意义是什么?
提示:设e表示直线向上方向上的单位向量,
当
参数t>0时, 与e同向;
有向线段
|t|是定点M0(1,0)到t对应的点M(x,y)的 的长.
2.方程组变形为
①代入②消去参数t,得直线的点斜式方程
可得
倾斜角
普通方程为
①②两式平方相加,得(x+3)2+(y-1)2=4t2,
所以
|t|是定点M0(3,1)到t对应
的点M(x,y)的有向线段 的长的一半.
【方法技巧】直线参数方程的标准形式应用技巧 (1)已知直线l经 过 点M0(x0,y0),倾 斜角为α,点M(x,y) 为 直线l上任意一点,则 直线l的参数方程为 (t为 参数) ①
三 直线的参数方程 四 渐开线与摆线
【自主预习 】
1.直线的参数方程
已知直线l经 过 点M0(x0,y0),倾 斜角为
点M(x,y)
为 直线l上任意一点,则 直线l的普通方程和参数方程分
别为
普通方程
参数方程
_y_-_y_0_=_t_a_n_α__(_x_-_x_0_) ___________ (t为 参数)
2.3-2.4直线的参数方程及渐开线与摆线- 课件37143

(A)10° (B)80°
(C)100°
【解析】
) (D)170°
二、填空题(每小题8分,共24分)
x=2t
7.点(-3,0)到直线
y =
(t为参数)的距离为_______.
2t 2
【解析】∵直线
x
=
2的t 普通方程为x-
y =
2t 2
y=2 0,2
∴点(-3,0)到直线的距离为d= 答案:1
2
线于P1,P2,求线段P1P2的中点M的轨迹方程.
【解析】
一、选择题(每小题6分,共36分)
1.原点到直线
x y
= =
3 -
+ 3 2
4 +
t 3
t
(t为参数)的距离为(
)
(A)1
(B)2
(C)3
(D)4
【解析】
2.已知直线
x y
= =
3+4t -4+ 3
2t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ . (1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一: (1)由ρ= 2 s5inθ ,得x2+y2- y2 =50, 即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
|-3 -=0 |1.
1+(-2 2 )2
8.(2019·天津高考)已知圆C的圆心是直线
x y
2.3-2.4直线的参数方程及渐开线与摆线- 课件36999

(t为参数),下列命题中错误的是(
t
)
(A)直线经过点(7,-1)
(B)直线的斜率为 3
4
(C)直线不过第二象限
(D)|t|是定点M0(3,-4)到该直线上对应点M的距离 【解析】选D.直线的普通方程为3x-4y-25=0,由普通方程可 知,A、B、C正确,由于参数方程不是标准式, 故|t|不具有上述几何意义,故选D.
得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2=3 2 .
12.(14分)已知双曲线 x 2 - y 2 = 1 ,过点P(2,1)的直线交双曲
10.(12分)化直线l的参数方程
x
=
-3
+
t
(t为参数)为普通方
y=1+ 3t
程,并求倾斜角,说明|t|的几何意义.
【解析】
11.(14分)(2019·福建高考)在直角坐标系xOy中,直线l的
参数方程为 x = 3 -
2 2
t
(t为参数),在极坐标系(与直角坐标
y
=
5+
2
线于P1,P2,求线段P1P2的中点M的轨迹方程.
【解析】
(A)10° (B)80°
(C)100°
【解析】
) (D)170°
二、填空题(每小题8分,共24分)
人教版高中数学选修4-4课件:2.3直线的参数方程 2.4 渐开线与摆线

9
【解析】经过点M(1,-3)且倾斜角为 的直线,以定点 3
M到动点P的位移t为参数的参数方程是x
1
tcos
, 3
(t为参数)即为
x
1(1t为t,参数) 2
y
3
tsin
, 3
答案:
x
1
1(tt,为参y 数3) 2
3 t. 2
y 3
三 直线的参数方程 四 渐开线与摆线
林老师网络编辑整理
1
【自主预习】
1.直线的参数方程
已知直线l经过点M0(x0,y0),倾斜角为
(
点M(x,y) ),
为直线l上任意一点,则直线l的普通方程和参2 数方程分
别为
林老师网络编辑整理
2
普通方程
参数方程
_y_-_y_0_=_t_a_n_α__(_x_-_x_0_) __xy__yx_00__ttsc_ion_s_,_ (t为参数) 其中,直线的参数方程中参数t的绝对值|t|=_Muu_u0u_Mur_. .
3
倾斜角
,
2
2
2. 3
林老师网络编辑整理
29
(2) x
1
1 t, 不2 是直线参数方程的标准形式,
令t′=y -t2,得 到23 t标准形式的参数方程为
x
1
1 2
t,
(t′为参数)
y 2
3 t. 2
林老师网络编辑整理
30
3.已知直线l过点P(3,4),且它的倾斜角θ=120°. (1)写出直线l的参数方程. (2)求直线l与直线x-y+1=0的交点.
2.3-2.4直线的参数方程及渐开线与摆线- 课件36967

得 (3- 2t)2+(,2t)2=5
2
2
整理,得 t2-3 2t.+4=0
由于Δ=( 3 )22-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得
又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2=3 2 .
12.(14分)已知双曲线 x 2 - y 2 = 1 ,过点P(2,1)的直线交双曲
2t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ . (1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一: (1)由ρ= 2 s5inθ ,得x2+y2- y2 =50, 即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
一、选择题(每小题6分,共36分)
1.原点到直线
x y
= =
3 -
+ 3 2
4 +
t 3
t
(t为参数)的距离为(
)
(A)1
(B)2
(C)3
(D)4
【解析】
2.已知直线
x y
= =
3+4t -4+ 3
故点(6,-12π)为所求.
4.直线
x
=
1
+
1 2
t
(t为参数)和圆x2+y2=16交于A、B两点,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(每小题6分,共36分)
x=3+4t 1.原点到直线 3 (t为参数)的距离为( y=- 2 +3t
)
(A)1
(B)2
(C)3
(D)4
【解析】
x=3+4t 2.已知直线 (t为参数),下列命题中错误的是( y=-4+3t
)
(A)(6,0) (C)(6,-12π )
(B)(6,6π ) (D)(-π ,12π )
【解析】选C.当φ=2π时,得
x=6(cos2+2sin2)=6 , y=6(sin2-2cos2)=-12
故点(6,-12π)为所求.
1 x=1+ t 2 4.直线 (t为参数)和圆x2+y2=16交于A、B两点,则 y=-3 3+ 3 t 2
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一:
(1)由ρ= 2 5 sinθ,得x2+y2- 2 5 y=0,
即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
得 (3- 2 t)2 +( 2 t)2 =5 ,
AB的中点坐标为( (A)(3,-3) (C(3,- 3)
【解析】
1 x=1- 2 t 5.以t为参数的方程 表示( y=-2+ 3 t 2
3
)
(A)过点(1,-2)且倾斜角为 的直线 (B)过点(-1,2)且倾斜角为
x=2t 7.点(-3,0)到直线 (t为参数)的距离为_______. 2 t y= 2 x=2t 【解析】∵直线 的普通方程为x- 2 2 y=0, 2 y= t 2 |-3-0| ∴点(-3,0)到直线的距离为d= =1.
1+(-2 2) 2
答案:1
8.(2010·天津高考)已知圆C的圆心是直线
x=t (t为参数) y=1+t
与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为___ _______. 【解析】将直线的参数方程化为普通方程为x-y+1=0. 由题意可得圆心(-1,0),则圆心到直线x+y+3=0的距离即为圆
的半径,故r=
2 = 2 ,所以圆的方程为(x+1)2+y2=2. 2
2 2
整理,得 t 2 -3 2t+4=0 .
由于Δ=( 3 2 )2-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得 又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2= 3 2 .
y 2 ,过点P(2,1)的直线交双曲 12.(14分)已知双曲线 x - =1 2
程,并求倾斜角,说明|t|的几何意义.
【解析】
11.(14分)(2010·福建高考)在直角坐标系xOy中,直线l的
2 x=3t 2 参数方程为 (t为参数),在极坐标系(与直角坐标 y= 5+ 2 t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ .
的直线 3
(C)过点(1,-2)且倾斜角为 2 的直线
3 (D)过点(-1,2)且倾斜角为 2 的直线 3
【解析】
x=-1+tsin10 6.直线 (t为参数)的倾斜角为( y=2-tcos10
) (D)170°
(A)10° 【解析】
(B)80°
(C)100°
二、填空题(每小题8分,共24分)
2
线于P1,P2,求线段P1P2的中点M的轨迹方程.
【解析】
)
(A)直线经过点(7,-1) (B)直线的斜率为 3
4
(C)直线不过第二象限 (D)|t|是定点M0(3,-4)到该直线上对应点M的距离 【解析】选D.直线的普通方程为3x-4y-25=0,由普通方程可
知,A、B、C正确,由于参数方程不是标准式,
故|t|不具有上述几何意义,故选D.
x=6(cos+sin) 3.当φ =2π 时,圆的渐开线 上的点是( y=6(sin-cos)
答案:(x+1)2+y2=2
x=1-t 9.已知直线l过点P(1,2),其参数方程为 (t是参数), y=2+t
直线l与直线2x+y-2=0交于点Q,求|PQ|=_______.
【解析】
答案:
三、解答题(共40分)
x=-3+t 10.(12分)化直线l的参数方程 (t为参数)为普通方 y=1+ 3t
x=3+4t 1.原点到直线 3 (t为参数)的距离为( y=- 2 +3t
)
(A)1
(B)2
(C)3
(D)4
【解析】
x=3+4t 2.已知直线 (t为参数),下列命题中错误的是( y=-4+3t
)
(A)(6,0) (C)(6,-12π )
(B)(6,6π ) (D)(-π ,12π )
【解析】选C.当φ=2π时,得
x=6(cos2+2sin2)=6 , y=6(sin2-2cos2)=-12
故点(6,-12π)为所求.
1 x=1+ t 2 4.直线 (t为参数)和圆x2+y2=16交于A、B两点,则 y=-3 3+ 3 t 2
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点P的坐标为(3, 5 ),求 |PA|+|PB|.
【解析】方法一:
(1)由ρ= 2 5 sinθ,得x2+y2- 2 5 y=0,
即x2+(y- 5 )2=5. (2)将l的参数方程代入圆C的直角坐标方程,
得 (3- 2 t)2 +( 2 t)2 =5 ,
AB的中点坐标为( (A)(3,-3) (C(3,- 3)
【解析】
1 x=1- 2 t 5.以t为参数的方程 表示( y=-2+ 3 t 2
3
)
(A)过点(1,-2)且倾斜角为 的直线 (B)过点(-1,2)且倾斜角为
x=2t 7.点(-3,0)到直线 (t为参数)的距离为_______. 2 t y= 2 x=2t 【解析】∵直线 的普通方程为x- 2 2 y=0, 2 y= t 2 |-3-0| ∴点(-3,0)到直线的距离为d= =1.
1+(-2 2) 2
答案:1
8.(2010·天津高考)已知圆C的圆心是直线
x=t (t为参数) y=1+t
与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为___ _______. 【解析】将直线的参数方程化为普通方程为x-y+1=0. 由题意可得圆心(-1,0),则圆心到直线x+y+3=0的距离即为圆
的半径,故r=
2 = 2 ,所以圆的方程为(x+1)2+y2=2. 2
2 2
整理,得 t 2 -3 2t+4=0 .
由于Δ=( 3 2 )2-4×4=2>0,故上述方程有两个不相等实数根
t1、t2,由根与系数的关系,得 又直线l过点
P(3,5),故由上式及t的几何意义得
|PA|+|PB|=|t1|+|t2|=t1+t2= 3 2 .
y 2 ,过点P(2,1)的直线交双曲 12.(14分)已知双曲线 x - =1 2
程,并求倾斜角,说明|t|的几何意义.
【解析】
11.(14分)(2010·福建高考)在直角坐标系xOy中,直线l的
2 x=3t 2 参数方程为 (t为参数),在极坐标系(与直角坐标 y= 5+ 2 t 2
系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为
极轴)中,圆C的方程为ρ = 2 5 sinθ .
的直线 3
(C)过点(1,-2)且倾斜角为 2 的直线
3 (D)过点(-1,2)且倾斜角为 2 的直线 3
【解析】
x=-1+tsin10 6.直线 (t为参数)的倾斜角为( y=2-tcos10
) (D)170°
(A)10° 【解析】
(B)80°
(C)100°
二、填空题(每小题8分,共24分)
2
线于P1,P2,求线段P1P2的中点M的轨迹方程.
【解析】
)
(A)直线经过点(7,-1) (B)直线的斜率为 3
4
(C)直线不过第二象限 (D)|t|是定点M0(3,-4)到该直线上对应点M的距离 【解析】选D.直线的普通方程为3x-4y-25=0,由普通方程可
知,A、B、C正确,由于参数方程不是标准式,
故|t|不具有上述几何意义,故选D.
x=6(cos+sin) 3.当φ =2π 时,圆的渐开线 上的点是( y=6(sin-cos)
答案:(x+1)2+y2=2
x=1-t 9.已知直线l过点P(1,2),其参数方程为 (t是参数), y=2+t
直线l与直线2x+y-2=0交于点Q,求|PQ|=_______.
【解析】
答案:
三、解答题(共40分)
x=-3+t 10.(12分)化直线l的参数方程 (t为参数)为普通方 y=1+ 3t