热统答案第三版1第一章 热力学的基本规律

合集下载

《热学教程》第三版_习题解答

《热学教程》第三版_习题解答
《热学教程》习题解答
第一章习题(P43) 1.1 解:根据T ( R) = 273.16 R
Rtr 则: T = 273.16 × 96.28 = 291.1(K)
90.35
1.2 解:(1)摄氏温度与华氏温度的关系为 t(o F) = 32 + 9 t(o C) 5
解出: t = −40 (2)华氏温标与开氏温标的关系为
t = 32 + 9 (T − 273.15) 5
解出: t = 575 (3)摄氏温度与开始温度的关系为
t = T − 273 .15 可知:该方程无解,即摄氏温标和开氏温标不可能给出相同的读数。
1.3 解:根据定压理想气体温标的定义式
V 273.16K
T (V ) = 273.16K lim =
1.6 解:当温度不变时, PV = C ,设气压计的截面积为 S,由题意可知:
(768− 748)×80S = (P − 734)× (80+ 748− 734)S
可解出: P = ( 20 × 80 + 734) × 1.013×105 (Pa) = 9.99 ×104 (Pa)
94
760
1.7 解:设气体压强分别为 P1、P2,玻璃管横截面积为 S,由题意可知:
PV2
=
M 2′ µ
RT 2
混合前后质量不变

µP1V1 + µP2V2 = µPV1 + µPV2
RT1 RT2 RT1 RT2

P = P1V1T2 + P2V2T1 = 2.98×104 (Pa)
V1T2 + V2T1
1.14 证明:略
1.15 解:气球内的 H2 在温度 T1、T2 时的状态方程为

工程热力学 课后习题答案 可打印 第三版 第一章

工程热力学 课后习题答案  可打印 第三版 第一章

pb = 755mm ,求容器中的绝对压力(以 MPa 表示) 。如果容器 ′ = 770mm ,求此时真空表上的读数(以 中的绝对压力不变,而气压计上水银柱高度为 pb
mmHg 表示)是多少? 解 :容器中气体压力低于当地大气压力,故绝对压力
p = pb − pv = (755 − 600)mmHg = 155mmHg = 0.0207MPa ′ = 770mmHg 。则此时真空表上的读数为 若容器中绝对压力不变,而大气压力变为 pb ′ = pb ′ − p = (770 − 155)mmHg = 615mmHg pv
3 3
程中 pV 持不变; (2)过程中气体先循 { p}MPa = 0.4 − 0.5 {V }m3 膨胀到 Vm = 0.6m ,再维持
3
压力不变,膨胀到 V2 = 0.8m 。分别求出两过程中气体作出的膨胀功。
3
解 (1)
W = ∫ pdV = ∫
1
2
2
1
pV V 0.8m3 dV = p1V1 ln 2 = 0.2 × 106 Pa ×0.4m3 × ln = 5.54 × 104 J 0.4m3 V V1
6
(2)A0=4πd =4×3.1416×1m =12.57m
2
2
2
F=A0Δp=A0(pb–p)=12.57 m2×(0.101×106Pa–691.75Pa)=1.261×106N
1-5 用∪型压力计测量容器中气体的压力,在水银柱上加一段水,则得水柱高 1020mm,水银 柱高 900mm, 如图 1-17 所示, 若当地大气压为 755mmHg, 求容器中气体的压力为多少 MPa? 解:
1-11 测得某汽油机气缸内燃气的压力与容积对应值如下表所示,求燃气在该膨胀过程中所作 的功。 p/MPa V /cm

热统课后习题答案案

热统课后习题答案案

吉布斯相律表达: f = k + 2 −ϕ 其中 f 称为多元复相系的自由度数,它是多元复相系可以独立改变的强度量变量的数目; ϕ 是最多相数,2 是 T 、 p , ϕ ≤ k + 2 ,否则无意义.
要求理解二元系相图、化学平衡条件、化学反应度、混合理想气体的性质及化学平衡、 理想溶液的内容.
3. 热力学第三定律
10
当 y = V 时,对应的广义力为压强 Y = − p ,这时广义力即压强的统计表达式简化为
p
=
N β
∂ ∂V
ln Zb
玻耳兹曼关系:
S = k ln ΩM .B. = k ln Ω
这个关系反映了熵的统计物理意义.
2. 麦克斯韦速度分布律
在单位体积内,速度在 dvx dv y dvz 范围内的分子数为
第六章 玻尔兹曼统计
1. 热力学函数的统计表达
∑ 若粒子的配分函数 Zb =
ω e−βε m m

则系统总分子数的统计表达式为
m
∑ ∑ ∑ N =
nm =
ω e−α −βε m m
= e−α
ω e−βε m m
= e−α Zb ,
m
m
m
相应的内能统计表达式为
∑ ∑ U =
m
ε mnm =
m
ε ω e−α −βε m mm
艾伦菲斯脱方程,它有如下的两种形式
dp dT
=
αVβ κTβ
− αVα − κTα

dp dT
=
c
β p

TVm (αVβ
cαp − αVα
)
第 4 章 多元系的复相平衡和化学平衡
1. 多元系的热力学函数和热力学方程

热统习题解答(全)

热统习题解答(全)

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。

解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。

证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。

1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。

a 和k 可以近似看作常数。

今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章

热力学与统计物理课后习题答案第一章1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为 11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T p V T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

热统1-3章答案

热统1-3章答案

1.1试求理想气体的体胀系数, 压强系数和等温压缩系数。

解:已知理想气体的物态方程为pV nRT,(1)由此易得1VV T1pp TT 1VV p TpVnR 1 ,pV TnR1pV,T1nRT 1 .V p2p(2)(3)(4)1.2 证明任何一种具有两个独立参量T , p的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:ln V =αdTκ dpT如果1, T1,试求物态方程。

T p解:以 T , p 为自变量,物质的物态方程为V V T , p ,其全微分为dV VdTVdp.(1)T p p T全式除以 V ,有dV1V1VdT dp.V V T p V p T根据体胀系数和等温压缩系数T 的定义,可将上式改写为dVT dp.(2)dT V上式是以 T,p 为自变量的完整微分,沿一任意的积分路线积分,有lnV dT T dp .(3)若 1 ,T 1,式( 3)可表为T plnV 11(4)dT dp .T p选择图示的积分路线,从(T0 , p0 ) 积分到T , p0,再积分到(T , p),相应地体积由 V0最终变到V,有ln V=lnTlnp, V0T0p0即pV p0V0C(常量),T T0或p V C. T(5)式(5)就是由所给 1 ,T 1求得的物态方程。

确定常量 C 需要T p 进一步的实验数据。

1.3在0 C和1p n下,测得一铜块的体胀系数和等温压缩系数分别为 4.85 10 5 K 1和T7.8107 p n1 . 和T可近似看作常量,今使铜块加热至 10 C 。

问:(a)压强要增加多少p n才能使铜块的体积维持不变?(b)若压强增加 100 p n,铜块的体积改变多少?a)根据 1.2 题式( 2),有dVT dp.(1)dTV上式给出,在邻近的两个平衡态,系统的体积差dV ,温度差 dT 和压强差 dp 之间的关系。

如果系统的体积不变,dp 与 dT 的关系为dp dT.(2)T在和T可以看作常量的情形下,将式(2)积分可得p2 p1T2 T1.(3)T将式( 2)积分得到式( 3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式( 3)。

工程热力学第三版课后习题答案

工程热力学第三版课后习题答案

工程热力学第三版课后习题答案工程热力学第三版课后习题答案【篇一:工程热力学课后答案】章)第1章基本概念⒈闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

⒉有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点对不对,为什么?答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。

物质并不“拥有”热量。

一个系统能否绝热与其边界是否对物质流开放无关。

⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系?答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。

⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式p?pb?pe(p?pb); p?pb?pv(p?pb)中,当地大气压是否必定是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压。

准确地说,计算式中的pb 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。

⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档