土壤微生物测定方法
土壤微生物量测定方法

土壤微生物量测定方法常规培养法是最早也是最常用的土壤微生物量测定方法之一、该方法是将土壤样品经过稀释后接种到含有特定培养基的培养皿中,经过一段时间的培养,根据培养皿上的菌落数量计算土壤中微生物的数量。
常用的培养基有营养琼脂培养基、土壤细菌培养基和土壤真菌培养基等。
常规培养法的优点是简单易行,可以同时测定不同类型微生物的数量,但该方法有一些局限性,如只能测定能够在培养基上生长的微生物,不能测定需异养条件才能生长的微生物,而且该方法容易低估土壤中微生物的真实数量。
生物量测定法是一种利用土壤微生物的生物学过程测定微生物量的方法。
该方法一般分为碳饥饿法和氮饥饿法两种。
碳饥饿法是将土壤样品暴露在低碳条件下(如0.01%葡萄糖溶液中)一段时间后,测定土壤中的微生物的生物量。
氮饥饿法是将土壤样品暴露在低氮条件下(如0.01%硝酸铵溶液中)一段时间后,测定土壤中的微生物的生物量。
这两种方法都是利用微生物的生物学特性,通过测定微生物对不同养分的响应来估计微生物的数量。
生物量测定法的优点是准确度较高,可以测定土壤中广泛类型的微生物,但该方法也有一些局限性,如需要较长的试验周期,测定过程中需要严格控制温度、湿度等环境条件,且操作较为繁琐。
生物学特征法是一种通过测定土壤微生物的生物学特征来评估微生物群体数量的方法。
该方法常用的特征包括土壤酶活性、呼吸作用速率、微生物生长速率和微生物群体的磷脂脂肪酸组成等。
这些特征的测定可以通过色谱、酶反应和分子生物学技术等手段进行。
生物学特征法的优点是操作简便,消耗土壤样品较少,时间短,结果可靠。
但该方法也有一些问题,如不同微生物对环境的响应不同,结果受环境因素影响较大。
综上所述,土壤微生物量的测定方法有常规培养法、生物量测定法和生物学特征法等。
不同的测定方法各有优缺点,使用时可以根据具体的研究目的和所需数据的准确度进行选择。
此外,单一的方法往往无法全面准确地评估土壤微生物量,因此常采用多种方法综合分析,以得到更准确的结果。
土壤微生物数量测定方法

土壤微生物数量测定方法土壤微生物是指生活在土壤中的微小生物,包括细菌、真菌、放线菌、古菌等。
土壤微生物在土壤的生物地球化学循环、有机质分解、养分转换和植物健康等过程中起着重要的作用。
因此,对土壤微生物数量的准确测定具有重要意义。
本文将介绍一些常用的土壤微生物数量测定方法。
1.瓶培法:将适量的土壤样品与适量的培养基混合,在37°C下培养约24小时,然后通过平板计数法或最凼稀释法进行测定。
2.膜过滤法:将土壤提取液通过特定孔径的膜过滤器滤过,然后将膜放置在培养基上进行细菌的生长,最后进行计数。
3.间接法:通过测定土壤样品的可培养细菌指标,如氧化还原酶、脱氢酶等的活性,从而推算出土壤中的细菌数量。
4.分子生物学方法:通过PCR扩增土壤DNA中的细菌基因,如16SrRNA基因,再通过测定PCR产物进行细菌数量的测定。
1.直接镜检法:直接在显微镜下观察土壤样品中的真菌,通过计数来估算真菌的数量。
2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使真菌生长形成菌落,最后进行计数。
3.膜过滤法:与细菌数量测定相似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行真菌的生长,最后进行计数。
4.分子生物学方法:通过PCR扩增土壤DNA中的真菌基因,如18SrRNA基因,再通过测定PCR产物进行真菌数量的测定。
1.直接镜检法:直接在显微镜下观察土壤样品中的放线菌,通过计数来估算放线菌的数量。
2.平板计数法:将土壤样品均匀撒在培养基上,通过培养方法使放线菌生长形成菌落,最后进行计数。
3.膜过滤法:与细菌和真菌数量测定类似,将土壤提取液通过膜过滤器滤过,然后将膜放置在适当的培养基上进行放线菌的生长,最后进行计数。
4.分子生物学方法:通过PCR扩增土壤DNA中的放线菌基因,如16SrRNA基因,再通过测定PCR产物进行放线菌数量的测定。
通过上述方法测定土壤中微生物的数量,可以了解土壤微生物对土壤生态系统功能的影响,并为土壤质量评价和科学合理利用提供依据。
土壤微生物测定方法

土壤微生物测定方法
目前常用的土壤微生物测定方法主要包括直接计数法、培养法、DNA
分析法和生化方法等。
1.直接计数法:直接计数法是指通过显微镜观察和计数土壤中微生物
的数量。
这种方法简单直观,可以快速测定土壤中微生物的数量。
但是,
由于土壤微生物数量庞大,直接计数方法需要大量的样品和时间,且对操
作者的要求较高。
2.培养法:培养法是指通过将土壤样品接种在富含营养物质的培养基上,并在一定温度和湿度下培养一段时间,通过观察和计数可见的菌落来
测定土壤中微生物的数量和种类。
这种方法可以有效地测定土壤中常见的
细菌和真菌等,但是对于无法培养的微生物种类相对有限。
3.DNA分析法:DNA分析法是指通过提取土壤中微生物的DNA,并通
过PCR扩增和DNA测序等技术来测定土壤中微生物的种类和多样性。
这种
方法可以检测到所有存在的微生物,无论是否可以培养。
因此,DNA分析
法可以更全面地测定土壤中微生物的多样性和种类。
但是,这种方法对实
验条件和技术要求较高。
4.生化方法:生化方法是指通过测定土壤中微生物代谢产物的含量或
活性来测定土壤中微生物的数量。
例如,通过测定脲酶、葡萄糖酶、氧化
还原酶等土壤微生物常见的酶活性来评估微生物的活性和数量。
生化方法
可以快速测定土壤微生物的数量和活性,但是受土壤理化性质的影响较大。
总之,以上所述的方法各有优缺点,可以根据实际情况选择合适的方
法或多种方法相结合来测定土壤微生物的数量和多样性。
此外,测定方法
的选择还要考虑实验所需的样品数量、可行性和经济性等因素。
土壤微生物生物量的测定方法

土壤微生物生物量的测定方法1.直接计数法:直接计数法是通过显微镜观察土壤样品中微生物数量来测定土壤微生物生物量。
常用的直接计数法包括滴定法、薄层计数法和电镜计数法。
滴定法是将土壤样品溶解后,通过滴定法来计数微生物细胞的数量。
滴定法主要包括用荧光假单胞菌(Pseudomonas fluorescens)作为参比菌,将细菌与土壤样品混合,经一系列稀释后进行滴定。
通过观察滴定液中菌落的数量,可以推算出原始土壤样品中微生物的生物量。
薄层计数法是将土壤样品制成薄层,然后在显微镜下进行计数。
这种方法可以直接观察微生物的形态特征,通过计算单位面积上微生物的数量来估算微生物生物量。
电镜计数法是利用电镜的高分辨率特性,观察土壤样品中微生物的形态和数量。
这种方法可以观察到更小的微生物和微生物的形态细节,但是操作复杂,成本较高。
2.间接测定法:间接测定法通过测定土壤中微生物活性代谢产物来估算微生物生物量。
常用的间接测定法包括ATP测定法、细胞膜脂肪酸测定法和氮素代谢产物测定法等。
ATP测定法是通过测定土壤中的三磷酸腺苷(ATP)含量来估算微生物生物量。
微生物的ATP含量与其生物量有一定的关系,因此可以通过测定ATP含量来间接估算土壤微生物生物量。
细胞膜脂肪酸测定法是通过测定土壤样品中微生物细胞膜中的脂肪酸含量来估算微生物生物量。
微生物细胞膜中的脂肪酸种类和含量与微生物群落的组成和数量有关,因此可以通过测定脂肪酸的含量来间接估算微生物生物量。
氮素代谢产物测定法是通过测定土壤样品中微生物氮素代谢产物的含量来估算微生物生物量。
微生物的氮素代谢活动与其生物量有关,因此可以通过测定氮素代谢产物的含量来间接估算微生物生物量。
3.分子生物学方法:分子生物学方法是利用PCR技术对土壤样品中微生物的DNA或RNA进行扩增和测定来估算微生物生物量。
常用的分子生物学方法包括引物扩增法、荧光原位杂交法和高通量测序法等。
引物扩增法是通过设计特定的引物对微生物的DNA或RNA进行扩增,并通过PCR反应的产物数量来估算微生物生物量。
土壤微生物分析方法

土壤微生物分析方法
一、引言
土壤是地球上肥沃的生活空间,也是物质循环的重要环节。
微生物在土壤中起着重要作用,它们参与着养分、水、氮的循环,帮助植物吸收养分和水,并发挥抗病虫、降解污染物等作用,是土壤生态系统中的重要组成部分。
随着科学技术的发展,目前的研究已经逐渐从单一微生物研究转变成研究其复杂而多样的群落,并且研究微生物群落的多样性和功能。
因此,准确研究土壤微生物以及其群落结构及功能,对于土壤环境的分析和调控有重要意义。
1、液体培养法
液体培养法是一种用于分析土壤微生物群落的常用方法,它的工作原理是在恒温的培养箱中,用有机物质和无机物质组成的培养基培养土壤中的微生物,并监测它们的生长。
培养基的组成成分可以根据需要变化,以考察特定微生物的生长情况及功能。
液体培养法可以清楚的显示不同类型的微生物群落的数量和组成,为分析其功能及其影响环境的作用提供重要的参考依据。
2、分子生物学技术
分子生物学技术包括核酸提取、PCR扩增、PCR测序等技术,主要用于检测土壤中的微生物群落结构,研究其适应性、多样性、抗药性等方面的知识。
土壤微生物测定取样方法

土壤微生物测定取样方法
确定土壤微生物的测定取样方法需要考虑以下几个步骤:
1. 确定取样点:根据研究目的和土壤类型选择取样点。
通常应选择代表性地带土壤、若干个深度(如0-10厘米,10-20厘米,20-30厘米等)的土壤样品。
2. 准备工具:取样时需要准备洁净的工具和容器,如无菌铲子、无菌采样袋或无菌容器等,以避免样品受到外界微生物的污染。
3. 取样方法:将土壤取样器或无菌铲子插入土壤中,以尽量保持样品的代表性。
每次采样之前都应彻底清洗工具,以防止交叉污染。
4. 样品处理:将采样的土壤样品放入无菌容器中,并尽快送至实验室进行分析。
如果不能立即送达实验室,样品应存储在低温环境中,以减缓微生物代谢。
在实验室中,测定土壤微生物的方法可以包括土壤微生物生物量、多样性和功能等方面的分析。
需要注意的是,不同类型的土壤微生物所需的取样方法和处理方式可能有所不同,具体的步骤和要求应根据具体研究的需求和方法的要求进行调整。
土壤微生物生物量的测定方法汇总

土壤微生物生物量的测定方法汇总操作步骤:1.准备工作:采集土壤样品,并将土壤样品分为适量的小样品。
2.氯仿熏蒸:将一定量的小样品放入氯仿熏蒸瓶中,然后加入适量的氯仿,并快速将瓶口封紧。
3.震荡:用震荡器对氯仿与土壤样品进行充分的混合震荡,使氯仿充分与土壤样品接触。
4.放置:将瓶子放置在室温下静置一段时间,一般为24小时,使土壤样品中的微生物充分溶解到氯仿中。
5.分液:将上清液和沉淀物分离。
上清液中含有溶解在氯仿中的微生物细胞,沉淀物中含有没有溶解的土壤颗粒和其他杂质。
6.校验:对上清液进行校验,可以采用PFLA(没有悬浮杂质时的上清液)或PFLA-Na2CO3(有悬浮杂质时的上清液)校验液。
7.测定:将校验液填入比色皿中,使用分光光度计对比色皿中的液体进行测定,并记录吸光度值。
原理:氯仿熏蒸法通过将土壤样品与氯仿混合,可以将土壤中的微生物细胞全部溶解到氯仿中。
通过将溶解在氯仿中的微生物细胞与校验液比色,在分光光度计上测定吸光度值,从而确定土壤中微生物的生物量。
氯仿熏蒸法的优点:1.操作简单,不需要复杂的设备和技术支持。
2.适用于各种类型的土壤,包括砂土、壤土、黏土等。
3.测定结果可靠,具有较高的重复性和准确性。
氯仿熏蒸法的缺点:1.只能测定细菌和放线菌等氧气需氧微生物,不能测定厌氧微生物的生物量。
2.氯仿对环境和人体有一定的毒性和危险性,操作时需要注意安全。
总结:氯仿熏蒸法是一种常用的测定土壤微生物生物量的方法。
通过将土壤样品与氯仿混合,将微生物细胞溶解到氯仿中,然后通过比色法测定吸光度值,从而确定土壤中微生物的生物量。
氯仿熏蒸法操作简单,适用于各种类型的土壤,且结果可靠。
但需要注意操作时的安全性。
除了氯仿熏蒸法外,还有其他一些方法也可用于测定土壤微生物生物量,如酚酸法、磷酸化氧化法等,可以根据实际需求选择合适的方法进行测定。
土壤微生物学特征的测定

土壤微生物学特征的测定一土壤微生物量碳、氮的测定将新鲜的土壤样品含水量调节至田间含水量的30%~50%,25℃下密封预培养7~10d,以保持土壤均匀和不同的地方所得结果的可比性。
然后迅速测定土壤微生物量碳氮,或在低温4℃下保存。
采用氯仿熏蒸-K2SO4提取法测定土壤微生物量碳氮,即称取预处理的湿润土壤每份20.0g(烘干基重)放入50ml烧杯中,将其置于底部有少量NaOH、少量水(约200ml)和去乙醇氯仿的真空干燥器中,抽真空后保持氯仿沸腾3-5min;然后,将干燥器移置在黑暗条件下25℃熏蒸土壤24h,再次抽真空完全去除土壤中的氯仿。
将熏蒸好的土壤转移到200ml提取瓶中,加入约80ml0.5mol/LK2SO4提取液(土水比为1∶4),振荡30min后过滤,得土壤提取液每份土样重复3次。
同时做未熏蒸空白和试剂空白。
土壤微生物量碳:用重铬酸钾氧化法测定吸取10ml土壤提取液于150ml消化管中,加入0.2mol/LKCrO和浓硫酸各5.0ml,再加入少量沸石,混匀,于175℃磷酸浴中煮沸10min。
冷却后全部移入150ml三角瓶中,使总体积约80ml,加入2滴邻啡罗啉指示剂,用0.05mol/LfeSO滴定至砖红色。
土壤微生物量碳(Bc)=Ec/Kc,Ec表示未熏蒸与熏蒸对照土壤的浸取有机碳的差值,Kc未转换系数,取值0.38。
土壤微生物量氮:用凯氏定氮法测定取20ml土壤提取液于250ml消化管中,加入0.19mol/LcuSO溶液0.4ml、浓硫酸6.7ml 消化至澄清,冷却后进行定氮。
土壤微生物量氮(Bn)=En/Kn,En为熏蒸与未熏蒸对照土壤矿质态氮的差值,Kn为转换系数,取值0.45。
二土壤酶活性的测定土壤过氧化氢酶活性用高锰酸钾滴定法、脲酶活性用靛酚蓝比色法测定。
过氧化氢酶活性以20min后每克土消耗。
0.02mol/L高锰酸钾毫升数表示,脲酶活性一24h后每百克土NH3-N的毫克数表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤微生物测定
土壤微生物活性表示土壤中整个微生物群落或其中的一些特殊种群状态,可以反映自然或农田生态系统的微小变化。
土壤微生物活性的表征量有:微生物量、C/N、土壤呼吸强度和纤维呼吸强度、微生物区系、磷酸酶活性、酶活性等。
测定指标:
1、土壤微生物量(MierobialBiomass,MB)
能代表参与调控土壤能量和养分循环以及有机物质转化相对应微生物的数量,一般指土壤中体积小于5Χ103um3的生物总量。
它与土壤有机质含量密切相关。
目前,熏蒸法是使用最广泛的一种测定土壤微生物量的方法阎,它是将待测土壤经药剂熏蒸后,土壤中微生物被杀死,被杀死的微生物体被新加人原土样的微生物分解(矿化)而放出CO2,根据释放出的CO2:的量和微生物体矿化率常数Kc可计算出该土样微生物中的碳量。
因此碳量的大小就反映了微生物量的大小。
此外,还有平板计(通过显微镜直接计数)、成份分析法、底物诱导呼吸法、熏蒸培养法(测定油污染土壤中的微生物量—碳。
受土壤水分状况影响较大,不适用强酸性土壤及刚施
用过大量有机肥的土壤等)、熏蒸提取法等,均可用来测定土壤微生物量。
熏蒸提取-容量分析法
操作步骤:
(1)土壤前处理和熏蒸
(2)提取
-1K2SO
4(图将熏蒸土壤无损地转移到200mL聚乙烯塑料瓶中,加入100mL0.5mol·L
水比为1:4;w:v),振荡30min(300rev·min
-1),用中速定量滤纸过滤于125mL塑料瓶中。
熏蒸开始的同时,另称取等量的3份土壤于200mL聚乙烯塑料瓶中,直接加入100mlL0.5mol·L -1K2SO4提取;另作3个无土壤空白。
提取液应立即分析。
(3)测定
吸取10mL上述土壤提取液于150mL消化管(24mmх295mm)中,准确加入10mL0.018 mol·L -1K2Cr2O7—12mol·L-1H2SO4溶液,加入2~3玻璃珠或瓷片,混匀后置于175±1℃
磷酸浴中煮沸10min(放入消化管前,磷酸浴温度应调至179℃,放入后温度恰好为175℃)。
冷却后无损地转移至150mL三角瓶中,用去离子水洗涤消化管3~5次使溶液体积约为80mL,
加入一滴邻菲罗啉指示剂,用0.05mol·L -1硫酸亚铁标准溶液滴定,溶液颜色由橙黄色
变
为蓝色,再变为红棕色,即为滴定终点。
(4)结果计算
12
有机碳量(mg·C·kg-1)
-1)43()
10MV-V
W
f
式中M为FeSO4溶液浓度;V0、V分别为空白和样品消耗的FeSO4溶液的体积(mL),f为稀释倍数;W为烘干土质量(g);
土壤微生物生物量碳:Bc=Ec/k EC
式中Ec为熏蒸与未熏蒸土壤的差值;k EC为转换系数,取值0.38
2、菌种测定
土壤微生物种类丰富,主要有细菌、真菌及放线菌等。
各菌种在细胞代谢中起着特殊的重要作用。
细菌用牛肉汁蛋白陈琼脂培养基平板混菌法培养测定;真菌用马丁氏琼脂培养基平板混菌法培养测定;放线菌用高氏1号琼脂培养基平板混菌法或淀粉按培养基稀释平板法培养测定。
3、土壤呼吸强度和纤维分解强度
土壤呼吸强度和纤维分解强度是土壤微生物活性的重要标志,反映了土壤中微生物活性及对有机质残体分解的速度和强度。
纤维素分解强度采用埋片法;呼吸强度采用碱吸收滴定法。
土壤微生物活性用土壤呼吸CO2测定法(5g鲜土于310mL试剂瓶中,22℃24h测CO2
释放量(用exH23os红外CO:分析仪测定))。
直接测定土壤呼吸的方法基本可分为静态气室法、动态气室法和微气象法三种。
密闭静置培养法
原理:
CO2+KOHK2CO3+H2O
K2CO3+KOHKHCO3+KCl+H2O
KHCO3+HClKCl+H2CO3
操作步骤:
称取20g新鲜土(为了增强呼吸作用,土壤中可加入葡萄糖,6mg·g-1)于500mL的
广口瓶中,将土壤加水润湿到最大持水量的70%,用50mL小烧杯,注入20mL0.1M的KOH
溶液,然后密闭广口瓶,于28℃恒温培养24h。
然后取出,以酚酞为指示剂,用0.1M的HCl溶液滴定。
领取同样容积的广口瓶,同上处理,不加土壤作为对照。
根据两者之差,求出消耗用于吸收CO2的KOH量。
4、酶活性测定
土壤酶大多数来自土壤微生物,在土壤中已发现50—60种酶,它们参与并催化土壤中发生的一系列复杂的生物化学反应。
如水解酶和转化酶对土壤有机质的形成和养分循环具有重要的作用。
已有研究表明,土壤酶活性和土壤结构参数有很好的相关性。
土壤微生物酶主
要有脱氢酶、磷酸酶、精氨酸酶及芳基硫酸酯酶等。
4.1脱氢酶活性的测定
通过测定呼吸链脱氢酶活性可表征微生物代谢活力大小。
郑志永等通过对氯化碘硝基四
氮哇(INT)比色法反应条件的研究,确定了呼吸链脱氢酶活性的测定方法。
4.2过氧化氢酶活性的测定(本部做,需要冰箱)
-1 土壤过氧化氢酶采用高锰酸钾容量法,以20min后1g土壤消耗KMnO4(0.11~lmol·L
)的量
表示,或运用注入土壤中的过氧化氢在反应后剩余量的方法测定。
操作步骤:
称取5g新鲜土壤样品于100mL三角瓶中。
加入甲苯0.5mL,摇匀,与0~4℃冰箱中放
置半小时。
取出,立刻加入25mL冰箱贮存的含3%H2O2的水溶液。
充分摇匀后,再放冰箱
中半小时。
取出,迅速加入2NH2SO44mL,用0.1NKMnO4溶液滴定。
根据对照和试样消耗
高锰酸钾的差,求出相当于分解的H2O2的量,酶活性以1g土壤、1h内消耗KMnO4的量计
算。
4.3尿酶活性的测定
尿酶采用钠氏比色法,常用1g土,在37℃培养24h后释放出的氨态氮的含量(mg)表示;
操作步骤:
(1)标准曲线的绘制:
分别取0,0.5,1.0,1.5,2.0,2.5mL50ug/mL的氮标准溶液于25mL容量瓶中。
用水稀释至10mL,摇匀,加入1mL酒石酸钾钠,0.8mL钠氏剂,摇匀。
慢慢加入4mL1MNaOH溶液,稀释至
刻度,显色10min后,测定吸光度值。
(2)称取5g土壤,置于100mL三角瓶中。
加入10mLpH6.7磷酸缓冲溶液及0.5mL甲苯,
混合处理15min后,加入10mL10%尿素溶液(对照以水代替),置于37℃恒温箱中,培养
48h。
(3)培养结束后,取出,加入20mL1MKCl溶液,充分摇匀10min。
将悬浊液用滤纸过滤,
吸取经过稀释的滤液1mL,按绘制标准曲线的操作,加入酒石酸钾钠,钠氏剂等进行显色,
根据标准曲线查出氨氮含量。
计算土壤尿酶的活性。
4.4蛋白酶活性的测定
蛋白酶活性用明胶在磷酸盐缓冲液(pH=7.4)中水解生成甘氨酸的方法测定;
铜盐比色法
方法原理:
本法以精胶为基质,酶解后所释放出的氨基酸使其与铜盐反应形成蓝色复合物。
用比色法测
定颜色深度。
操作步骤:
(1)标准曲线的绘制
取0~20mL50ug/mL甘氨酸标准溶液,用蒸馏水加之20mL,然后加入20mL新配制的铜—磷酸盐溶液,显色后于650nm处,测定吸光度。
(2)测定操作
称取5g土壤置于100mL三角瓶中。
加入甲苯2mL,放置15min。
计入20mL1%精胶溶液。
于37℃恒温箱中,培养24h。
与此同时,以水代替基质作为对照。
培养结束后,将悬液过滤,取10mL滤液,加水10mL,铜-磷酸盐溶液20mL,显色后,测定吸光度,根据标准
曲线法计算NH2-N(甘氨酸?)的含量。
5、微生物功能多样性
用biolog碳素分析法测定。