山西省百校联盟2015届高三教学质量监测数学(文)试题 扫描版含答案
山西省2015届高三第三次四校联考数学(文)试卷及答案

的距离.
(19 题图)
20. (本小题满分 12 分 )
交圆于 A 、 B 两点 , 连接 PA 并延长 , 交圆 O 于点 C , 连接 PB 交圆 O 于点 D , 若 MC BC .
(1) 求证 : △ APM ∽△ ABP ;
(2) 求证 : 四边形 PMCD 是平行四边形 .
23. (本小题满分 10 分)选修 4— 4:坐标系与参数方程
在直角坐标系 xOy 中,圆 C 的参数方程为:
B. 2
1
C.
2
D. 9 16
D. 1
9.已知函数 f ( x)
3x ,
( x 1),
log 1 x, ( x 1),,则函数 y
3
f (1 x) 的
大致图象是
y
y
y
y
O
x
O
x
Ox
Ox
A
B
C
D
10.在半径为 10cm的球面上有 A, B ,C 三点,如果 AB 8 3 , ACB 60 0 ,则球心 O 到平面 ABC
化简得 cos( A B )
2
,
2
……………………… 4 分
∵0 A B
∴ AB 3 4
又A B C
∴ C= 4
(2)由已知及正弦定理得 b 4
又 SΔABC =8 , C=
4
∴
1 2
ab
山西省大同市2015届高三数学学情调研测试试题 文(含解析)新人教A版

山西省大同市2015 届高三(上)调研数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的.1.设全集为R,函数f(x)=ln的定义域为M,则∁R M为()A.(﹣1,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣∞,﹣1]∪[1,+∞)D. [﹣1,1]分析:求出f(x)的定义域确定出M,根据全集R,求出M的补集即可.解答:解:由f(x)=ln,得到>0,即(x+1)(x﹣1)<0,解得:﹣1<x<1,即M=(﹣1,1),∵全集为R,∴∁R M=(﹣∞,﹣1]∪[1,+∞).故选:C.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.设复数z=﹣1﹣i(i为虚数单位),z的共轭复数为=()A.B.2 C.D.1分析:给出z=﹣1﹣i,则,代入整理后直接求模.解答:解:由z=﹣1﹣i,则,所以=.故选A.点评:本题考查了复数代数形式的乘除运算,考查了复数的模,考查了学生的运算能力,此题是基础题.3.抛物线y=x2的准线方程是()A. y=﹣1 B.y=﹣2 C.x=﹣1 D.x=﹣2分析:先化为抛物线的标准方程得到焦点在y轴上以及2p=4,再直接代入即可求出其准线方程.解答:解:抛物线y=x2的标准方程为x2=4y,焦点在y轴上,2p=4,∴=1,∴准线方程 y=﹣=﹣1.故选:A.点评:本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.4.设等比数列{a n}的前n项和为S n,若=3,则=()A. 2 B.C.D.3解答:解:设公比为q,则===1+q3=3,所以q3=2,所以===.故选B.点评:本题考查等比数列前n项和公式.5.执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A. [﹣3,4] B.[﹣5,2] C.[﹣4,3] D.[﹣2,5]考点:程序框图.专题:图表型.分析:本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.解答:解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选A.点评:要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析是条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.考点:古典概型及其概率计算公式.专题:计算题;转化思想.分析:用间接法,首先分析从5个球中任取3个球的情况数目,再求出所取的3个球中没有白球即全部红球的情况数目,计算可得没有白球的概率,而“没有白球”与“3个球中至少有1个白球”为对立事件,由对立事件的概率公式,计算可得答案.解答:解:根据题意,首先分析从5个球中任取3个球,共C53=10种取法,所取的3个球中没有白球即全部红球的情况有C33=1种,则没有白球的概率为;则所取的3个球中至少有1个白球的概率是;故选D.点评:本题考查古典概型的计算,注意至多、至少一类的问题,可以选用间接法,即借助对立事件的概率的性质,先求其对立事件的概率,进而求出其本身的概率.7.4cos50°﹣tan40°=()A.B.C.D.2﹣1考点:两角和与差的正弦函数;同角三角函数间的基本关系;诱导公式的作用;二倍角的正弦.专题:压轴题;三角函数的求值.分析:原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.解答:解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C点评:此题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.8.设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2考点:球内接多面体.专题:计算题.分析:由题意可知上下底面中心连线的中点就是球心,求出球的半径,即可求出球的表面积.解答:解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选B.点评:本题主要考查空间几何体中位置关系、球和正棱柱的性质以及相应的运算能力和空间形象能力.9.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由函数的图象的顶点坐标求出A,由特殊点的坐标求出ω,由五点法作图求出ω的值,可得f(x)的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由函数f(x)=Asin(ωx+φ)的图象可得A=﹣2,2sinφ=,∴sinφ=,结合|φ|<,可得φ=.再根据五点法作图可得ω×+=π,求得ω=2,故f(x)=2sin(2x+).故把f(x)=2sin(2x+)的图象向左平移个单位长度,可得y=2sin[2(x+)+]=2sin (2x+)=2cos2x的图象,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.10.某空间几何体的三视图如图所示,则该几何体的表面积为()A. 180 B.240 C.276 D.300考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知几何体复原后,上部是四棱锥,下部是正方体,利用三视图的数据,求出几何体的表面积即可.解答:解:由题意可知几何体复原后,上部是四棱锥,下部是正方体,四棱锥的底面是边长为6的正方形,侧面斜高为5;下部是棱长为6的正方体,所以几何体的表面积为:5个正方形的面积加上棱锥的侧面积,即:5×6×6+4××4=240.故选B.点评:本题考查几何体与三视图的关系,几何体的表面积的求法,考查计算能力.11.已知双曲线﹣y2=1的左右焦点为F1、F2,点P为左支上一点,且满足∠F1PF2=60°,则△F1PF2的面积为()A.B.C.D.D、2考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意可得 F2(0,),F1 (0,﹣),由余弦定理可得 PF1•PF2=4,由S=PF1•PF2sin60°,即可求得△F1PF2的面积.解答:解:由题意可得 F2(,0),F1 (﹣,0),由余弦定理可得20=PF12+PF22﹣2PF1•PF2cos60°=(PF1﹣PF2)2+PF1•PF2=16+PF1•PF2,∴PF1•PF2=4.S△F1PF2=PF1•PF2sin60°=×4×=.故答案为:A.点评:本题主要考察了双曲线的简单性质,属于基础题.12.如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(f(x))=0,f(g(x)=0的实根个数分别为m、n,则m+n=()A.18 B.16 C.14 D.12考点:函数奇偶性的性质.专题:函数的性质及应用.分析:结合函数图象把方程根的个数转化为函数图象的交点个数,可分别求得m,n进而可得答案.解答:解:由图象知,f(x)=0有3个根,0,±,g(x)=0有3个根,0,±(假设与x轴交点横坐标为±),由f(g(x))=0,得g(x)=0或±,由图象可知g(x)所对每一个值都能有3个根,因而m=9;由g(f(x))=0,知f(x)=0 或±,由图象可可以看出0时对应有3个根,而时有4个,而﹣时只有2个,加在一起也是9个,即n=9,∴m+n=9+9=18,故选:A.点评:本题考查了函数的奇偶性、方程的根,考查了数形结合的思想方法,考查了推理能力与计算能力,属于难题.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在横线上)13.设非零向量、、满足||=||=||,+=,则= .数量积表示两个向量的夹角.考点:专计算题.题:分由非零向量、、满足||=||=||,+=,知(+)2=2,所以析:,由此能求出的大小.解解:∵非零向量、、满足||=||=||,答:+=,∴(+)2=2,即,∴,∴,∴=.故答案为:.点评:本题考查数量积表示两个向量的夹角的计算,是基础题.解题时要认真审题,仔细解答,注意向量的性质的灵活运用.14.设x,y满足约束条件,则z=2x﹣y的最大值为 3 .考点:简单线性规划.专题:不等式的解法及应用.分析:先根据约束条件画出可行域,再利用几何意义求最值,z=2x﹣y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.解答:解:不等式组表示的平面区域如图所示,由得A(3,3),当直线z=2x﹣y过点A(3,3)时,在y轴上截距最小,此时z取得最大值3.故答案为:3.点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.设函数f(x)=ax3+bx2+cx,若1和﹣1是函数f(x)的两个零点,x1和x2是f(x)的两个极值点,则x1•x2= .考点:利用导数研究函数的极值;函数的零点与方程根的关系.专题:计算题;导数的综合应用.分由1和﹣1是函数f(x)的两个零点可得f(x)=ax3+bx2+cx=a(x﹣1)x(x+1),求析:导利用根与系数的关系即可.解答:解:∵1和﹣1是函数f(x)的两个零点,∴f(x)=ax3+bx2+cx=a(x﹣1)x(x+1),∴x1和x2是f′(x)=a(3x2﹣1)=0的两个根,则x1•x2=.故答案为:.点评:本题考查了导数在求极值时的应用,属于中档题.16.设等差数列{a n}的前n项和为S n,等差数列{b n}的前n项和为T n,若=,则+= .考点:数列的求和.专题:计算题;等差数列与等比数列.分析:+====,代入计算,即可得出结论.解答:解:+======,故答案为:.点评:本题考查等差数列的前n项和,考查等差数列的性质,比较基础.三、解答题:本大题共5个小题,每小题12分,共60分.解答应写出文字说明,证明过程或步骤.17.(12分)在△ABC中,∠A、B、C所对的边分别是a、b、c,且满足a2﹣2bccosA=(b+c)2(1)求∠A的大小;(2)若a=3,求△ABC周长的取值范围.考点:余弦定理.专题:解三角形.分析:(1)利用余弦定理表示出cosA,代入已知等式化简得到关系式,代入表示出的cosA 中求出值,即可确定出A的度数;(2)利用余弦定理列出关系式,将a,cosA的值代入,利用完全平方公式变形,再利用基本不等式求出b+c的最大值,即可确定出周长的范围.解答:解:(1)由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知等式得:a2﹣b2﹣c2+a2=b2+2bc+c2,即b2+c2﹣a2=﹣bc,∴cosA==﹣,则∠A=120°;(2)∵a=3,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA,即9=b2+c2+bc=(b+c)2﹣bc≥(b+c)2﹣=,再由b+c>a=3得到:3<b+c≤2,则△ABC周长a+b+c的范围为6<a+b+c≤2+3.点评:此题考查了余弦定理,基本不等式的运用,熟练掌握余弦定理是解本题的关键.18.(12分)(2014•深圳一模)某网络营销部门随机抽查了某市200名网友在2013年11月11日的网购金额,所得数据如下表:网购金额(单位:千元)人数频率(0,1] 16 0.08(1,2] 24 0.12(2,3] x p(3,4] y q(4,5] 16 0.08(5,6] 14 0.07合计200 1.00已知网购金额不超过3千元与超过3千元的人数比恰为3:2(1)试确定x,y,p,q的值,并补全频率分布直方图(如图).(2)该营销部门为了了解该市网友的购物体验,从这200网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人中进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?考点:古典概型及其概率计算公式;频率分布直方图.专题:概率与统计.分析:(1)由网友和为200,网购金额不超过3千元与超过3千元的人数比恰为3:2列方程组求解x,y的值,则p,q可求,进一步补全频率分布直方图;(2)分别求出从网购金额在(1,2]和(4,5]的两个群体中的人数并标记,然后用枚举法列出从5人中随机选取2人的所有不同方法数,查出2人来自不同群体的方法数,最后由古典概型概率计算公式求解.解答:解:(1)根据题意有:,解得.∴P=0.4,q=0.25.补全频率分布直方图如图,(2)根据题意,网购金额在(1,2]内的人数为(人),记为:a,b,c.网购金额在(4,5]内的人数为(人),记为:A,B.则从这5人中随机选取2人的选法为:(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)共10种.记2人来自不同群体的事件为M,则M中含有(a,A),(a,B),(b,A),(b,B),(c,A),(c,B)共6种.∴P(M)=.点评:本题主要考查频率分布直方图,分层抽样,古典概型等基础知识,考查学生数据处理和数据分析、运算求解能力和应用知识、或然与必然思想方法的理解程度.是中档题.(12分)如图,三棱柱ABC﹣A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,19.AB⊥B1C.(I)求证:平面AA1B1B⊥平面BB1C1C;(II)若AB=2,求三棱柱ABC﹣A1B1C1体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(I)证AB垂直于平面内的两条相交直线,再由线面垂直⇒面面垂直;(II)先求得三棱锥B1﹣ABC的体积,再利用棱柱是由三个体积相等的三棱锥组合而成来求解.解答:解:(Ⅰ)证明:由侧面AA1B1B为正方形,知AB⊥BB1.又∵AB⊥B1C,BB1∩B1C=B1,∴AB⊥平面BB1C1C,又∵AB⊂平面AA1B1B,∴平面AA1B1B⊥BB1C1C.(Ⅱ)由题意,CB=CB1,设O是BB1的中点,连接CO,则CO⊥BB1.由(Ⅰ)知,CO⊥平面AB1B1A,且CO=BC=AB=.连接AB1,则=•CO=×AB2•CO=.∵====,∴V三棱柱=2.点评:本题考查面面垂直的判定及空间几何体的体积.20.(12分)在平面直角坐标系xoy中,已知点B(1,0)圆A:(x+1)2+y2=16,动点P在圆A上,线段BP的垂直平分线AP相交点Q,设动点Q的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(1,0)点且斜率为1的直线与曲线C交于A、B两点,求弦长AB.考点:直线与圆锥曲线的综合问题;轨迹方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(Ⅰ)由已知|QP|=|QB|,Q在线段PA上,利用椭圆的定义,可求曲线C的方程;(Ⅱ)求出AB的方程,联立直线与椭圆方程,设出A,B坐标,通过韦达定理以及弦长公式即可求解|AB|的距离.解答:解:(Ⅰ)由已知|QP|=|QB|,Q在线段PA上,所以|AQ|=|QP|=4,|AQ|+|QB|=4 所以点C的轨迹是椭圆,2a=4,a=2,2c=2,c=1,∴b2=3,所以C点的轨迹方程为.(Ⅱ),AB的直线方程为:y=x﹣1.,整理得:7x2﹣8x﹣8=0,设A(x1,y1),B(x2,y2),∴x1+x2=,x1•x2=﹣,|AB|==.点评:本题考查轨迹方程的求法,直线与椭圆的关系,弦长公式的应用,考查分析问题解决问题的能力.21.(12分)已知函数在x=1处取到极值2.(Ⅰ)求f(x)的解析式;(Ⅱ)设函数.若对任意的x1∈R,总存在x2∈[1,e],使得,求实数a的取值范围.考点:利用导数求闭区间上函数的最值;函数在某点取得极值的条件.专题:综合题;压轴题.分析:(Ⅰ)利用函数的求导公式计算函数的导数,根据函数在x=1处取到极值得出函数在x=1处的导数为0,再把x=2代入函数,联立两式求出m,n的值即可.已知函数在x=1处取到极值2.(Ⅱ)由(Ⅰ)知f(x)的定义域为R,且f(﹣x)=﹣f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[﹣2,2].从而.依题意有(7分)解答:解:(Ⅰ)(2分)根据题意,f(x)=,f′(x)=﹣;由f(x)在x=1处取到极值2,故f′(1)=0,f(1)=2即,解得m=4,n=1,经检验,此时f(x)在x=1处取得极值.故(4分)(Ⅱ)由(Ⅰ)知f(x)的定义域为R,且f(﹣x)=﹣f(x).故f(x)为奇函数.f(0)=0,x>0时,f(x)>0,f(x)=≤2.当且仅当x=1时取“=”.故f(x)的值域为[﹣2,2].从而.依题意有(7分)函数的定义域为(0,+∞),(8分)①当a≤1时,g′(x)>0函数g(x)在[1,e]上单调递增,其最小值为合题意;②当1<a<e时,函数g(x)在[1,a)上有g′(x)<0,单调递减,在(a,e]上有g′(x)>0,单调递增,所以函数g(x)最小值为f(a)=lna+1,由,得.从而知符合题意.③当a≥e时,显然函数g(x)在[1,e]上单调递减,其最小值为,不合题意(11分)综上所述,a的取值范围为(12分)点评:该题考查函数的求导,以及函数极值的应用,考查一个函数小于零一个函数时,小于它的最小值.要会利用函数的导数判断函数的单调性.四、请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.选修4-1:几何证明选讲.22.(10分)(2011•西山区模拟)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于D,DE⊥AC交AC延长线于点E,OE交AD于点F.(Ⅰ)求证:DE是⊙O的切线;(Ⅱ)若,求的值.考点:圆的切线的判定定理的证明;相似三角形的判定;相似三角形的性质.专题:证明题.分析:(Ⅰ)根据OA=OD,得到∠ODA=∠OAD,结合AD是∠BAC的平分线,得到∠OAD=∠DAC=∠ODA,可得OD∥AE.再根据DE⊥AE,得到DE⊥OD,结合圆的切线的判定定理,得到DE是⊙O的切线.(II)连接BC、DB,过D作DH⊥AB于H,因为AB是⊙O的直径,所以在Rt△ACB中,求出,再利用OD∥AE,所以∠DOH=∠CAB,得到Rt△HOD中,=.设OD=5x,则AB=10x,OH=3x,用勾股定理,在Rt△HOD中算出DH=4x,再在Rt△HAD中,算出AD2=80x2.最后利用△ADE∽△ADB,得到AD2=AE•AB=AE•10x,从而AE=8x,再结合△AEF∽△ODF,得出.解答:证明:(Ⅰ)连接OD,∵OA=OD,∴∠ODA=∠OAD∵∠BAC的平分线是AD∴∠OAD=∠DAC∴∠DAC=∠ODA,可得OD∥AE…(3分)又∵DE⊥AE,∴DE⊥OD∵OD是⊙O的半径∴DE是⊙O的切线.…(Ⅱ)连接BC、DB,过D作DH⊥AB于H,∵AB是⊙O的直径,∴∠ACB=90°,Rt△ABC中,∵OD∥AE,∴∠DOH=∠CAB,∴.∵Rt△HOD中,,∴,设OD=5x,则AB=10x,OH=3x,∴Rt△HOD中,DH==4x,AH=AO+OH=8x,Rt△HAD中,AD2=AH2+DH2=80x2…(8分)∵∠BAD=∠DAE,∠AED=∠ADB=90°∴△ADE∽△ADB,可得,∴AD2=AE•AB=AE•10x,而AD2=80x2∴AE=8x又∵OD∥AE,∴△AEF∽△ODF,可得…(10分)点评:本题以角平分线和圆中的垂直线段为载体,通过证明圆的切线和求线段的比,考查了相似三角形的性质、相似三角形的判定、圆的切线的判定定理等知识点,属于中档题.五、选修4-4:坐标系与参数方程.23.在直角坐标系xoy中,直线I的参数方程为(t为参数),若以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=cos(θ+).(1)求直线I被曲线C所截得的弦长;(2)若M(x,y)是曲线C上的动点,求x+y的最大值.考点:参数方程化成普通方程.专题:计算题;直线与圆;坐标系和参数方程.分析:(1)将曲线C化为普通方程,将直线的参数方程化为标准形式,利用弦心距半径半弦长满足的勾股定理,即可求弦长.(2)运用圆的参数方程,设出M,再由两角和的正弦公式化简,运用正弦函数的值域即可得到最大值.解答:解:(1)直线I的参数方程为(t为参数),消去t,可得,3x+4y+1=0;由于ρ=cos(θ+)=(),即有ρ2=ρcosθ﹣ρsinθ,则有x2+y2﹣x+y=0,其圆心为(,﹣),半径为r=,圆心到直线的距离d==,故弦长为2=2=;(2)可设圆的参数方程为:(θ为参数),则设M(,),则x+y==sin(),由于θ∈R,则x+y的最大值为1.点评:本题考查参数方程化为标准方程,极坐标方程化为直角坐标方程,考查参数的几何意义及运用,考查学生的计算能力,属于中档题.六、选修4-5:不等式选讲.24.已知函数f(x)=|2x﹣1|+|x﹣2a|.(Ⅰ)当a=1时,求f(x)≤3的解集;(Ⅱ)当x∈[1,2]时,f(x)≤3恒成立,求实数a的取值范围.考点:绝对值不等式的解法;函数恒成立问题.专题:函数的性质及应用;不等式的解法及应用.分析:(Ⅰ)当a=1时,由f(x)≤3,可得①,或②,或③.分别求得①、②、③的解集,再取并集,即得所求.(Ⅱ)当x∈[1,2]时,f(x)≤3恒成立,即|x﹣2a|≤3﹣|2x﹣1|=4﹣2x,化简得3x﹣4≤2a≤4﹣x.再根据3x﹣4的最大值为2,4﹣x 的最小值2,可得2a=2,从而得到a的范围.解答:解:(Ⅰ)当a=1时,由f(x)≤3,可得|2x﹣1|+|x﹣2|≤3,∴①,或②,或③.解①求得0≤x<;解②求得≤x<2;解③求得x=2.综上可得,0≤x≤2,即不等式的解集为[0,2].(Ⅱ)∵当x∈[1,2]时,f(x)≤3恒成立,即|x﹣2a|≤3﹣|2x﹣1|=4﹣2x,故2x﹣4≤2a﹣x≤4﹣2x,即 3x﹣4≤2a≤4﹣x.再根据 3x﹣4的最大值为6﹣4=2,4﹣x 的最小值为4﹣2=2,∴2a=2,∴a=1,即a的范围为{1}.点评:本题主要考查绝对值不等式的解法,函数的恒成立问题,体现了转化以及分类讨论的数学思想,属于中档题.。
山西省2015届高三第二次诊断考试数学(文)试卷(WORD版)

山西省2014—2015年度高三第二次诊断考试数学试卷(文科)考生注意:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟;2、本试卷主要考试内容:集合与常用逻辑用语、函数与导数、平面向量、三角函数与解三角形、数列。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分1、已知集合}06|{2>+-∈=x x Z x M ,}05|{2<-=x x N ,则=⋂N M ( )A 、{1,2,3}B 、{1,2}C 、{2,3}D 、{3,4}2、)32014cos(π的值为( ) A 、21-B 、23C 、21D 、23- 3、已知等差数列}{n a 中,17,594==a a ,则=14a ( )A 、11B 、22C 、29D 、124、已知定义在R 上的奇函数)(x f ,当0>x 时,)12(log )(2+=x x f ,则)21(-f =( )A 、3log 2B 、5log 2C 、1D 、1-5、已知α为第三象限角,且m 2cos sin =+αα,22sin m =α,则m 的值为( )A 、33B 、33-C 、31- D 、32- 6、已知“)0(0><<m m t ”是“函数t tx x x f 3)(2+--=在区间(0,2)上只有一个零点”的充分不必要条件,则m 的取值范围是( )A 、(0,2)B 、(0,2]C 、(0,4)D 、(0,4]7、已知非零向量b a 、满足1||=b ,且b 与a b -的夹角为30°,则||a 的取值范围为( )A 、(0,21) B 、)1,21[ C 、),1[+∞ D 、),21[+∞ 8、设3log ,8log ,1===c b a ,则c b a 、、之间的大小关系中( )A 、b a c >>B 、b c a >>C 、b a c >>D 、a b c >>9、设等比数列}{n a 的前n 项和为n S ,若623,622015201420142013+=+=S a S a ,则数列}{n a 的公比q 等于( )A 、21B 、21-或1 C 、21或1 D 、2 10、给出下列命题,其中错误的是( )A 、在ABC ∆中,若B A >,则B A sin sin >;B 、在锐角ABC ∆中,B A sin sin >;C 、把函数x y 2sin =的图像沿x 轴向左平移4π个单位,可以得到函数x y 2cos =的图像; D 、函数)0(cos 3sin ≠+=ωωωx x y 最小正周期为π的充要条件是2=ω。
山西省2015届高考模拟试题_2015届山西省高三第二次四校联考数学(文)卷

2015届高三年级第二次四校联考数学试题(文)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U R =,集合{}2|2A x x =>,则U C A 是A.( B.(),-∞⋃+∞C. ⎡⎣D.(),-∞⋃+∞2. 复数()22i iZ --=(i 为虚数单位),Z 在复平面内所对应的点在 A.第一象限B.第二象限C.第三象限D.第四象限3. 从1、2、3、4这四个数中一次随机取两个,则取出的这两数字之和为偶数的概率是 A .16B .13 C. 12 D .154. 已知212sin =⎪⎭⎫⎝⎛+απ,02<<-απ,则cos()3πα-的值是A.21B.23C.21-D.15. 阅读右边的程序框图,运行相应的程序,则输出的结果是 A .6B .5 C. 4D .36. 已知直线b x y +=与曲线()0122>=+x y x 有交点,则A . 11<<-b B. 21<<-bC. 22≤≤-b D. 12<≤-b11111俯视图侧(左)视图正视图7. 已知等差数列{}n a 的前n 项和为n S ,若80S >且90S <,则当n S 最大时n 的值是A .8B .4C. 5D .38. 设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤-≤--≥-+0302063y y x y x ,且目标函数z y ax =+的最小值为-7,则a的值为 A.-2B.-4C.-1D.19. 如图是一几何体的三视图,则该几何体的表面积是 A.35+B. 325+C. 4+D. 4+10. 设()23ln ,3,2234.1===c b a ,则a b c 的大小关系是A .a b c >>B .b c a >>C. c a b >>D .b a c >>11. 函数3cos391x x xy =-的图像大致为12. 函数121()4cos 2(35)32x y x x π-=+--≤≤,则此函数的所有零点之和等于( )A.4B.8C.6D.10二、填空题(本大题共4个小题,每小题5分,共20分)13. 已知||=2a ,(cos ,sin ),()3b a a b αα=⋅+=,则向量a 与b 的夹角为 .14. 已知函数()x f 是定义在R 上的奇函数,且对于任意x R ∈,恒有()()11f x f x -=+成立,当[1,0]x ∈-时,()21xf x =-,则=)2013(f . 15. 已知正四棱锥ABCD S -的所有棱长均为2,则过该棱锥的顶点S 及底面正方形各边中点的球的体积为 .16. 已知双曲线2221(0)9x y b b-=>,过其右焦点F 作圆922=+y x 的两条切线,切点记作,C D ,双曲线的右顶点为E ,150CED ∠=,则双曲线的离心率为三、解答题:解答应写出文字说明,证明过程或演算步骤。
2015年高考文科数学全国卷1(含详细答案)

数学试卷 第1页(共30页)数学试卷 第2页(共30页)数学试卷 第3页(共30页)绝密★启用前2015年普通高等学校招生全国统一考试(全国新课标卷1)数学(文科)使用地区:河南、山西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}32,A x x n n ==+∈N ,{6,8,10,12,14}B =,则集合A B 中元素的个数为( )A .5B .4C .3D .22.已知点0,1A (),3,2B (),向量AC =43--(,),则向量BC =( )A (-7,-4)B .(7,4)C .(-1,4)D .(1,4) 3.已知复数z 满足(z -1)i=1+i ,则z=( )A .-2-iB .-2+iC .2-iD .2+i4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B .15C .110D .1205.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线28C y x =:的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .126. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛7.已知{}n a 是公差为1的等差数列,n S 为n {}a 的前n 项和.若844S S =,则10a = ( )A .172B .192C .10D .128.函数=cos(+)x f x ωϕ()的部分图象如图所示,则f x ()的单调递减区间为 ( )A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (), C .13,+44k k k -∈Z (),D .132,2+44k k k -∈Z (),9.执行如图所示的程序框图,如果输入的0.01t =,则输出的n = ( )A .5B .6C .7D .810.已知函数1222, 1,()log (1), 1,x x f x x x -⎧-=⎨-+⎩≤>且()3f a =-,则(6)f a -= ( )A .74-B .54-C .34-D .14-11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16π20+,则r = ( )A .1B .2C .4D .812.设函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,且(2)(4)f f -+-1=,则a =( )A .1-B .1C .2D .4--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页)数学试卷 第5页(共30页)数学试卷 第6页(共30页)第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答,第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.在数列{}n a 中12a =,12n n a a +=,n S 为{}n a 的前n 项和.若126n S =,则n =_____.14.已知函数31f x ax x =++()的图象在点1,1f (())处的切线过点(2,7),则a =_____. 15.若x ,y 满足约束条件20,210,220,x y x y x y +-⎧⎪-+⎨⎪-+⎩≤≤≥则z 3x y =+的最大值为_____.16.已知F 是双曲线2218yC x -=:的右焦点,P 是C 的左支上一点,0,66A ().当APF △周长最小时,该三角形的面积为_____.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别是ABC △内角A ,B ,C 的对边,2sin 2sin sin B A C =. (Ⅰ)若a b =,求cos B ;(Ⅱ)若B =90°,且2a =,求ABC △的面积. 18.(本小题满分12分)如图,四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面. (Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若ABC ∠=120°,AE EC ⊥,三棱锥E ACD -的体积为63,求该三棱锥的侧面积.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyω28i=1()ixx -∑28i=1()iωω∑-8i=1()()iiy x x y-∑-8i=1()()ii y y ωω--∑46.65636.8289.8 1.6 1 469108.8表中i ω=i x ,ω=188ii=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c d x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本小题满分12分)已知过点(0,1)A 且斜率为k 的直线l 与圆22 ()2(3)1C x y -+-=:交于M ,N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)若12OM ON ⋅=,其中O 为坐标原点,求||MN . 21.(本小题满分12分)设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数; (Ⅱ)证明:当0a >时,()22ln f x a a a+≥.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4—1:几何证明选讲如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;(Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.24.(本小题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a --+(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集; (Ⅱ)若f x ()的图象与x 轴围成的三角形面积大于6,求a 的取值范围.3 / 102015年普通高等学校招生全国统一考试(全国新课标卷1)数学(文科)答案解析第Ⅰ卷{8,14A B =【答案】A 【解析】(3,1)AB OB OA =-=(7,BC AC AB ∴=-=-,故选A.【考点】向量运算 【答案】C【解析】(1)i 1i z -∴=+,22i (12i)(i)2i i z +-==--∴=【解析】抛物线,1e 2c a ==的方程解得(2,3)A -数学试卷 第10页(共试卷 第11页(共30页)数学试卷 第12页(共30页)【解析】()f a =-5 / 10第Ⅱ卷【解析】12a =,64,6n ∴=【考点】等比数列定义与前【答案】1【解析】()3f x '=又(1)f a =切线过(2,7),∴【考点】利用导数的几何意义求函数的切线,常见函数的导数【答案】4平移直线l ,当直线数学试卷 第16页(共30页) 数学试卷 第17页(共30页)数学试卷 第18页(共30页)(0,66)A ∴直线AF 66y =或22APF S ∴=△22ac .,由余弦定理可得2221cos 24a cb B ac; 22ac .因为90B ,由勾股定理得222a c b ,故222a c ac ,得2c a ,所以先由正弦定理将22sin B A =化为变得关系,结合条件a b =,用其中一边把另外两边B 22ac ,根据勾股定理即可求出7 / 10ACBD ,因为BE平面ABCD AC BE ,故AC 平面BED AEC平面BED (Ⅱ)设AB x ,在菱形中,由120ABC ,可得32AG GC x ,2x GB GD . 因为AE EC ⊥,所以在可得32EG x ,由BE 平面ABCD EBG △为直角三角形,22BEx ,由已知得,E ACD 的体积3116632243E ACD V AC GD BE x,故2x ,从而AE EC ==EAC 的面积为3,EAD △的面积与ECD △的面积均为5. 故三棱锥EACD 的侧面积为5.(Ⅰ)由四边形AC BD ,由BE平面ABCD 知ACBE ,由线面垂直判定定AC平面BED ,由面面垂直判定定理知AEC 平面BED ;AB x ,通过解直角三角形将,GC ,GB ,GD 用x 表示出来,AEC △中,根据条件三菱锥EACD 的体积为x ,即可求出三菱锥E ACD 的侧面积. 【考点】线面垂直的判定与性质,面面垂直的判定,三棱锥的体积与表面积的计算(Ⅰ)由散点图可判断,关于年宣传费用c y dw ∴=-(Ⅲ)(ⅰ)由(Ⅱ)知,当576.60.2z =⨯(ⅱ)根据(Ⅱ)的结果知,年利润的预报值0.2(100.6z =13.62x =时,z 取得最大值,故宣传费用为【提示】(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;关于w 的线性回归方程,即可的回归方程先求出年销售量数学试卷 第22页(共30页) 数学试卷 第23页(共30页)数学试卷 第24页(共30页)1ykx ,因为l 231|11k k,474733k,所以k 的取值范围是4747,33.(Ⅱ)设11(,)M x y ,22(,)N x y ,将1ykx 代入方程22(2)(3)1x y ,22(1)4(1)70k xk x ,所以1224(1)1k x x k ,12271x x k . 21212121224(1)y (1)()181k k OM ONx x y k x x k x x k ,由题设可得24(1)8=121k k k ,解得所以l 的方程为1y kx ,故圆心在直线l 上,所以||2MN =.【提示】(Ⅰ)设出直线l 的方程,利用圆心到直线的距离小于半径列出关于的不等式,即可求出值范围;(Ⅱ)设()M x (,)N x y 方程代入圆的方程化为关于x 的一元二次方程,利用韦达定理将表示出来,利用平面向量数量积的坐标公式及12OM ON =列出关于(0,),2()=2(0)xaf x e x x. 0a 时,()0f x ,()f x 没有零点,当0a 时,因为2e x 单调递增,ax单调递增,()f x 在(0,)单调递增,又()0f a ,当b 满足04a b 且14b 时,(b)0f ,故当0a 时,()f x 存在唯一零点;(Ⅱ)由(Ⅰ),可设()f x 在(0,)的唯一零点为0x ,当0(0,)x x 时,()0f x ,当0(,)x x 时,()0f x ,)单调递减,在0(,)x 单调递增,所以当0xx 时,()f x 取得最小值,最小值为(f 0=0a x ,所以0022()=2ln2ln2a f x ax a a a x aa ,故当0a 时,2()2ln f x a a a. 【提示】(Ⅰ)先求出导函数,分0a 与0a 考虑()f x 的单调性及性质,即可判断出零点个数;(Ⅱ)由(Ⅰ)可设()f x 在(0,)的唯一零点为0x ,根据()f x 的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a,即证明了所证不等式,90ACB∠+,90∴∠,90,DE∴1=,12BE=-,由射影定理可得,CE BE,2x,解得60.90,即90∠,所以,设AE=,由勾股定理得CE BE,列出关于的方程,解出x,即可求出ACB∠【考点】圆的切线判定与性质,圆周角定理,直角三角形射影定理cosxρθ=40+=;(Ⅱ)将2=,|MN1452=.(Ⅰ)用直角坐标方程与极坐标互化公式即可求得π代入9/ 10数学试卷第28页(共30页)数学试卷第29页(共30页)数学试卷第30页(共30页)。
2015年山西省高考文科数学试题与答案(word版)

2015年山西省高考文科数学试题与答案(word 版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答。
若在试卷上作答,答题无效。
本试题相应的位置。
3. 考试结束后,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}N n n x x A ∈-==,23|,集合{}14,12,10,8,6=B ,则集合B A ⋂中元素的个数为(A )5 (B) 4 (C) 3 (D) 2 (2) 已知点A (0,1),B (3,2),向量()34--=,AC ,则向量=BC(A) (-7,-4) (B) (7,4) (C) (-1,4) (D) (1,4) (3)已知复数z 满足()i i z +=-11,则z=(A)i --2 (B) i +-2 (C) i -2 (D) i +2(4) 如果三个正整数可作为一个直角三角形三条边的边长,则称这三个数为一组勾股数。
从1,2,3,4,5中任取3个不同的数,则这三个数构成勾股数的概率为(A)103 (B) 51 (C) 101 (D) 201(5)已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C:x y 82=的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=(A) 3 (B) 6 (C) 9 (D) 12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
山西省2015届高三年级第二次四校联考 文科数学试题

山西省2015届高三年级第二次四校联考文科数学试题【满分150分,考试时间为120分钟】一、选择题(5×12=60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项用2B 铅笔涂黑答题纸上对应题目的答案标号)1. 已知集合}{1log 4<=x x A ,集合{}82<=xx B ,则AB 等于A .()4,∞-B .()4,0C . ()3,0D .()3,∞-2. 已知复数iiz -=1(i 为虚数单位),则复数z 在复平面内对应的点在 A . 第一象限 B .第二象限C .第三象限D .第四象限3. 已知数列{}n a 满足12=a ,031=++n n a a )(*∈N n ,则数列{}n a 的前10项和10S 为A .)13(4910- B .)13(4910+ C .)13(4910+- D .)13(4910-- 4. 已知函数x x x f 2)(2+=,若)2(2)()(f a f a f ≤+-,则实数a 的取值范围是A .[]2,2-B .(]2,2-C .[]2,4-D .[]4,4-5.已知命题p :()0,∞-∃x ,xx 32<,命题q :()1.0∈∀x ,0log 2<x 则下列命题为真命题的是A. q p ∧B .)(q p ⌝∨C .q p ∧⌝)(D .)(q p ⌝∧ 6.执行如图所示的程序框图,输出的S 值为A. 144 B .36C .49D .1697.已知向量,1=2=,3-=∙,则与的夹角为 A .32π B .3πC .6πD . 65π8. 已知圆:C 0218622=++++y x y x ,抛物线x y 82=的准线为l ,设抛物线上任意一点P 到直线l 的距离为d ,则PC d +的最小值为A .41B .7C .6D .99.已知函数x x f x +=3)(,x x x g 3log )(+=,33log )(x x x h -=的零点分别为1x ,2x ,3x ,则1x ,2x ,3x 的大小关系是A .1x >2x >3xB .2x >1x >3xC .1x >3x >2xD .3x >2x >1x10. 已知α是第二象限角,54)3sin(=-απ,函数)2cos(cos cos sin )(x x x f -+=παα 的图像关于直线0x x =对称,则=0tan xA .53-B. 34- C. 43- D. 54-11.A.510+ B. 210+ C.6226++ D. 626++12. 已知函数⎩⎨⎧>≤-=-0,lg 0,22)(x x x x f x ,则方程)0()2(2>=+a a x x f 的根的个数不可能为A .3B .4C .5D .6 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的相应位置上) 13. 已知双曲线的渐近线方程为x y 43±=,则此双曲线的离心率为_______. 14. 点),(y x M 满足不等式12≤+y x ,,则y x +的最大值为________. 15. 已知三棱锥ABC D -中,1==BC AB ,2=AD ,5=BD ,2=AC ,AD BC ⊥,则三棱锥ABC D -的外接球的表面积为________.16. 已知定义在R 上的函数)(x f y =满足:①对于任意的R x ∈,都有)(1)1(x f x f =+;②函数)1(+=x f y 是偶函数;③当(]1,0∈x 时,xxe x f =)(,则)23(-f ,)421(f ,)322(f 从小到大....的排列是______. 三、解答题(本大题6小题,共70分,解答应写出文字说明、证明过程或演算步骤,并把解答写在答卷纸的相应位置上) 17. (本小题满分12分)(第11题)正视图侧视图俯视图在公差不为0的等差数列{}n a 中,已知11=a ,且2a ,5a ,14a 成等比数列. (1)求数列{}n a 的通项公式;(2)令n n n a b ⋅=2,求数列{}n b 的前n 项和n T . 18. (本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 为矩形, ⊥PA 平面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ;(2)设1==AB AP ,3=AD ,求点P 到平面AEC 的距离. 19. (本小题满分12分)已知向量()x x m sin 3,sin =,()x x n cos ,sin -=,设函数()n m x f ∙=. (1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,边c b a ,,分别是角C B A ,,的对边,角A 为锐角,若()162sin =⎪⎭⎫⎝⎛-+πA A f ,7=+c b ,ABC ∆的面积为32,求边a 的长. 20. (本小题满分12分)已知动圆C 过定点A )0,3(-,且与圆B :64)3(22=+-y x 相切,点C 的轨迹为曲线T ,设Q 为曲线T 上(不在x 轴上)的动点,过点A 作OQ (O 为坐标原点)的平行线交曲线T 与N M ,两点. (1)求曲线T 的方程;(2)是否存在常数λ,使2AM λ=∙总成立?若存在,求λ;若不存在,说明理由. 21. (本小题满分12分)设函数x xppx x f ln 2)(--=(R p ∈). (1)若函数)(x f 在其定义域内为单调递增函数,求实数p 的取值范围; (2)设xex g 2)(=,且0>p ,若在[]e ,1上至少存在一点0x ,使得>)(0x f )(0x g 成立,求实数p 的取值范围.请考生在(22)、(23)、(24)三题中任选一题作答,如果多答,则按做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号右侧的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,CF ABC ∆是边AB 上的高,,.FP BC FQ AC ⊥⊥ PABC DE(1)证明:A 、B 、P 、Q 四点共圆; (2)若14==AQ CQ ,,354=PF ,求CB 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C 的极坐标方程是θρcos 4=.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l 的参数方程是t t y t x (sin cos 1⎩⎨⎧=+=αα是参数).(1)写出曲线C 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点,且14=AB ,求直线l 的倾斜角α的值.24.(本小题满分10分) 选修4—5:不等式选讲已知函数122)(--+=x x x f (1)解不等式2)(-≥x f ;(2)对任意[)+∞∈,a x ,都有)(x f a x -≤成立,求实数a 的取值范围.2015四校二联文科数学试题答案一选择题 1-6 CBDACB 7-12DADCCA 二填空题 13. 35或4514. 1 15. 6π 16. )23(-f <)322(f <)421(f 三解答题17.解:(1)设数列{}n a 的公差为d ,由题知,14225a a a ⋅=, (1)分11=a )131)(1()41(2d d d ++=+∴, (2)分即022=-d d ,又0≠d ,2=∴d (4)分)1(21-+=∴n a n ,12-=∴n a n (5)分(2) n n n b 2)12(⋅-=, ……………6分n n n T 2)12(252321321⨯-++⨯+⨯+⨯=∴ ① 14322)12(2)32(2523212+⨯-+⨯-++⨯+⨯+⨯=n n n n n T ②①-②得11432)12(2222++⨯--++++=-n n n n T ……………9分122)12(21282++⨯----+=n n n 122)12(282++⨯--+-=n n n )122(261+-+-=+n n )23(261n n -+-=+ ……………11分)32(261-+=∴+n T n n ……………12分18.(1)连结BD 交AC 与点O ,连结EO∵底面ABCD 为矩形 ∴O 为BD 的中点又∵E 为PD 的中点 ∴OE 为△PBD 的中位线,则OE ∥PB ………4分 又AEC OE 平面⊂,A E C PB 平面⊄∴PB ∥平面AEC ……………6分 (2)∵PB ∥平面AEC∴P 到平面AEC 与B 到平面AEC 的距离相等∴V P-AEC =V B-AEC =V E-ABC ……………8分又S △ABC =233121=⨯⨯,且E 到平面ABC 的距离为2121=PAAC=2,EC=2,AE=1, ∴S △AEC =47……………10分设P 到平面AEC 的距离为h ,则2123314731⨯⨯=⨯⨯h ,可得h =721 ∴P 到平面AEC 的距离为721……………12分 19.(1)()x x x n m x f cos sin 3sin 2-=⋅=PAB C DEx x 2sin 2322cos 1--=⎪⎭⎫ ⎝⎛+-=62sin 21πx ……………3分 由()Z k k x k ∈+≤+≤+πππππ2236222,得)(326Z k k x k ∈+≤≤+ππππ ∴)(x f 的单调递增区间为)(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ ……………6分(2)()12cos 2162sin 62sin 2162sin =-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛-+A A A A A f πππ ∴211cos 22cos 2-=-=A A 又A 为锐角,∴21cos =A ,3π=A …………9分S △ABC =32sin 21=A bc , ∴8=bc , 则bc bc c b A bc c b a --+=-+=2)(cos 2222225=∴5=a ……………12分 20.(1)∵)0,3(-A 在圆B 的内部 ∴两圆相内切,所以AC BC -=8,即AB AC BC >=+8∴C 点的轨迹是以A ,B 为焦点的椭圆,且长轴长82=a ,4=a ,3=c ,79162=-=∴b ∴曲线T 的方程为:171622=+y x ……………4分(2)当直线MN 47==,72=OQ∴λπ7cos ||||=⋅⋅=⋅AN AM AN AM ,则167-=λ ……………5分当直线MN 斜率存在时,设),(11y x M ,),(22y x N ,MN:)3(+=x k y ,则OQ:kx y =,由⎩⎨⎧+==+)3(11216722x k y y x 得011214496)167(2222=-+++k x k x k ,则 222116796k k x x +-=+,2221167112144k k x x +-=⋅ ……………7分 ∴()()[]()[]222121221221167499333kk x x x x k x x k y y +-=+++=++= ()()222121167)1(4933k k y y x x AN AM ++-=+++=⋅ ……………9分 由⎩⎨⎧==+kx y y x 11216722得112167222=+x k x ,则22167112k x +=,∴()()222222216711121k k x k y x OQ ++=+=+=,由2OQ AN AM λ=⋅可解得167-=λ。
山西省2015届高三第四次诊断考试数学文试题 Word版含答案

山西省2014~2015学年度高三第四次诊断考试数 学 试 卷(文 科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、设集合{}215x x A =-≥,集合x y ⎧⎫B ==⎨⎩,则A B 等于( )A .()3,7B .[]3,7C .(]3,7D .[)3,7 2、已知向量()2,1a m =,向量()1,8b =-,若a b ⊥,则实数m 的值是( )A .4-B .4C .43D .143、设sin 6a ππ⎛⎫=- ⎪⎝⎭,函数()(),0,0xa x f x f x x ⎧>⎪=⎨-<⎪⎩,则21log 6f ⎛⎫ ⎪⎝⎭的值等于( )A .14B .4C .16D .64、若R m ∈,则“6l o g 1m =-”是“直线1:l 210x my +-=与2:l ()3110m x my ---=平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A .1BCD 6、若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220l n l n l n a a a ++⋅⋅⋅+等于( )A .50B .25C .75D .1007、为得到函数sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin y x =的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则m n -的最小值是( )A .3πB .23πC .43πD .53π8、已知奇函数()f x 是R 上的单调函数,若函数()()2y f x f k x =+-只有一个零点,则实数k 的值是( ) A .14 B .2 C .23D .1 9、在C ∆AB 中,角A 、B 、C 所对的边分别为a 、b 、c,若222b c a +-=,且b =,则下列关系一定不成立的是( )A .a c =B .b c =C .2a c =D .222a b c +=10、若实数x 、y 满足22030x y y ax y a +-≥⎧⎪≤⎨⎪--≤⎩,且22x y +的最大值等于34,则正实数a 的值等于( )A .12B .34C .43D .311、已知O 为原点,双曲线2221x y a-=(0a >)上有一点P ,过P 作两条渐近线的平行线,且与两渐近线的交点分别为A ,B ,平行四边形OBPA 的面积为1,则双曲线的离心率为( )ABCD12、已知函数()221ln f x x x a x =-++有两个极值点1x ,2x ,且12x x <,则( ) A .()212ln 24f x +<- B .()212ln 24f x -< C .()212ln 24f x +>D .()212ln 24f x -> 二、填空题(本大题共4小题,每小题5分,共20分.)13、已知α为锐角,且3cos 45πα⎛⎫+= ⎪⎝⎭,则sin α= .14、若直线l 与幂函数n y x =的图象相切于点()2,8A ,则直线l 的方程为15、1by +=(其中a 、b 为非零实数)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且∆AOB 为直角三角形,则2212a b +的最小值为 .16、点A ,B ,C ,D 在同一球面上,C AB =B =C 2A =,若球的表面积为254π,则四面体CD AB 体积的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分10分)在C ∆AB 中,已知()sin sin sin A +B =A +B ()1求角B ;()2若4tan 3A =,求sin C 的值.18、(本小题满分12分)已知命题:p 方程22121x y m m -=-表示焦点在y 轴上的椭圆;命题:q 双曲线2215y x m-=的离心率()1,2e ∈,若p 、q 有且只有一个为真命题,求实数m 的取值范围.19、(本小题满分12分)数列{}n a 满足11a =,()()111n n na n a n n -=---,2n ≥且n *∈N .()1证明:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列; ()2设13n n b -={}n b 的前n 项和n S .20、(本小题满分12分)如图,四棱锥CD P -AB 中,C//D B A ,C 1B =,D 3A =,C CD A ⊥,且平面CD P ⊥平面CD AB . ()1求证:C D A ⊥P ;()2在线段PA 上,是否存在点E ,使//BE 平面CD P ?若存在,求PEPA 的值;若不存在,请说明理由.21、(本小题满分12分)如图,分别过椭圆:E 22221x y a b+=(0a b >>)左、右焦点1F 、2F 的动直线1l ,2l 相交于P 点,与椭圆E 分别交于A 、B 与C 、D 不同四点,直线OA 、OB 、C O 、D O 的斜率1k 、2k 、3k 、4k 满足1234k k k k +=+.已知当1l 与x 轴重合时,AB =,CD 3=. ()1求椭圆E 的方程;()2是否存在定点M 、N ,使得PM +PN 为定值?若存在,求出M 、N 点坐标并求出此定值;若不存在,请说明理由.22、(本小题满分12分)已知函数()ln f x x x =,()()23x g x x ax e =-+-(a 为实数).()1求()f x 在区间[],2t t +(0t >)上的最小值; ()2若存在两不等实根1x ,21,x e e ⎛⎫∈⎪⎝⎭,使方程()()2x g x e f x =成立,求实数a 的取值范围.。