高中物理第2章圆周运动章末综合测评粤教版
粤教版高中物理必修二第二章圆周运动测试题

高中物理学习资料金戈铁骑整理制作广东省肇庆实验中学必修 2 第二章圆周运动测试题命题:赖眺梁卓豪2008-4-2班级____姓名___总分 ____________一、此题共12 小题,每题 6 分,共72 分。
在每题给出的四个选项中,有的小题只有一个正确选项,有的小题可能不只一个正确选项,所有选对的得6分,选对但不全的得3分,有错选或不答的得0 分。
1. 对于匀速圆周运动的下陈述法中正确的选项是 A. 角速度不变 B. 线速度不变 C.是匀速运动()D.是变速运动2.以下说法中,正确的选项是()A.物体在恒力作用下不行能作曲线运动B.物体在恒力作用下不行能作圆周运动C.物体在变力作用下不行能作直线运动D.物体在变力作用下不行能作曲线运动3.如图 1 所示,内壁圆滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量同样的小球 A 和 B 紧贴着内壁分别在图中所示的水平面内做匀速圆周运动,则()A.球 A 的角速度必定大于球 B 的角速度B.球 A 的线速度必定大于球 B 的线速度C.球 A 的运动周期必定小于球 B 的运动周期AD.球 A 对筒壁的压力必定大于球 B 对筒壁的压力B4.正常走动的钟表,其时针和分针都在做匀速转动.以下关系中正确的有()A.时针和分针角速度同样图 1B.分针角速度是时针角速度的12倍C.时针和分针的周期同样D.分针的周期的时针周期的12倍5.有两人坐在椅子上歇息,他们分别在中国的大连和广州,对于他们拥有的线速度和角速度对比较()A.在广州的人线速度大,在大连的人角速度大.B.在大连的人线速度大,在广州的人角速度大.C.两处人的线速度和角速度同样大D.两处人的角速度同样大,在广州处人的线速度比在大连处人的线速度大6.小球 m用长为 L 的悬线固定在O点,在 O点正下方 L/2 处有一个圆滑钉子C,如图 2 所示,今把小球拉到悬线成水平后无初速度地开释,当悬线成竖直状态且与钉子相碰时()A.小球的速度忽然增大B.小球的角速度忽然增大C.小球的向心加快度忽然增大D.悬线的拉力忽然增大图 27.用资料和粗细同样、长短不一样的两段绳索,各栓一个质量同样的小球在圆滑水平面上做匀速圆周运动,那么()A.两个球以同样的线速度运动时,长绳易断B.两个球以同样的角速度运动时,长绳易断C.两个球以同样的周期运动时,长绳易断D.不论怎样,长绳易断8.如图 3,细杆的一端与一小球相连,可绕过 O点的水平轴自由转动现给小球一初速度,使它做圆周运动,图中 a、 b 分别表示小球轨道的最低点和最高点,则杆对球的作使劲可能是()bA.a 处为拉力, b 处为拉力处为拉力, b 处为推力C.a 处为推力, b 处为拉力处为推力, b 处为推力o9.如图4所示,从 A、 B 两物体做匀速圆周运动时的向心加快度a随半径变化的关系图线中能够看出()A. B 物体运动时,其线速度的大小不变图 3B. B 物体运动时,其角速度不变C. A 物体运动时,其角速度不变图 4D. A 物体运动时,其线速度随 r的增大而减小10.如图5所示,水平转台上放着A、 B、 C 三个物体,质量分别为2m、 m、m,离转轴的距离分别为 R、R、2R,与转台间的摩擦因数同样,转台旋转时,以下说法中,正确的选项是()A.若三个物体均未滑动, C 物体的向心加快度最大B.若三个物体均未滑动, B 物体受的摩擦力最大C.转速增添, A 物比 B 物先滑动D.转速增添, C 物先滑动图 5 11.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确立。
【4份】高中粤教版物理必修2章末综合测评含答案

【4份】高中粤教版物理必修2章末综合测评含答案目录章末综合测评(一) (1)章末综合测评(二) (8)章末综合测评(三) (17)章末综合测评(四) (24)章末综合测评(一)(时间:60分钟满分:100分)一、选择题(本题共10小题,每小题6分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.游泳运动员以恒定的速率垂直于河岸渡河,当水速突然变大时,对运动员渡河时间和经历的路程产生的影响是()A.路程变大,时间延长B.路程变大,时间缩短C.路程变大,时间不变D.路程和时间均不变运动员渡河可以看成是两个运动的合运动:垂直河岸的运动和沿河岸的运动.运动员以恒定的速率垂直河岸渡河,在垂直河岸方向的分速度恒定,由分运动的独立性原理可知,渡河时间不变;但是水速变大,沿河岸方向的运动速度变大,因时间不变,则沿河岸方向的分位移变大,总路程变大,故选项C正确.【答案】 C2.如图1所示,在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动到如图所示位置时,物体P的速度为()【导学号:35390020】图1A .vB .v cos θ C.v cos θ D .v cos 2 θ如图所示,绳子与水平方向的夹角为θ,将小车的速度沿绳子方向和垂直于绳子方向分解,沿绳子方向的速度等于P 的速度,根据平行四边形定则得,v P =v cos θ,故B 正确,A 、C 、D 错误.【答案】 B3.(2016·汕头高一检测)将一小球以初速度v 从地面竖直上抛后,经过4 s 小球离地面高度为6 m ,若要使小球竖直上抛后经2 s 到达相同高度,g 取10 m/s 2.不计阻力,则初速度v 0应( )A .大于vB .小于vC .等于vD .无法确定由公式h =v 0t -12gt 2得4 s 时,初速度v =21.5 m/s,2 s 时初速度v 0=13 m/s ,故选B.【答案】 B4.弹道导弹是指在火箭发动机推力作用下按预定轨道飞行,关闭发动机后按自由抛体轨迹飞行的导弹,如图2所示.若关闭发动机时导弹的速度是水平的,不计空气阻力,则导弹从此时起水平方向的位移( )图2A .只由水平速度决定B .只由离地高度决定C.由水平速度、离地高度共同决定D.与水平速度、离地高度都没有关系不计空气阻力,关闭发动机后导弹水平方向的位移x=v0t=v02hg,可以看出水平位移由水平速度、离地高度共同决定,选项C正确.【答案】 C5.以初速度v0水平抛出一个物体,经过时间t物体的速度大小为v,则经过时间2t,物体速度大小的表达式正确的是()A.v0+2gt B.v+gtC.v20+(2gt)2D.v2+2(gt)2物体做平抛运动,v x=v0,v y=g·2t,故2t时刻物体的速度v′=v2x+v2y=v20+(2gt)2,C正确,A错误;t时刻有v2=v20+(gt)2,故v′=v2+3(gt)2,B、D错误.【答案】 C6.如图3所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A、B两处.不计空气阻力,则落到B处的石块()【导学号:35390021】图3A.初速度大,运动时间短B.初速度大,运动时间长C.初速度小,运动时间短D.初速度小,运动时间长由于B点在A点的右侧,说明水平方向上B点的距离更远,而B点距抛出点竖直方向上的距离较小,故运动时间较短,二者综合说明落在B点的石块的初速度较大,故A正确,B、C、D错误.【答案】 A7.如图4所示,P是水平面上的圆弧凹槽,从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与竖直方向的夹角,θ2是BA 与竖直方向的夹角,则( )图4A.tan θ2tan θ1=2 B .tan θ1tan θ2=2C.1tan θ1tan θ2=2 D.tan θ1tan θ2=2 由题意知:tan θ1=v y v 0=gt v 0,tan θ2=x y =v 0t 12gt 2=2v 0gt .由以上两式得:tan θ1tan θ2=2,故B 项正确.【答案】 B8.一物体做平抛运动,先后在两个不同时刻的速度大小分别为v 1和v 2,时间间隔为Δt ,那么( )A .v 1和v 2的方向一定不同B .v 1<v 2C .由v 1到v 2的速度变化量Δv 的方向不一定竖直向下D .由v 1到v 2的速度变化量Δv 的大小为g Δt平抛运动的轨迹是曲线,某时刻的速度方向为该时刻轨迹的切线方向,不同时刻方向不同,A 对;v 0不变,v y ∝t ,所以v 2>v 1,B 对;由Δv =g Δt 知Δv 方向一定与g 方向相同即竖直向下,大小为g Δt ,C 错,D 对.【答案】 ABD9.(2016·衡水高一检测)如图5所示,一小球以初速度v 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的34,则下列说法中正确的是( )图5A .在碰撞中小球的速度变化大小为72v 0B .在碰撞中小球的速度变化大小为12v 0C .小球在竖直方向下落的距离与在水平方向通过的距离的比为 3D .小球在竖直方向下落的距离与在水平方向通过的距离之比为32小球垂直落到斜面上,根据平行四边形定则将速度分解,如图所示,则v =v 0sin 30°=2v 0,反弹后的速度大小为v ′=34v =32v 0,碰撞中小球的速度变化大小为Δv =v ′-v =72v 0,选项A 正确,选项B错误;小球在竖直方向下落的距离为y =v 2y 2g =(v cos 30°)22g =3v 202g ,水平方向通过的距离为x =v 0t =v 0·v cos 30°g =3v 20g ,位移之比为y x =32,选项D 正确,选项C 错误.【答案】 AD10.河水的流速与离河岸的关系如图6甲所示,船在静水中的速度与时间关系如图乙所示,若船以最短时间渡河,则下列判断正确的是( )【导学号:35390022】甲乙图6A .船渡河的最短时间是60 sB .船在河水中的最大速度是5 m/sC .船在河水中航行的轨迹是一条直线D.船在行驶过程中,船头始终与河岸垂直根据题图可知,船在静水中的速度v静=3 m/s,河宽d=300 m,河水正中间流速最大为v水max=4 m/s,当船头始终垂直河岸渡河时,渡河时间最短,最短时间为t min=dv静=100 s,选项A错,D对;船在河水中的最大速度是v max=32+42m/s=5 m/s,选项B对;设合速度与河岸夹角为θ,则tan θ=v静v水,因v水随河岸不断变化,故θ不断变化,故船在河水中航行的轨迹是一条曲线,选项C错.【答案】BD二、非选择题(共3小题,40分)11.(12分)某同学用图7甲所示装置做“研究平抛运动”的实验,根据实验结果在坐标纸上描出了小球水平抛出后的运动轨迹,但不慎将画有轨迹图线的坐标纸丢失了一部分,剩余部分如图乙所示.图乙中水平方向与竖直方向每小格的长度均代表0.10 m,P1、P2和P3是轨迹图线上的3个点,P1和P2、P2和P3之间的水平距离相等.甲乙图7完成下列填空:(重力加速度取9.8 m/s2)(1)设P1、P2和P3的横坐标分别为x1、x2和x3,纵坐标分别为y1、y2和y3,从图5中可读出|y1-y2|=________m,|y1-y3|=________m,|x1-x2|=________m(保留两位小数);(2)若已经测知抛出后小球在水平方向上做匀速运动.利用(1)中读取的数据,求出小球从P1运动到P2所用的时间为__________s,小球抛出后的水平速度为________m/s(均可用根号表示).(1)由图可知P1到P2两点在竖直方向的间隔为6格多一点,P1到P3两点在竖直方向的间隔为16格多一点,所以有|y1-y2|=0.61 m,|y1-y3|=1.61 m,P1到P 2两点在水平方向的距离为6个格,则有|x 1-x 2|=0.60 m.(2)由水平方向的运动特点可知P 1到P 2与P 2到P 3的时间相等,根据Δx =aT 2,解得时间约为0.2 s ,则有v 0=x t =0.600.20 m/s =3.0 m/s.【答案】 (1)0.61 1.61 0.60 (2)0.20 3.012.(12分)一人带一猴在表演杂技,如图8所示,直杆AB 长h =8 m ,猴子在直杆上由A 向B 匀速向上爬,同时人用肩顶着直杆水平匀速移动.已知在5 s 内,猴子由A 运动到B ,而人也由甲位置运动到了乙位置.已知s =6 m ,求:图8(1)猴子相对地面的位移大小;(2)猴子相对地面的速度大小.(1)猴子对地的位移AB ′为猴子相对于人的位移AB 与人对地的位移AA ′的矢量和,所以AB ′=(AB )2+(AA ′)2=h 2+s 2 =82+62 m =10 m.(2)猴子相对于地的速度v =AB ′t =105 m/s =2 m/s.【答案】 (1)10 m (2)2 m/s13.(16分)如图9所示,在粗糙水平台阶上静止放置一质量m =1.0 kg 的小物块,它与水平台阶表面的动摩擦因数μ=0.25,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R =5 2 m ,今以O 点为原点建立平面直角坐标系.现用F =5 N 的水平恒力拉动小物块,已知重力加速度g 取10 m/s 2.图9(1)为使小物块不能击中挡板,求拉力F作用的最长时间;(2)若小物块在水平台阶上运动时,水平恒力一直作用在小物块上,当小物块过O点时撤去拉力,求小物块击中挡板上的位置的坐标.【导学号:35390023】(1)为使小物块不会击中挡板,设拉力F作用最长时间t1时,小物块刚好运动到O点.由牛顿第二定律得:F-μmg=ma1解得:a1=2.5 m/s2减速运动时的加速度大小为:a2=μg=2.5 m/s2由运动学公式得:s=12a1t21+12a2t22而a1t1=a2t2解得:t1=t2= 2 s(2)水平恒力一直作用在小物块上,由运动学公式有:v20=2a1s解得小物块到达O点时的速度为:v0=5 m/s小物块过O点后做平抛运动.水平方向:x=v0t竖直方向:y=12gt2又x2+y2=R2解得位置坐标为:x=5 m,y=5 m.【答案】(1) 2 s(2)x=5 m,y=5 m章末综合测评(二)(时间:60分钟满分:100分)一、选择题(本题共10小题,每小题6分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.(2016·长沙高一检测)对于物体做匀速圆周运动,下列说法中正确的是( )A .其转速与角速度成反比,其周期与角速度成正比B .运动的快慢可用线速度描述,也可用角速度来描述C .匀速圆周运动的速度保持不变D .做匀速圆周运动的物体,其加速度保持不变由公式ω=2πn 可知,转速和角速度成正比,由ω=2πT 可知,其周期与角速度成反比,故A 错误;运动的快慢可用线速度描述,也可用角速度来描述,所以B 正确;匀速圆周运动的速度大小不变,但速度方向在变,所以C 错误;匀速圆周运动的加速度大小不变,方向在变,所以D 错误.【答案】 B2.如图1所示,一辆卡车在水平路面上行驶,已知该车轮胎半径为R ,轮胎转动的角速度为ω,关于各点的线速度大小下列说法错误的是( )【导学号:35390037】图1A .相对于地面,轮胎与地面的接触点的速度为0B .相对于地面,车轴的速度大小为ωRC .相对于地面,轮胎上缘的速度大小为ωRD .相对于地面,轮胎上缘的速度大小为2ωR因为轮胎不打滑,相对于地面,轮胎与地面接触处保持相对静止,该点相当于转动轴,它的速度为零,车轴的速度为ωR ,而轮胎上缘的速度大小为2ωR ,故选项A 、B 、D 正确,C 错误.【答案】 C3.一小球沿半径为2 m 的轨道做匀速圆周运动,若周期T =4 s ,则( )A .小球的线速度大小是0.5 m/sB .经过4 s ,小球的位移大小为4π mC .经过1 s ,小球的位移大小为2 2 mD .若小球的速度方向改变了π2 rad ,经过时间一定为1 s小球的周期为T =4 s ,则小球运动的线速度为v =2πr T =π,选项A 错误;经过4 s 后,小球完成一个圆周运动后回到初始位置,位移为零,选项B 错误;经过1 s 后,小球完成14个圆周,小球的位移大小为s =2R =2 2 m ,选项C 正确;圆周运动是周期性运动,若方向改变π2弧度,经历的时间可能为t =(n +1)·T 4=(n +1) s 或t =(n +3)·T 4=(n +3) s ,选项D 错误.【答案】 C4. (2016·沈阳高一检测)荡秋千是儿童喜爱的一项体育运动,当秋千荡到最高点时,小孩的加速度方向是图2中的( )图2A .竖直向下a 方向B .沿切线b 方向C .水平向左c 方向D .沿绳向上d 方向如图,将重力分解,沿绳子方向T -G cos θ=m v 2R,当在最高点时,v =0,故T =G cos θ,故合力方向沿G 2方向,即沿切线b 方向,由牛顿第二定律,加速度方向沿切线b 方向.【答案】 B5.在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图3所示,此时两小球到转轴的距离r 1与r 2之比为( )图3A .1∶1B .1∶ 2C .2∶1D .1∶2两球向心力、角速度均相等,由公式F 1=m 1r 1ω2,F 2=m 2r 2ω2,即m 1r 1ω2=m 2r 2ω2,r 1r 2=m 2m 1=12,故选D. 【答案】 D6.如图4所示,是从一辆在水平公路上行驶着的汽车后方拍摄的汽车后轮照片.从照片来看,汽车此时正在( )图4A .直线前进B .向右转弯C .向左转弯D .不能判断从汽车后方拍摄的后轮照片可以看到汽车的后轮发生变形,汽车不是正在直线前进,而是正在转弯,根据惯性、圆周运动和摩擦力知识,可判断出地面给车轮的静摩擦力水平向左,所以汽车此时正在向左转弯,应选答案C.【答案】 C7.(2016·泉州高一检测)如图5所示,乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( )图5A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B .人在最高点时对座位不可能产生大小为mg 的压力C .人在最低点时对座位的压力等于mgD .人在最低点时对座位的压力大于mg过山车是竖直面内杆系小球圆周运动模型的应用.人在最低点时,由向心力公式可得:F -mg =m v 2R ,即F =mg +m v 2R >mg ,故选项C 错误,选项D 正确;人在最高点,若v >gR 时,向心力由座位对人的压力和人的重力的合力提供,若v =gR 时,向心力由人的重力提供,若v <gR 时,人才靠保险带拉住,选项A 错误;F >0,人对座位产生压力,压力大小F =m v 2R -mg ,当v 2=2Rg 时F =mg ,选项B 错误.【答案】 D8.如图6所示,长0.5 m 的轻质细杆,一端固定有一个质量为3 kg 的小球,另一端由电动机带动,使杆绕O 点在竖直平面内做匀速圆周运动,小球的速率为2 m/s.g 取10 m/s 2,下列说法正确的是( )图6A .小球通过最高点时,对杆的拉力大小是24 NB .小球通过最高点时,对杆的压力大小是6 NC .小球通过最低点时,对杆的拉力大小是24 ND .小球通过最低点时,对杆的拉力大小是54 N设小球在最高点时受杆的弹力向上,则mg -N =m v 2l ,得N =mg -m v 2l =6 N ,故小球对杆的压力大小是6 N ,A 错误,B 正确;小球通过最低点时N -mg=m v 2l ,得N =mg +m v 2l =54 N ,小球对杆的拉力大小是54 N ,C 错误,D 正确.【答案】 BD9.如图7所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆周运动的精彩场面,目测重力为G 的女运动员做圆周运动时和水平冰面的夹角约为30°,重力加速度为g ,估算该女运动员( )图7A .受到的拉力为3GB .受到的拉力为2GC .向心加速度为3gD .向心加速度为2g女运动员做圆周运动,对女运动员受力分析可知,受到重力,男运动员对女运动员的拉力,如图所示,竖直方向合力为零,有F sin 30°=G 得F =2G ,B 项正确.水平方向的合力提供匀速圆周运动的向心力,有F cos 30°=ma 向,即2mg cos 30°=ma 向,所以a 向=3g ,C 项正确.【答案】 BC10.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图8所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h ,下列说法中正确的是( )图8A .h 越高,摩托车对侧壁的压力将越大B .h 越高,摩托车做圆周运动的线速度将越大C .h 越高,摩托车做圆周运动的周期将越大D .h 越高,摩托车做圆周运动的向心力将越大摩托车受力如图所示.由于N =mg cos θ所以摩托车受到侧壁的压力与高度无关,保持不变,摩托车对侧壁的压力F 也不变,A 错误;由F =mg tan θ=m v 2r =mω2r 知h 变化时,向心力F 不变,但高度升高,r 变大,所以线速度变大,角速度变小,周期变大,选项B 、C 正确,D 错误.【答案】 BC二、计算题(共3小题,共40分)11.(10分)如图9所示,水平转盘上放有质量为m 的物体,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零).物体和转盘间的最大静摩擦力是其正压力的μ倍.求:【导学号:35390038】图9(1)当转盘的角速度ω1=μg 2r 时,细绳的拉力T 1; (2)当转盘的角速度ω2=3μg2r 时,细绳的拉力T 2.设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μmg =mω20r ,解得ω0=μgr .(1)因为ω1=μg2r <ω0,所以物体所需向心力小于物体与盘间的最大摩擦力,则物体与盘产生的摩擦力还未达到最大静摩擦力,细绳的拉力仍为0,即T 1=0.(2)因为ω2=3μg2r >ω0,所以物体所需向心力大于物体与盘间的最大静摩擦力,则细绳将对物体施加拉力T 2,由牛顿第二定律得T 2+μmg =mω22r ,解得T 2=μmg 2.【答案】 (1)T 1=0 (2)T 2=μmg 212.(15分)如图10所示,在内壁光滑的平底试管内放一个质量为1 g 的小球,试管的开口端与水平轴O 连接.试管底与O 相距5 cm ,试管在转轴带动下在竖直平面内做匀速圆周运动.g 取10 m/s 2,求:图10(1)转轴的角速度达到多大时,试管底所受压力的最大值等于最小值的3倍?(2)转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况?(1)当试管匀速转动时,小球在最高点对试管的压力最小,在最低点对试管的压力最大.在最高点:F 1+mg =mω2r在最低点:F 2-mg =mω2rF 2=3F 1联立以上方程解得ω=2gr =20 rad/s(2)小球随试管转到最高点,当mg >mω2r 时,小球会与试管底脱离,即ω<gr .【答案】 (1)20 rad/s (2)ω<gr13.(15分)“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如图11甲所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A 、B 、C 、D 位置时球与板无相对运动趋势.A 为圆周的最高点,C 为最低点,B 、D 与圆心O 等高.设球的重力为1 N ,不计拍的重力.求:(1)C 处球拍对球的弹力比在A 处大多少?(2)设在A 处时球拍对球的弹力为F ,当球运动到B 、D 位置时,板与水平方向需有一定的夹角θ,请在图乙中作出tan θ -F 的关系图象.甲 乙图11(1)设球运动的线速度为v ,半径为R则在A 处时F ′+mg =m v 2R① 在C 处时F -mg =m v 2R ② 由①②式得ΔF =F -F ′=2mg =2 N.(2)在A 处时球拍对球的弹力为F ,球做匀速圆周运动的向心力F 向=F +mg ,在B 处不受摩擦力作用,受力分析如图则tan θ=F 向mg =F +mg mg =F +1作出的tan θ -F 的关系图象如图【答案】 (1)2 N (2)见解析图章末综合测评(三)(时间:60分钟满分:100分)一、选择题(本题共10小题,每小题6分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步.关于科学家和他们的贡献,下列说法中错误的是() A.德国天文学家开普勒对他的导师——第谷观测的行星数据进行了多年研究,得出了开普勒三大行星运动定律B.英国物理学家卡文迪许利用“卡文迪许扭秤”首先较准确的测定了万有引力常量C.伽利略用“月—地检验”证实了万有引力定律的正确性D.牛顿认为在足够高的高山上以足够大的水平速度抛出一物体,物体就不会再落在地球上根据物理学史可知C错,A、B、D正确.【答案】C2.(2015·重庆高考)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()A.0 B.GM (R+h)2C.GMm(R+h)2D.GMh2飞船受的万有引力等于在该处所受的重力,即GMm(R+h)2=mg,得g=GM(R+h)2,选项B正确.【答案】 B3.(2015·北京高考)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么( )A .地球公转周期大于火星的周期公转B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度根据G Mm r 2=m ⎝ ⎛⎭⎪⎫2πT 2r =m v 2r =ma n =mω2r 得,公转周期T =2πr 3GM ,故地球公转的周期较小,选项A 错误;公转线速度v =GMr ,故地球公转的线速度较大,选项B 错误;公转加速度a n =GM r 2,故地球公转的加速度较大,选项C 错误;公转角速度ω=GM r 3,故地球公转的角速度较大,选项D 正确.【答案】 D4.如图1所示,A 为静止于地球赤道上的物体,B 为绕地球沿椭圆轨道运行的卫星,C 为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同,相对于地心,下列说法中正确的是( )图1A .物体A 和卫星C 具有相同大小的线速度B .物体A 和卫星C 具有相同大小的加速度C .卫星B 在P 点的加速度与卫星C 在该点的加速度一定不相同D .可能出现在每天的某一时刻卫星B 在A 的正上方物体A 和卫星B 、C 周期相同,故物体A 和卫星C 角速度相同,但半径不同,根据v =ωR 可知二者线速度不同,A 项错;根据a =Rω2可知,物体A 和卫星C 向心加速度不同,B 项错;根据牛顿第二定律,卫星B 和卫星C 在P 点的加速度a =GM r 2,故两卫星在P 点的加速度相同,C 项错误;对于D 选项,物体A 是匀速圆周运动,线速度大小不变,角速度不变,而卫星B 的线速度是变化的,近地点最大,远地点最小,即角速度发生变化,而周期相等,所以如图所示开始转动一周的过程中,会出现A 先追上B ,后又被B 落下,一个周期后A 和B 都回到自己的起点.所以可能出现:在每天的某一时刻卫星B 在A 的正上方,则D 正确.【答案】 D5.同步卫星位于赤道上方,相对地面静止不动.如果地球半径为R ,自转角速度为ω,地球表面的重力加速度为g .那么,同步卫星绕地球的运行速度为( ) A.Rg B.R ωg C. R 2ωg D.3R 2ωg同步卫星的向心力等于地球对它的万有引力G Mm r 2=m ω2r ,故卫星的轨道半径r =3GM ω2.物体在地球表面的重力约等于所受地球的万有引力G Mm R2=mg ,即GM =gR 2.所以同步卫星的运行速度v =r ω=ω·3gR 2ω2=3gR 2ω,D 正确. 【答案】 D6.宇宙中两个星球可以组成双星,它们只在相互间的万有引力作用下,绕两星球球心连线的某点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是( )【导学号:35390054】A .双星相互间的万有引力增大B .双星做圆周运动的角速度不变C .双星做圆周运动的周期增大D .双星做圆周运动的速度增大双星间的距离在不断缓慢增加,根据万有引力定律,F =G m 1m 2L 2,知万有引力减小,故A 错误.根据G m 1m 2L 2=m 1r 1ω2,G m 1m 2L 2=m 2r 2ω2,知m 1r 1=m 2r 2,v 1=ωr 1,v 2=ωr 2,轨道半径之比等于质量的反比,双星间的距离变大,则双星的轨道半径都变大,根据万有引力提供向心力,知角速度变小,周期变大,线速度变小,故B 、D 错误,C 正确.【答案】 C7.恒星演化发展到一定阶段,可能成为恒星世界的“侏儒”——中子星.中子星的半径较小,一般在7~20 km ,但它的密度大得惊人.若某中子星的半径为10 km ,密度为1.2×1017 kg/m 3,那么该中子星上的第一宇宙速度约为( )A .7.9 km/sB .16.7 km/sC .2.9×104 km/sD .5.8×104 km/s中子星上的第一宇宙速度即为它表面处的卫星的环绕速度,此时卫星的轨道半径近似地认为是该中子星的球半径,且中子星对卫星的万有引力充当向心力,由G Mm r 2=m v 2r ,得v =GM r ,又M =ρV =ρ4πr 33,得v =r 4πGρ3=1×104× 4×3.14×6.67×10-11×1.2×10173m/s =5.8×107 m/s =5.8×104 km/s.故选D.【答案】 D8.北京时间2005年7月4日下午1时52分(美国东部时间7月4日凌晨1时52分)探测器成功撞击“坦普尔一号”彗星,投入彗星的怀抱,实现了人类历史上第一次对彗星的“大对撞”,如图2所示.假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年,则关于“坦普尔一号”彗星的下列说法中正确的是( )图2A .绕太阳运动的角速度不变B .近日点处线速度大于远日点处线速度C .近日点处加速度大于远日点处加速度D .其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数由开普勒第二定律知近日点处线速度大于远日点处线速度,B正确;由开普勒第三定律可知D正确;由万有引力提供向心力得C正确.【答案】BCD9.2013年6月11日17时38分,我国利用“神舟十号”飞船将聂海胜、张晓光、王亚平三名宇航员送入太空.设宇航员测出自己绕地球做匀速圆周运动的周期为T,离地高度为H,地球半径为R,则根据T、H、R和引力常量G,能计算出的物理量是()图3A.地球的质量B.地球的平均密度C.飞船所需的向心力D.飞船线速度的大小由G Mm(R+H)2=m4π2T2(R+H),可得:M=4π2(R+H)3GT2,选项A可求出;又根据ρ=M43πR3,选项B可求出;根据v=2π(R+H)T,选项D可求出;由于飞船的质量未知,所以无法确定飞船的向心力.【答案】ABD10.迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1-581c”却很值得我们期待.该行星的温度在0 ℃到40 ℃之间,质量是地球的6倍、直径是地球的1.5倍,公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则()A.在该行星和地球上发射卫星的第一宇宙速度相同B.如果人到了该行星,其体重是地球上的22 3倍。
高中物理粤教版必修2章末检测卷:第二章 圆周运动

章末检测卷(二)(时间:90分钟满分:100分)一、单项选择题(本题共6小题,每小题4分,共24分)图11、如图1所示,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮随圆盘一起转动(俯视为逆时针),某段时间内圆盘转速不断增大,但橡皮块仍相对圆盘静止,而在这段时间内,关于橡皮所受合力F的方向的四种表示(俯视图)中,正确的是()答案C解析橡皮做加速圆周运动,合力不指向圆心,但一定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°、故选C、2、物体m用细绳通过光滑的水平板上的小孔与装有细沙的漏斗M相连,同时正在做匀速圆周运动,如图2所示,假如缓慢减小M的质量,则物体的轨道半径r、角速度ω的变化情况是()图2A、r不变,ω变小B。
r增大,ω减小C、r减小,ω增大D、r减小,ω不变答案B解析细绳拉力提供物体m做圆周运动需要的向心力,当缓慢减小M时,对m的拉力减小,拉力不足以提供向心力,物体m做离心运动,运动半径r增大,由牛顿第二定律得Mg=T=mω2r,因为细绳拉力T减小,半径r增大,因此ω减小,选项B正确、图33、如图3所示,a、b是地球表面上不同纬度上的两个点,假如把地球看作是一个球体,a、b 两点随地球自转做匀速圆周运动,这两个点具有大小相同的()A、线速度B。
角速度C、加速度D、轨道半径答案B解析a、b两点随地球自转做匀速圆周运动,因此它们的周期T、角速度ω相同;B正确;a、b转动的圆心分别在它们所在的纬度确定的平面与地轴的交点上,故半径不同,D错误;由v=ωr知线速度不同,A错误;由a=ω2r知加速度不同,故C错误、图44、质量为m的小木块从半球形的碗口下滑,如图4所示,已知木块与碗内壁间的滑动摩擦系数为μ,木块滑到最低点时的速度为v,那么木块在最低点受到的摩擦力为()A、μmg B。
μmv2/RC、μm(g+v2/R)D、0答案C解析木块滑到最低点的受力如图所示由于N-mg=\f(m v2,R)因此N=mg+错误!由f=μN得f=μm(g+v2R),故C正确、5。
学年高中物理第二章圆周运动章末质量评估二粤教版必修

第二章圆周运动章末质量评估(二)(时间:90分钟总分值:100分)一、单项选择题(本大题共10小题,每题3分,共30分.在每题给出的四个选项中,只有一个选项符合题目要求,选对的得3分,选错或不答的得0分)1.关于匀速圆周运动的说法正确的选项是( )A.匀速圆周运动一定是匀速运动B.匀速圆周运动是变加速运动C.匀速圆周运动是匀加速运动D.做匀速圆周运动的物体所受的合外力可能为恒力解析:匀速圆周运动的线速度的大小不变,方向时刻改变,所以它不是匀速运动,A错误;匀速圆周运动加速度方向始终指向圆心,方向时刻变化,故匀速圆周运动是变加速运动,所以B正确,C错误;由牛顿第二定律F合=ma知,做匀速圆周运动的物体所受的合力一定是变力,D错误.答案:B2.以下关于离心现象的说法中,正确的选项是( )A.当物体所受到的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线飞出D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动解析:物体沿半径方向指向圆心的合力小于向心力时,物体做离心运动,A错.做匀速圆周运动的物体,当它受到的一切力都消失时,根据牛顿第一定律,它将沿力消失的速度方向,即沿切线方向做匀速直线运动.故C对,B、D错.答案:C3.在公路上常会看到凸形和凹形的路面,如下列图.一质量为m的汽车,通过凸形路面的最高处时对路面的压力为F N1,通过凹形路面最低处时对路面的压力为F N2,那么( )A.F N1>mg B.F N1<mg C.F N2=mg D.F N2<mg解析:设汽车速度为v,路面半径为r.过凸形路面的最高点时,由牛顿第二定律得:mg-F N1=,故F N1=mg-,F N1<mg,因此,B对,A错;由牛顿第二定律得:F N2-mg=,故F N2=mg+,所以F N2>mg,因此,C、D选项错误.答案:B4.如下列图,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直平面内做半径为R 的圆周运动,以下说法正确的选项是( )A.小球过最高点时,杆所受的弹力不能等于零B.小球过最高点时,速度至少为C.小球过最高点时,杆对球的作用力可以与球受重力方向相反,此时重力一定大于杆对球的作用D.小球过最高点时,杆对球作用力一定与小球受重力方向相反解析:当小球在最高点的速度为时,杆所受弹力为零,A错;因为是细杆,小球过最高点时的最小速度是0,B错;小球过最高点时,如果速度在0~范围内,那么杆对小球有向上的支持力,但由于合力向下,故此时重力一定大于杆对球的作用,C对;小球过最高点的速度大于,小球的重力缺乏以提供向心力,此时杆对球产生向下作用力,D错.答案:C5.一个物体做匀速圆周运动,向心加速度为2m/s2.以下说法正确的选项是( )A.向心加速度描述了瞬时速度(线速度)大小变化的快慢B.向心加速度描述了瞬时速度(线速度)变化的方向C.该物体经过1s时间速度大小的变化量为2m/sD.该物体经过1s时间速度变化量的大小为2m/s解析:匀速圆周运动的线速度大小不变,只是方向不断改变,因此,向心加速度描述的是线速度的方向改变的快慢,选项A、B错误;匀速圆周运动的线速度大小不变,选项C错误;根据加速度定义式a=可知,经过1s时间速度的变化量为Δv=a·Δt=2m/s,选项D正确.答案:D6.如下列图,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,假设轨道半径为R,人体受重力为mg,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,那么过山车在最高点时的速度大小为( )A.0 B.C. D.解析:由题意知:F+mg=2mg=m,故速度大小v =,C正确.答案:C7.如下列图,小强正在荡秋千.关于绳上a点和b点的线速度和角速度,以下关系正确的选项是( )A.v a=v b B.v a>v bC.ωa=ωb D.ωa<ωb解析:小强在荡秋千过程,人和绳都以O为圆心做圆周运动,人与a、b两点的角速度相等,C正确,D错误;a、b两点到O点的距离不同,线速度不等,A、B错误.答案:C8.如下列图,A、B是两个摩擦传动轮,两轮半径大小关系为R A=2R B,那么两轮边缘上的( )A.角速度之比ωA∶ωB=2∶1B.周期之比T A∶T B=1∶2C.转速之比n A∶n B=1∶2D.向心加速度之比a A∶a B=2∶1解析:两轮边缘的线速度相等,由ω=知,ωA∶ωB=R B∶R A=1∶2,A错.由T=知,T A∶T B=ωB∶ωA =2∶1,B错.由ω=2πn知,n A∶n B=ωA∶ωB=1∶2,C对.由a=知,a A∶a B=R B∶R A=1∶2,D错.答案:C9.如下列图,用细线将一小球悬挂在匀速前进的车厢里,当车厢突然制动时( )A.线的张力不变B.线的张力突然减小C.线的张力突然增大D.线的张力如何变化无法判断解析:车厢匀速前进时,线的拉力等于小球的重力;车厢突然制动时,小球在惯性作用下继续运动绕悬点做圆周运动,向心力指向圆心,线的拉力大于重力.应选项C正确.答案:C10.如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴的距离为l,b与转轴的距离为2l,a与b跟随圆盘以角速度ω绕OO′转动,以下说法正确的选项是( )A.a、b的向心加速度a a=2a bB.a、b的转动周期T b=2T aC.a、b的线速度v b=2v aD.a、b所受的静摩擦力F a=F b解析:a、b的向心加速度分别为ω2l、2ω2l,故A错;a、b的转动周期相等,均为,B错;a、b的线速度分别为ωl、2ωl,C对;a、b所受的静摩擦力分别等于它们的向心力,即F a=mω2l,F b=2mω2l,故D错.答案:C二、多项选择题(本大题共4小题,每题6分,共24分.在每题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分)11.为了防止汽车在水平路面上转弯时出现“打滑〞现象,可以( )A.增大汽车转弯时的速度B.减小汽车转弯时的速度C.增大汽车与路面间的摩擦D.减小汽车与路面间的摩擦解析:汽车在水平路面上转弯时,其向心力由静摩擦力提供,即μmg=m,如要防止“打滑〞现象,应采取的措施是:增大汽车与路面间的摩擦或减小汽车转弯时的速度.答案:BC12.女航天员王亚平在“神舟十号〞飞船上做了大量失重状态下的精美物理实验.关于失重状态,以下说法正确的选项是( )A.航天员仍受重力的作用B.航天员受力平衡C.航天员所受重力等于所需的向心力D.航天员不受重力的作用解析:做匀速圆周运动的空间站中的航天员,所受重力全部提供其做圆周运动的向心力,处于完全失重状态,并非航天员不受重力作用,A、C正确,B、D 错误.答案:AC13.如下列图,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动.点a、b分别表示轨道的最低点和最高点,那么杆对球的作用力可能是( )A.a处为拉力,b处为拉力B.a处为拉力,b处为推力C.a处为推力,b处为拉力D.a处为推力,b处为推力解析:在a处小球受到竖直向下的重力,因此a 处一定受到杆的拉力,因为小球在最低点时所需向心力沿杆由a指向圆心O,向心力是杆对球的拉力和重力的合力.小球在最高点b时杆对球的作用力有三种情况:(1)杆对球恰好没有作用力,这时小球所受的重力提供向心力,设此时小球速度为v临,由mg=,R)得v临=;(2)当小球在b点,速度v>v临时,杆对小球有向下的拉力;(3)当小球在b点,速度0<v<v临时,杆对小球有向上的推力.综上所述选项A、B正确,选项C、D错误.答案:AB14.一个内壁光滑的圆锥形筒的轴线垂直水平面,圆锥筒固定,有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,如下列图,A的运动半径较大,那么( )A.A球的角速度必小于B球的角速度B.A球的线速度必小于B球的线速度C.A球的运动周期必大于B球的运动周期D.A球对筒壁的压力必大于B球对筒壁的压力解析:两个小球均受到重力mg和筒壁对它的弹力F N的作用,其合力必定在水平面内时刻指向圆心.由图可知,筒壁对球的弹力F N=,向心力F n=mg cotθ,其中θ为圆锥顶角的一半.对于A、B两球,因质量相等,θ角也相等,所以A、B两小球受到筒壁的弹力大小相等,A、B两小球对筒壁的压力大小相等,D 错误.由牛顿第二定律知,mg cotθ==mω2r=m.所以,小球的线速度v=,角速度ω=,周期T=2π.由此可见,小球A的线速度必定大于小球B的线速度,B错误.小球A的角速度必小于小球B的角速度,小球A的周期必大于小球B的周期,A、C正确.答案:AC三、非选择题(此题共4小题,共46分.按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必须明确写出数值和单位)15.(8分)如下列图,一光滑的半径为R的半圆形轨道固定在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,对轨道的压力恰好为零,那么小球落地点C距A处多远?解析:小球在B点飞出时,对轨道压力为零,由mg=m,R),得v B=,小球从B点飞出做平抛运动t=,水平方向的位移大小x=v B t=·=2R答案:2R16.(12分)原长为L的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO′上,小铁块放在水平圆盘上,假设圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为.现将弹簧长度拉长到后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO′以一定角速度匀速转动,如下列图.小铁块的质量为m,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少?解析:以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为f max,由平衡条件,得f max=.圆盘转动的角速度ω最大时,铁块受到的摩擦力f max与弹簧的拉力kx的合力提供向心力,由牛顿第二定律,得kx+f max=mω.又因为x=,联立三式,解得角速度的最大值ωmax=.答案:17.(12分)长L=的细绳拴着小水桶绕固定轴在竖直平面内转动,桶中有质量m=的水,(重力加速度g取2)问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,假设速度v=3m/s,水对桶底的压力多大?解析:(1)假设水恰不流出,那么有mg=,L).所求最小速率v0==m/s=m/s=(2)设桶对水的支持力为F N,那么有mg+F N=.F N=-mg=N-×=4.1N.由牛顿第三定律得知,水对桶底的压力:F N′=F N=4.1N.答案:18.(14分)如下列图,半径为R,内径很小的光滑半圆管竖直放置.两个质量均为m的小球a、b以不同的速度进入管内,a通过最高点A时,对管壁上部的压力为3mg,b通过最高点A时,对管壁下部的压力为mg,求a、b两球落地点间的距离.解析:两个小球在最高点时,受重力和管壁的作用力,这两个力的合力提供向心力,离开轨道后两球均做平抛运动,a、b两球落地点离抛出点的水平距离为x a、x b.在A点,对a球:mg+3mg=,R),v a =,对b球:mg-mg=m,R),v b=,由平抛运动规律,可得x a=v a t=v a=4R,x b=v0t=v b=R.故a、b两球落地点间的距离为x a-x b=3R.答案:3R。
高中物理 第二章 圆周运动章末检测试卷 粤教版必修2

亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题第二章圆周运动章末检测试卷(二)(时间:90分钟满分:100分)一、选择题(本题共12小题,每小题4分,共48分,其中1~7题为单项选择题,8~12题为多项选择题)1.如图1所示为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑行,则她( )图1A.所受的合力为零,做匀速运动B.所受的合力恒定,做匀加速运动C.所受的合力恒定,做变加速运动D.所受的合力变化,做变加速运动答案 D解析运动员做匀速圆周运动,由于合力时刻指向圆心,其方向变化,所以是变加速运动,D 正确.【考点】对匀速圆周运动的理解【题点】对匀速圆周运动的理解2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F及摩擦力f的示意图,其中正确的是( )答案 C解析雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必然指向圆心.综上可知,C 项正确. 3.科技馆的科普器材中常有如图2所示的匀速率的传动装置:在大齿轮盘内嵌有三个等大的小齿轮.若齿轮的齿很小,大齿轮的半径(内径)是小齿轮半径的3倍,则当大齿轮顺时针匀速转动时,下列说法正确的是( )图2A .小齿轮和大齿轮转速相同B .小齿轮每个齿的线速度均相同C .小齿轮的角速度是大齿轮角速度的3倍D .大齿轮每个齿的向心加速度大小是小齿轮每个齿的向心加速度的3倍 答案 C解析 因为大齿轮和小齿轮相扣,故大齿轮和小齿轮的线速度大小相等,小齿轮的每个齿的线速度方向不同,B 错误;根据v =ωr 可知,大齿轮半径(内径)是小齿轮半径的3倍时,小齿轮的角速度是大齿轮角速度的3倍,根据ω=2πn 可知小齿轮转速是大齿轮转速的3倍,A 错误,C 正确;根据a =v 2r,大齿轮半径(内径)是小齿轮半径的3倍,可知小齿轮每个齿的向心加速度大小是大齿轮每个齿的向心加速度的3倍,D 错误. 【考点】与向心加速度有关的传动问题分析 【题点】与向心加速度有关的综合传动问题4.如图3所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动,ab 为水平直径,cd 为竖直直径,在运动过程中木板始终保持水平,物体相对木板始终静止,则( )图3A .物体始终受到三个力作用B .只有在a 、b 、c 、d 四点,物体受到的合外力才指向圆心C .从a 到b ,物体所受的摩擦力先增大后减小D .从b 到a ,物体处于超重状态答案 D解析 在c 、d 两点处,物体只受重力和支持力,在其他位置处物体受到重力、支持力、静摩擦力作用,故A 错误;物体做匀速圆周运动,合外力提供向心力,合外力始终指向圆心,故B 错误;从a 运动到b ,向心力的水平分量先减小后增大,所以摩擦力也是先减小后增大,故C 错误;从b 运动到a ,向心加速度有向上的分量,所以物体处于超重状态,故D 正确. 5.一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R ,甲、乙物体质量分别为M 和m (M >m ),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L (L <R )的轻绳连在一起.如图4所示,若将甲物体放在转轴的位置上,甲、乙之间连线刚好沿半径方向被拉直,要使两物体与圆盘不发生相对滑动,则圆盘旋转的角速度最大不得超过(两物体均看做质点)( )图4A.μ(M -m )gmLB.μg LC.μ(M +m )gMLD.μ(M +m )gmL答案 D解析 以最大角速度转动时,以M 为研究对象,F =μMg ,以m 为研究对象F +μmg =mL ω2,可得ω=μ(M +m )gmL,选项D 正确.【考点】向心力公式的简单应用 【题点】水平面内圆周运动的动力学问题6.如图5所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止,若将小木块放在B 轮上,欲使木块相对B 轮能静止,则木块距B 轮转轴的最大距离为( )图5A.r B4B.r B3C.r B2 D .r B答案 C解析 当主动轮匀速转动时,A 、B 两轮边缘上的线速度大小相等,由ω=v R 得ωA ωB =vr A v r B=r B r A =12.因A 、B 材料相同,故木块与A 、B 间的动摩擦因数相同,由于小木块恰能在A 边缘上相对静止,则由静摩擦力提供的向心力达到最大值f m ,得f m =m ωA 2r A ①设木块放在B 轮上恰能相对静止时距B 轮转轴的最大距离为r ,则向心力由最大静摩擦力提供,故f m =m ωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】水平面内的匀速圆周运动分析 【题点】水平面内的匀速圆周运动分析7.质量分别为M 和m 的两个小球,分别用长2l 和l 的轻绳拴在同一转轴上,当转轴稳定转动时,拴质量为M 和m 的小球悬线与竖直方向夹角分别为α和β,如图6所示,则()图6A .cos α=cos β2B .cos α=2cos βC .tan α=tan β2D .tan α=tan β答案 A解析 对于球M ,受重力和绳子拉力作用,这两个力的合力提供向心力,如图所示.设它们转动的角速度是ω,由Mg tan α=M ·2l sin α·ω2,可得:cos α=g2l ω2.同理可得cosβ=gl ω2,则cos α=cos β2,所以选项A 正确.【考点】圆锥摆类模型【题点】类圆锥摆的动力学问题分析8.如图7所示,一个球绕中心轴线OO ′以角速度ω做匀速圆周运动,θ=30°,则( )图7A .a 、b 两点的线速度大小相等B .a 、b 两点的角速度相同C .a 、b 两点的线速度大小之比v a ∶v b =2∶ 3D .a 、b 两点的向心加速度大小之比a a ∶a b =3∶2 答案 BD解析 球绕中心轴线转动,球上各点应具有相同的周期和角速度,即ωa =ωb ,B 对;因为a 、b 两点做圆周运动的半径不同,r b >r a ,根据v =ωr 知v b >v a ,A 错;θ=30°,设球半径为R ,则r b =R ,r a =R cos 30°=32R ,故v a v b =ωa r a ωb r b =32,C 错;又根据a =ω2r 知a a a b =ωa 2r a ωb 2r b =32,D 对.【考点】与向心加速度有关的传动问题分析 【题点】与向心加速度有关的同轴传动问题9.如图8所示,小物体位于半径为R 的半球顶端,若给小物体一个水平初速度v 0时,小物体对球顶恰无压力,则( )图8A .物体立即离开球面做平抛运动B .物体落地时水平位移为2RC .物体的初速度v 0=gRD .物体落地时的速度方向与地面成45°角 答案 ABC解析 物体仅受重力,有水平初速度,做平抛运动,故A 正确.根据牛顿第二定律得:mg =mv 02R,则v 0=gR ,由R =12gt 2得t =2Rg,则水平位移x =v 0t =gR ·2Rg=2R ,故B 、C 正确;物体落地时竖直方向上的速度v y =gt =2gR ,设落地时速度与地面的夹角为θ,有tanθ=v y v 0=2,θ≠45°,故D 错误.10.如图9所示,杂技演员在表演“水流星”节目时,用细绳系着的盛水的杯子可以在竖直平面内做圆周运动,甚至当杯子运动到最高点时杯里的水也不流出来.下列说法中正确的是( )图9A .在最高点时,水对杯底一定有压力B .在最高点时,盛水杯子的速度一定不为零C .在最低点时,细绳对杯子的拉力充当向心力D .在最低点时,杯中的水不只受重力作用 答案 BD解析 杯子(包括杯内水)在圆周运动最高点和最低点受到的力都是重力和绳子拉力而且二力都在半径方向,所以二者合力提供向心力.杯子在最高点受拉力方向只可能向下或为零,则有F +mg =m v 2R≥mg ,所以最高点速度v ≥gR ,不可能等于0,B 对.对水分析,杯底对水的弹力只能向下或为零,当v =gR 时,F =0,A 错.在最低点时合力提供向心力,则有F ′-mg =m v ′2R ,也就是拉力和重力的合力提供向心力,C 错.在最低点拉力F ′=mg +m v ′2R>mg ,杯中水受到的杯子弹力不可能等于0,所以D 对.11.m 为在水平传送带上被传送的小物体(可视为质点),A 为终端动力轮,如图10所示,已知动力轮半径为r ,传送带与轮间不会打滑,当m 可被水平抛出时( )图10A .传送带的最小速度为grB .传送带的最小速度为grC .A 轮每秒的转数最少是12πg rD .A 轮每秒的转数最少是12πgr答案 AC解析 物体恰好被水平抛出时,在动力轮最高点满足mg =mv 2r,即速度最小为gr ,选项A 正确,B 错误;又因为v =2πrn ,可得n =12πgr,选项C 正确,D 错误. 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题12.如图11所示,A 、B 两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴OO ′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比m A ∶m B =2∶1,那么关于A 、B 两球的下列说法中正确的是( )图11A .A 、B 两球受到的向心力大小之比为2∶1 B .A 、B 两球角速度之比为1∶1C .A 、B 两球运动半径之比为1∶2D .A 、B 两球向心加速度大小之比为1∶2 答案 BCD解析 两球的向心力都由细绳的拉力提供,大小相等,两球都随杆一起转动,角速度相等,A 错误,B 正确.设两球的运动半径分别为r A 、r B ,转动角速度为ω,则m A r A ω2=m B r B ω2,所以运动半径之比为r A ∶r B =1∶2,C 正确.由a =ω2r 可知a A ∶a B =1∶2,D 正确. 【考点】向心力公式的简单应用 【题点】水平面内圆周运动的动力学问题 二、填空题(本题共2小题,共10分)13.(4分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对支持面几乎没有压力,所以在这种环境中已经无法用天平称量物体的质量.假设某同学在这种环境中设计了如图12所示的装置(图中O 为光滑小孔)来间接测量物体的质量:给待测物体一个初速度,使它在水平桌面上做匀速圆周运动.设航天器中具有基本测量工具.图12(1)实验时需要测量的物理量是__________________. (2)待测物体质量的表达式为m =________________.答案 (1)弹簧测力计示数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析 需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测力计的示数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R.【考点】对向心力的理解 【题点】向心力实验探究14.(6分)如图13甲所示是某同学探究做圆周运动的物体质量、向心力、轨道半径及线速度关系的实验装置,圆柱体放置在水平光滑圆盘上做匀速圆周运动.力传感器测量向心力F ,速度传感器测量圆柱体的线速度v ,该同学通过保持圆柱体质量和运动半径不变,来探究向心力F 与线速度v 的关系:图13(1)该同学采用的实验方法为________.A .等效替代法B .控制变量法C .理想化模型法(2)改变线速度v ,多次测量,该同学测出了五组F 、v 数据,如下表所示:该同学对数据分析后,在图乙坐标纸上描出了五个点. ①作出F -v 2图线;②若圆柱体运动半径r =0.2 m ,由作出的F -v 2的图线可得圆柱体的质量m =________kg.(结果保留两位有效数字)答案 (1)B (2)①如图所示 ②0.18【考点】对向心力的理解 【题点】向心力实验探究三、计算题(本题共4小题,共38分,解答时应写出必要的文字说明和解题步骤,有数值计算的要注明单位)15.(10分)如图14所示是马戏团中上演飞车节目,在竖直平面内有半径为R 的圆轨道.表演者骑着摩托车在圆轨道内做圆周运动.已知人和摩托车的总质量为m ,人以v 1=2gR 的速度通过轨道最高点B ,并以v 2=3v 1的速度通过最低点A .在A 、B 两点摩托车对轨道的压力大小相差多少?图14答案 6mg解析 在B 点,F B +mg =m v 21R,解得F B =mg ,根据牛顿第三定律,摩托车对轨道的压力大小F B ′=F B =mg在A 点,F A -mg =m v 22R解得F A =7mg ,根据牛顿第三定律,摩托车对轨道的压力大小F A ′=F A =7mg 所以在A 、B 两点摩托车对轨道的压力大小相差F A ′-F B ′=6mg . 【考点】向心力公式的简单应用 【题点】竖直面内圆周运动的动力学问题16.(10分)如图15所示,小球在外力作用下,由静止开始从A 点出发做匀加速直线运动,到B 点时撤去外力.然后,小球冲上竖直平面内半径为R 的光滑半圆环,恰能维持在圆环上做圆周运动通过最高点C ,到达最高点C 后抛出,最后落回原来的出发点A 处.已知重力加速度为g ,试求:图15(1)小球运动到C 点时的速度大小; (2)A 、B 之间的距离.答案 (1)gR (2)2R解析 (1)小球恰能通过最高点C ,说明此时半圆环对球无作用力,设此时小球的速度为v ,则mg =m v 2R所以v =gR(2)小球离开C 点后做平抛运动,设从C 点落到A 点用时t ,则2R =12gt 2又因A 、B 之间的距离s =vt 所以s =gR ·4Rg=2R .【考点】竖直面内的圆周运动分析 【题点】竖直面内的“绳”模型17.(10分)如图16所示,水平放置的正方形光滑玻璃板abcd ,边长为L ,距地面的高度为H ,玻璃板正中间有一个光滑的小孔O ,一根细线穿过小孔,两端分别系着小球A 和小物块B ,当小球A 以速度v 在玻璃板上绕O 点做匀速圆周运动时,AO 间的距离为l .已知A 的质量为m A ,重力加速度为g ,不计空气阻力.图16(1)求小物块B 的质量m B ;(2)当小球速度方向平行于玻璃板ad 边时,剪断细线,则小球落地前瞬间的速度为多大? (3)在(2)的情况下,若小球和小物块落地后均不再运动,则两者落地点间的距离为多少?答案 (1)m A v 2gl(2)v 2+2gH (3)L 24+l 2+2Hv 2g +vL2Hg解析 (1)以B 为研究对象,根据平衡条件有F T =m B g以A 为研究对象,根据牛顿第二定律有F T =m A v 2l联立解得m B =m A v 2gl.(2)剪断细线,A 沿轨迹切线方向飞出,脱离玻璃板后做平抛运动,竖直方向,有v 2y =2gH ,解得v y =2gH ,由平抛运动规律得落地前瞬间的速度v ′=v 2+v 2y =v 2+2gH(3)A 脱离玻璃板后做平抛运动,竖直方向:H =12gt 2 水平方向:x =L 2+vt 两者落地的距离s =x 2+l 2=L 24+l 2+2Hv 2g +vL 2H g .【考点】平抛运动规律的应用【题点】平抛运动规律的应用18.(12分)如图17所示,轨道ABCD 的AB 段为一半径R =0.2 m 的光滑14圆形轨道,BC 段为高为h =5 m 的竖直轨道,CD 段为水平轨道.一质量为0.2 kg 的小球从A 点由静止开始下滑,到达B 点时的速度大小为2 m/s ,离开B 点做平抛运动(g =10 m/s 2).图17(1)求小球离开B 点后,在CD 轨道上的落地点到C 点的水平距离;(2)求小球到达B 点时对圆形轨道的压力大小;(3)如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置距离B 点有多远.如果不能,请说明理由.答案 (1)2 m (2)6 N (3)能落到斜面上,第一次落在斜面上的位置距离B 点1.13 m 解析 (1)设小球离开B 点后做平抛运动的时间为t 1,落地点到C 点距离为x由h =12gt 12得:t 1=2h g=1 s ,x =v B t 1=2 m. (2)小球到达B 点时受重力G 和竖直向上的弹力F N 作用,由牛顿第二定律知F =F N -mg =m v B 2R 解得F N =6 N ,由牛顿第三定律知小球到达B 点时对圆形轨道的压力大小为6 N ,方向竖直向下.(3)运动过程分析如图所示,斜面BE 的倾角θ=45°,CE 长d =h =5 m ,因为d >x ,所以小球离开B 点后能落在斜面上.假设小球第一次落在斜面上F 点,BF 长为L ,小球从B 点到F 点的时间为t 2L cos θ=v B t 2①L sin θ=12gt 22②联立①②两式得t 2=0.4 sL ≈1.13 m.。
2018_2019学年高中物理第二章圆周运动章末质量评估二粤教版

第二章圆周运动章末质量评估(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得3分,选错或不答的得0分)1.关于匀速圆周运动的说法正确的是( )A.匀速圆周运动一定是匀速运动B.匀速圆周运动是变加速运动C.匀速圆周运动是匀加速运动D.做匀速圆周运动的物体所受的合外力可能为恒力解析:匀速圆周运动的线速度的大小不变,方向时刻改变,所以它不是匀速运动,A错误;匀速圆周运动加速度方向始终指向圆心,方向时刻变化,故匀速圆周运动是变加速运动,所以B正确,C错误;由牛顿第二定律F合=ma知,做匀速圆周运动的物体所受的合力一定是变力,D错误.答案:B2.下列关于离心现象的说法中,正确的是( )A.当物体所受到的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线飞出D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动解析:物体沿半径方向指向圆心的合力小于向心力时,物体做离心运动,A错.做匀速圆周运动的物体,当它受到的一切力都消失时,根据牛顿第一定律,它将沿力消失的速度方向,即沿切线方向做匀速直线运动.故C对,B、D错.答案:C3.在公路上常会看到凸形和凹形的路面,如图所示.一质量为m的汽车,通过凸形路面的最高处时对路面的压力为F N1,通过凹形路面最低处时对路面的压力为F N2,则( )A.F N1>mg B.F N1<mgC.F N2=mg D.F N2<mg解析:设汽车速度为v,路面半径为r.过凸形路面的最高点时,由牛顿第二定律得:mg-F N 1=mv 2r ,故F N 1=mg -mv 2r ,F N 1<mg ,因此,B 对,A 错;由牛顿第二定律得:F N 2-mg =mv 2r,故F N 2=mg +mv 2r,所以F N 2>mg ,因此,C 、D 选项错误. 答案:B4.如图所示,一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直平面内做半径为R 的圆周运动,以下说法正确的是( )A .小球过最高点时,杆所受的弹力不能等于零B .小球过最高点时,速度至少为gRC .小球过最高点时,杆对球的作用力可以与球受重力方向相反,此时重力一定大于杆对球的作用D .小球过最高点时,杆对球作用力一定与小球受重力方向相反解析:当小球在最高点的速度为gR 时,杆所受弹力为零,A 错;因为是细杆,小球过最高点时的最小速度是0,B 错;小球过最高点时,如果速度在0~gR 范围内,则杆对小球有向上的支持力,但由于合力向下,故此时重力一定大于杆对球的作用,C 对;小球过最高点的速度大于gR ,小球的重力不足以提供向心力,此时杆对球产生向下作用力,D 错.答案:C5.一个物体做匀速圆周运动,向心加速度为2 m/s 2.下列说法正确的是( )A .向心加速度描述了瞬时速度(线速度)大小变化的快慢B .向心加速度描述了瞬时速度(线速度)变化的方向C .该物体经过1 s 时间速度大小的变化量为2 m/sD .该物体经过1 s 时间速度变化量的大小为2 m/s解析:匀速圆周运动的线速度大小不变,只是方向不断改变,因此,向心加速度描述的是线速度的方向改变的快慢,选项A 、B 错误;匀速圆周运动的线速度大小不变,选项C 错误;根据加速度定义式a =Δv Δt 可知,经过1 s 时间速度的变化量为Δv =a ·Δt =2 m/s ,选项D 正确.答案:D6.如图所示,某公园里的过山车驶过轨道的最高点时,乘客在座椅里面头朝下,人体颠倒,若轨道半径为R ,人体受重力为mg ,要使乘客经过轨道最高点时对座椅的压力等于自身的重力,则过山车在最高点时的速度大小为( )A .0 B.gR C.2gR D.3gR解析:由题意知:F +mg =2mg =m v 2R,故速度大小v =2gR ,C 正确. 答案:C7.如图所示,小强正在荡秋千.关于绳上a 点和b 点的线速度和角速度,下列关系正确的是( )A .v a =v bB .v a >v bC .ωa =ωbD .ωa <ωb解析:小强在荡秋千过程,人和绳都以O 为圆心做圆周运动,人与a 、b 两点的角速度相等,C 正确,D 错误;a 、b 两点到O 点的距离不同,线速度不等,A 、B 错误.答案:C8.如图所示,A 、B 是两个摩擦传动轮,两轮半径大小关系为R A =2R B ,则两轮边缘上的( )A .角速度之比ωA ∶ωB =2∶1B .周期之比T A ∶T B =1∶2C .转速之比n A ∶n B =1∶2D .向心加速度之比a A ∶a B =2∶1解析:两轮边缘的线速度相等,由ω=v r 知,ωA ∶ωB =R B ∶R A =1∶2,A 错.由T =2πω知,T A ∶T B =ωB ∶ωA =2∶1,B 错.由ω= 2πn 知,n A ∶n B =ωA ∶ωB =1∶2,C 对.由a =v 2r知,a A ∶a B =R B ∶R A =1∶2,D 错.答案:C9.如图所示,用细线将一小球悬挂在匀速前进的车厢里,当车厢突然制动时( )A .线的张力不变B .线的张力突然减小C .线的张力突然增大D .线的张力如何变化无法判断解析:车厢匀速前进时,线的拉力等于小球的重力;车厢突然制动时,小球在惯性作用下继续运动绕悬点做圆周运动,向心力指向圆心,线的拉力大于重力.故选项C 正确.答案:C10.如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴的距离为l ,b 与转轴的距离为2l ,a 与b 跟随圆盘以角速度ω绕OO ′转动,下列说法正确的是( )A .a 、b 的向心加速度a a =2a bB .a 、b 的转动周期T b =2T aC .a 、b 的线速度v b =2v aD .a 、b 所受的静摩擦力F a =F b解析:a 、b 的向心加速度分别为ω2l 、2ω2l ,故A 错;a 、b 的转动周期相等,均为2πω,B 错;a 、b 的线速度分别为ωl 、2ωl ,C 对;a 、b 所受的静摩擦力分别等于它们的向心力,即F a =m ω2l ,F b =2m ω2l ,故D 错.答案:C二、多项选择题(本大题共4小题,每小题6分,共24分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错或不答的得0分)11.为了防止汽车在水平路面上转弯时出现“打滑”现象,可以( )A .增大汽车转弯时的速度B .减小汽车转弯时的速度C .增大汽车与路面间的摩擦D .减小汽车与路面间的摩擦解析:汽车在水平路面上转弯时,其向心力由静摩擦力提供,即μmg =m v 2R,如要防止“打滑”现象,应采取的措施是:增大汽车与路面间的摩擦或减小汽车转弯时的速度.答案:BC12.女航天员王亚平在“神舟十号”飞船上做了大量失重状态下的精美物理实验.关于失重状态,下列说法正确的是( )A .航天员仍受重力的作用B .航天员受力平衡C .航天员所受重力等于所需的向心力D .航天员不受重力的作用解析:做匀速圆周运动的空间站中的航天员,所受重力全部提供其做圆周运动的向心力,处于完全失重状态,并非航天员不受重力作用,A 、C 正确,B 、D 错误.答案:AC13.如图所示,细杆的一端与一小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动.点a 、b 分别表示轨道的最低点和最高点,则杆对球的作用力可能是( )A .a 处为拉力,b 处为拉力B .a 处为拉力,b 处为推力C .a 处为推力,b 处为拉力D .a 处为推力,b 处为推力解析:在a 处小球受到竖直向下的重力,因此a 处一定受到杆的拉力,因为小球在最低点时所需向心力沿杆由a 指向圆心O ,向心力是杆对球的拉力和重力的合力.小球在最高点b 时杆对球的作用力有三种情况:(1)杆对球恰好没有作用力,这时小球所受的重力提供向心力,设此时小球速度为v 临,由mg =mv 2临R得v 临=Rg ;(2)当小球在b 点,速度v >v 临时,杆对小球有向下的拉力;(3)当小球在b 点,速度0<v <v 临时,杆对小球有向上的推力.综上所述选项A 、B 正确,选项C 、D 错误.答案:AB14.一个内壁光滑的圆锥形筒的轴线垂直水平面,圆锥筒固定,有质量相同的小球A 和B 沿着筒的内壁在水平面内做匀速圆周运动,如图所示,A 的运动半径较大,则( )A .A 球的角速度必小于B 球的角速度B .A 球的线速度必小于B 球的线速度C .A 球的运动周期必大于B 球的运动周期D .A 球对筒壁的压力必大于B 球对筒壁的压力解析:两个小球均受到重力mg 和筒壁对它的弹力F N 的作用,其合力必定在水平面内时刻指向圆心.由图可知,筒壁对球的弹力F N =mg sin θ,向心力F n =mg cot θ,其中θ为圆锥顶角的一半.对于A 、B 两球,因质量相等,θ角也相等,所以A 、B 两小球受到筒壁的弹力大小相等,A 、B 两小球对筒壁的压力大小相等,D 错误.由牛顿第二定律知,mg cot θ=mv 2r =m ω2r =m 4π2r T 2.所以,小球的线速度v =gr cot θ,角速度ω=g cot θr,周期T =2π rg cot θ.由此可见,小球A 的线速度必定大于小球B 的线速度,B 错误.小球A的角速度必小于小球B 的角速度,小球A 的周期必大于小球B 的周期,A 、C 正确.答案:AC三、非选择题(本题共4小题,共46分.按题目要求作答.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必须明确写出数值和单位)15.(8分)如图所示,一光滑的半径为R 的半圆形轨道固定在水平面上,一个质量为m 的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,对轨道的压力恰好为零,则小球落地点C 距A 处多远?解析:小球在B 点飞出时,对轨道压力为零,由mg =m v 2B R,得v B =gR ,小球从B 点飞出做平抛运动t =4R g , 水平方向的位移大小x =v B t =gR ·4R g=2R 答案:2R16.(12分)原长为L 的轻弹簧一端固定一小铁块,另一端连接在竖直轴OO ′上,小铁块放在水平圆盘上,若圆盘静止,把弹簧拉长后将小铁块放在圆盘上,使小铁块能保持静止的弹簧的最大长度为5L 4.现将弹簧长度拉长到6L 5后,把小铁块放在圆盘上,在这种情况下,圆盘绕中心轴OO ′以一定角速度匀速转动,如图所示.已知小铁块的质量为m ,为使小铁块不在圆盘上滑动,圆盘转动的角速度ω最大不得超过多少?解析:以小铁块为研究对象,圆盘静止时:设铁块受到的最大静摩擦力为f max ,由平衡条件,得f max =kL 4. 圆盘转动的角速度ω最大时,铁块受到的摩擦力f max 与弹簧的拉力kx 的合力提供向心力,由牛顿第二定律,得kx +f max =m ⎝ ⎛⎭⎪⎫6L 5ω2max . 又因为x =L5, 联立三式,解得角速度的最大值ωmax =3k 8m . 答案: 3k 8m 17.(12分)长L =0.5 m 的细绳拴着小水桶绕固定轴在竖直平面内转动,桶中有质量m =0.5 kg 的水,(重力加速度g 取9.8 m/s 2)问:(1)在最高点时,水不流出的最小速度是多少?(2)在最高点时,若速度v =3 m/s ,水对桶底的压力多大?解析:(1)若水恰不流出,则有mg =mv 20L . 所求最小速率v 0=gL =9.8×0.5 m/s = 4.9 m/s =2.2 m/s.(2)设桶对水的支持力为F N ,则有mg +F N =mv 2L. F N =mv 2L -mg =0.5×90.5N -0.5×9.8 N =4.1 N. 由牛顿第三定律得知,水对桶底的压力:F N ′=F N =4.1 N.答案:(1)2.2 m/s (2)4.1 N18.(14分)如图所示,半径为R ,内径很小的光滑半圆管竖直放置.两个质量均为m 的小球a 、b 以不同的速度进入管内,a 通过最高点A 时,对管壁上部的压力为3mg ,b 通过最高点A 时,对管壁下部的压力为0.75mg ,求a 、b 两球落地点间的距离.解析:两个小球在最高点时,受重力和管壁的作用力,这两个力的合力提供向心力,离开轨道后两球均做平抛运动,a 、b 两球落地点离抛出点的水平距离为x a 、x b .在A 点,对a球:mg +3mg =mv 2a R,v a =4gR , 对b 球:mg -0.75mg =m v 2b R, v b = 14gR , 由平抛运动规律,可得x a =v a t =v a 4R g =4R ,x b =v 0t =v b 4Rg =R .故a 、b 两球落地点间的距离为x a -x b =3R .答案:3R。
高中物理粤教版本必修2 第二章《圆周运动》考试测试卷

第二章《圆周运动》测试卷一、单选题(共15小题)1.如图所示,杂技演员表演水流星节目.一根长为L 的细绳两端系着盛水的杯子,演员握住绳中间,随着演员的抡动,杯子在竖直平面内做圆周运动,杯子在运动中水始终不会从杯子洒出,设重力加速度为g ,则杯子运动到最高点的角速度ω至少为( )A .B .C .D .2.一辆轿车正在通过如图所示的路段,关于该轿车在转弯的过程中,正确的是( )A . 轿车处于平衡状态B . 轿车的速度大小不一定变化C . 轿车加速度的方向一定沿运动路线的切线方向D . 轿车加速度的方向一定垂直于运动路线的切线方向3.如图所示,甲、乙、丙三个轮子依靠摩擦传动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为( )A .B .C .D .4.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )A . 小球能够到达最高点时的最小速度为0B . 小球能够通过最高点时的最小速度为C . 如果小球在最高点时的速度大小为2,则此时小球最管道的内壁有作用力D . 如果小球在最低点时的速度大小为,则小球通过最低点时与管道内壁有相互作用力5.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R 的圆弧,要使车速为v 时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( ) A . sin θ=B . tan θ=C . sin 2θ=D .=6.如图所示,大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍.A 、B 分别为大、小轮靠摩擦传动做匀速转动的大小轮边缘上的点,C 为大轮上一条半径的中点.则( )A . 两轮转动的角速度相等B . 大轮转动的角速度是小轮的2倍C . 质点加速度aA =2aBD . 质点加速度aB =4aC7.如图所示,一圆盘可绕过圆盘的中心O 且垂直于盘面的竖直轴转动,在圆盘上放一小木块A ,它随圆盘一起运动——做匀速圆周运动,则关于木块A 的受力,下列说法中正确的是( )A . 木块A 受重力、支持力和向心力B . 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相反C . 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D . 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同8.一辆轿车正在通过标有如图所示图标的路段,关于该轿车在转弯的过程中,正确的是 ( )A . 轿车处于平衡状态B . 轿车的速度大小不一定变化C . 轿车加速度的方向一定沿运动路线的切线方向D . 轿车加速度的方向一定垂直于运动路线的切线方向9.如图所示,在开门过程中,门上A 、B 两点的角速度ω、线速度v 大小关系是( )A .ωA <ωB B .ωA =ωBC .v A <v BD .v A =v B10.做匀速圆周运动的物体,它的加速度大小必定与( ) A . 线速度的平方成正比 B . 角速度的平方成正比C . 运动半径成正比D . 线速度和角速度的乘积成正比11.如图所示,自行车的大齿轮、小齿轮、后轮三个轮子的半径不一样,它们的边缘上有三个点A ,B ,C .下列关于它们的线速度大小、角速度、周期、向心加速度大小关系式中正确的是( )A .v A >vB >vC B .ωA <ωB <ωCC .TA >TB >TCD .aA <aB <aC12.铁路在转弯处外轨略高于内轨的原因是( )①减轻轮缘对外轨的挤压 ①减轻轮缘与内轨的挤压 ①火车无论以多大速度转弯,内、外轨都不受轮缘挤压 ①火车按规定的速度转弯,外轨就不受轮缘的挤压 A . ①① B . ①①C . ①①D . ①①13.如图所示,A ,B 是两个摩擦传动轮(不打滑),两轮半径大小关系为RA =2RB,则两轮边缘上的( )A . 角速度之比ωA ①ωB =2①1 B . 周期之比TA ①TB =2①1C . 转速之比nA ①nB =2①1D . 向心加速度之比aA ①aB =2①114.如图所示,小球P 粘在细直杆的一端,球随杆一起绕O 作圆周运动,球在最高点时杆对球的作用力( )A . 一定是拉力B . 一定是支持力C . 无作用力D . 可能是拉力,也可能是支持力,也可能无作用力15.如图所示,在水平匀速转动的圆盘圆心正上方一定高度处,若向同一方向以相同速度每秒抛出N 个小球,不计空气阻力,发现小球仅在盘边缘共有6个均匀对称分布的落点,则圆盘转动的角速度可能是( )A .πNB .πNC .πND .πN二、填空题(共3小题)16.汽车受地面的摩擦力是车重的0.01倍,当汽车驶过半径为90 m 的弯道时,车速不得超过________ m/s.17.描述匀速圆周运动快慢的物理量有__________、__________、__________、__________. 18.一只电子钟的时针和分针的长度之比为2①3,角速度之比为________,时针和分针针端的线速度之比为________,向心加速度之比为________.三、实验题(共1小题)19.某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点的速度的实验,所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图a所示,托盘秤的示数为1.00 kg;(2)将玩具车静置于凹形桥模拟器最低点时,托盘秤的示数如图b所示,该示数为________kg;将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:(3)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为________N;小车通过最低点时的速度大小为________m/s.(重力加速度g=9.8 m/s,计算结果保留2位有效数字).四、计算题(共3小题)20.火车在半径r=900 m的弯道转弯,火车质量为8×105kg,轨道宽为l=1.4 m,外轨比内轨高h=14 cm,轨道平面与水平面的夹角为α,为了使铁轨不受轮缘的挤压,火车的速度应为多大?(α很小时,可以近似认为tanα=sinα;g取10 m/s2)21.如图所示,有一质量为m的小球在光滑的半球形碗内做匀速圆周运动,轨道平面在水平面内.已知小球与半球形碗的球心O的连线跟竖直方向的夹角为θ,半球形碗的半径为R,求小球做圆周运动的速度及碗壁对小球的弹力各多大.22.质量为1.4×103kg的汽车在水平公路上行驶,轮胎与地面间的动摩擦因数为0.7(最大静摩擦力等于滑动摩擦力),某一弯路的半径为28 m,g=10 m/s2.试求:(1)为保证行车安全,汽车在该弯路上行驶的最大速度v m;(2)汽车以36 km/h的速度刚驶上弯路时受到的摩擦力大小F f;答案解析1.【答案】B【解析】据题知,杯子圆周运动的半径r=杯子运动到最高点时,水恰好不流出,由水的重力恰好提供其做圆周运动的向心力,根据牛顿第二定律得:mg=mω2解得:ω=故选:B.2.【答案】B【解析】由图可知汽车要绕转盘做圆周运动,轿车所受的合外力沿半径方向提供向心力,是非平衡状态,选项A错误.轿车可以是匀速圆周运动或变速圆周运动,速度的大小不一定变化,但方向一定变化,选项B正确.若汽车做匀速圆周运动,受到的静摩擦力提供向心力,加速度方向指向圆心;若是变速圆周运动,有切向加速度和径向加速度,则加速度方向不会指向圆心所以C,D 错误.3.【答案】A【解析】甲、乙、丙之间属于齿轮传动,所以轮子边缘的线速度相等,即v甲=v乙=v丙,由v=ωr 得ω1r1=ω3r3,所以ω3=,故选项A正确.4.【答案】A【解析】圆管模型与轻杆模型相似,抓住两个临界条件:一是小球恰好到达最高点时,速度为零;二是小球经过最高点与管道恰好无作用力时速度为.因为在最高点,管道可以给小球提供支持力,所以小球能够通过最高点的最小速度为零,A正确,B错误;在最高点重力完全充当向心力时,管道对小球没有作用力,所以有mg=m,解得v=,因为2>,所以小球在最高点有离心趋势,故管道上壁对小球有作用力,C错误;若小球运动过程中只有重力做功,有mg·2R +mv=mv,(小球在最低点和最高点的速度分别为v1、v2),将v1=代入可得v2=,故此时在最高点小球与管道之间恰好没有压力,D错误.5.【答案】B【解析】当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:F N sinθ=mF N cosθ=mg解得:tanθ=,故B正确.6.【答案】D【解析】靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,知A、B两点具有相同的线速度.故A错误.根据v=rω,v A=v B,知小轮转动的角速度是大轮的两倍.故B错误.A、B两点具有相同的线速度,根据a=,知=,故C错误.A、B具有相同的线速度,根据v=rω,=,A、C具有相同的角速度,=.根据a=rω2,=,故D正确.故选D.7.【答案】C【解析】由于圆盘上的木块A在竖直方向上没有加速度,所以,它在竖直方向上受重力和支持力的作用而平衡.而木块在水平面内做匀速圆周运动,其所需向心力由静摩擦力提供,且静摩擦力的方向指向圆心O.8.【答案】B【解析】9.【答案】B【解析】AB两点都绕门轴做匀速圆周运动,两点共轴转动,角速度相同.故A错误,B正确;根据v=rω,角速度相同时,A的半径大,A的线速度大.故C、D错误.10.【答案】D【解析】由a==ω2r知,只有当运动半径r不变时,加速度大小才与线速度的平方或角速度的平方成正比,A,B错;当角速度一定时,加速度大小才与运动半径成正比,线速度大小一定时,加速度大小才与运动半径成反比,C错;而a=ω2r=ω·ωr=ωv,即加速度大小与线速度和角速度的乘积成正比,D对.11.【答案】D【解析】由于A、B两点为共线关系,因此v A=v B,选项A错误;由于B、C两点为共轴关系,角速度相同,因此ωB=ωC,选项B错误;由T==,可判断选项C错误;由向心加速度a==ω2r可知选项D正确.12.【答案】B【解析】铁路在转弯处外轨略高于内轨这样火车在拐弯时,火车重力与轨道面支持力可以充当向心力,可以减小对外轨的挤压,①正确,①错误;若速度大于规定速度,重力和支持力的合力不够提供向心力,此时外轨对火车有侧压力,轮缘挤压外轨.若速度小于规定速度,重力和支持力的合力大于所需的向心力,此时内轨对火车有侧压力,轮缘挤压内轨.①错误;当火车以规定的速度通过此弯路时,火车重力与轨道面支持力的合力恰好提供向心力,对内、外轨均无压力,①正确,故选B.13.【答案】B【解析】A,B两轮边缘线速度相同,由公式ω=得ωA①ωB=rB①rA=1①2,故选项A错误;由公式T=得,TA①TB=ωB①ωA=2①1,故B正确;由公式n=知,nA①nB=TB①TA=1①2,故选项C错误;由加速度公式a=知aA①aB=rB①rA=1①2,故选项D错误.14.【答案】D【解析】对小球受力分析,受重力、杆的作用力,假设杆的作用力向下,如图;由牛顿第二定律得,F+G=m解得F=m-G讨论:①当F=0时,无作用力;①当F>0时,一定是拉力;①当F<0时,一定是支持力;故D正确.15.【答案】A【解析】小球在盘边缘共有6个均匀分布的落点,说明每转动(2nπ+π)后就有一个小球落在圆盘的边缘;故Δθ=(2n+)π(n=0,1,2,3…)Δt=s故角速度为:ω==(2n+)πN rad/s(n=0,1,2,3…)当n=0时,则ω=πN rad/s,当n=1时,则ω=πN rad/s,当n=2时,则ω=πN rad/s.16.【答案】3【解析】摩擦力提供转弯所需的向心力,当摩擦力达到最大时,对应的转弯速度也最大.汽车会做离心运动,如果不做离心运动,则F f=m,又F f≤0.01mg,故m≤0.01mg,即v≤=m/s=3 m/s.17.【答案】线速度角速度周期频率(或转速)【解析】描述匀速圆周运动快慢的物理量有线速度、角速度、周期和频率(或转速).18.【答案】1①121①181①216【解析】时针和分针都是做匀速圆周运动,周期分别为12 h、1 h,故周期比为12①1;根据ω=,它们的角速度之比为1①12;根据v=Rω,线速度之比为:v1①v2=ω1r1①ω2r2=1①18;根据a=rω2,向心加速度之比为:a1①a2=ωr1①ωr2=1①21619.【答案】(2)1.40(3)7.9 1.4【解析】最小分度为0.1 kg,注意估读到最小分度的下一位;根据表格知最低点小车和凹形桥模拟器对秤的最大压力平均值为mg,根据F m=m桥g+F N,知小车经过凹形桥最低点时对桥的压力F N,根据F N-mg=m,求解速度.(1)每一小格表示0.1 kg,所以示数为1.40 kg;(2)将5次实验的结果求平均值,故有F m=×9.8 N=m桥g+F N,解得F N≈7.9 N根据公式F N-mg=m可得v≈1.4 m/s20.【答案】30 m/s【解析】若火车在转弯时铁轨不受挤压,即由重力和支持力的合力提供向心力,火车转弯平面是水平面.火车受力如图所示由牛顿第二定律得:mg tanα=m由于α很小,可以近似认为tanα=sinα=代入数据解得:v=30 m/s.21.【答案】【解析】根据小球做圆周运动的轨迹找圆心,定半径,由题图可知,圆周运动的圆心为O′,运动半径为r=R sinθ.小球受重力mg及碗对小球弹力N的作用,向心力为弹力的水平分力.受力分析如下图所示.由向心力公式F n=m得N sinθ=m①竖直方向上小球的加速度为零,所以竖直方向上所受的合力为零,即N cosθ=mg,解得N=①联立①①两式,可解得物体做匀速圆周运动的速度为v=.22.【答案】(1)14 m/s(2)5 000 N【解析】(1)汽车在该弯路上以最大速度v m行驶时,由最大静摩擦力提供向心力μmg=v m==14 m/s(2)汽车速度为36 km/h=10 m/s<v m,此时由静止摩擦力提供向心力F f==5 000 N.。
2024_2025学年新教材高中物理章末综合测评2圆周运动含解析粤教版必修第二册

章末综合测评(二) 圆周运动(时间:90分钟 分值:100分)1.(4分)G20峰会“最忆是杭州”的文艺演出中,芭蕾舞演员保持如图所示姿态原地旋转,此时手臂上A 、B 两点角速度大小分别为ωA 、ωB ,线速度大小分别为v A 、v B ,则( )A .ωA <ωB B .ωA >ωBC .v A <v BD .v A >v BD [由于A 、B 两点在人自转的过程中周期一样,所以依据ω=2πT可知,A 、B 两点的角速度一样,选项AB 错误;依据v =rω可知,A 点转动半径大,所以A 点的线速度要大,选项D 正确,C 错误。
]2.(4分)A 、B 两小球都在水平地面上做匀速圆周运动,A 球的轨道半径是B 球轨道半径的2倍,A 的转速为30 r/min ,B 的转速为15 r/min 。
则两球的向心加速度之比为( )A .1∶1B .2∶1C .4∶1D .8∶1D [由题意知A 、B 两小球的角速度之比ωA ∶ωB =n A ∶n B =2∶1,所以两小球的向心加速度之比a A ∶a B =ω2A R A ∶ω2B R B =8∶1,D 正确。
]3.(4分)如图所示为学员驾驶汽车在水平面上绕O 点做匀速圆周运动的俯视图。
已知质量为60 kg 的学员在A 点位置,质量为70 kg 的教练员在B 点位置,A 点的转弯半径为5.0 m ,B 点的转弯半径为4.0 m ,则学员和教练员(均可视为质点)( )A .运动周期之比为5∶4B .运动线速度大小之比为1∶1C .向心加速度大小之比为4∶5D .受到的合力大小之比为15∶14D [A 、B 两点做圆周运动的角速度相等,依据T =2πω知,周期相等,故A 错误。
依据v=rω,半径之比为5∶4,知线速度大小之比为5∶4,故B 错误。
依据a =rω2知,向心加速度大小之比为5∶4,故C 错误。
依据F =ma ,向心加速度大小之比为5∶4,质量之比为6∶7,知合力大小之比为15∶14,故D 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末综合测评(二)(时间:60分钟 满分:100分)一、选择题(本题共10小题,每小题6分.在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.(2016·长沙高一检测)对于物体做匀速圆周运动,下列说法中正确的是( ) A .其转速与角速度成反比,其周期与角速度成正比 B .运动的快慢可用线速度描述,也可用角速度来描述 C .匀速圆周运动的速度保持不变D .做匀速圆周运动的物体,其加速度保持不变【解析】 由公式ω=2πn 可知,转速和角速度成正比,由ω=2πT可知,其周期与角速度成反比,故A 错误;运动的快慢可用线速度描述,也可用角速度来描述,所以B 正确;匀速圆周运动的速度大小不变,但速度方向在变,所以C 错误;匀速圆周运动的加速度大小不变,方向在变,所以D 错误.【答案】 B2.如图1所示,一辆卡车在水平路面上行驶,已知该车轮胎半径为R ,轮胎转动的角速度为ω,关于各点的线速度大小下列说法错误的是( )【导学号:35390037】图1A .相对于地面,轮胎与地面的接触点的速度为0B .相对于地面,车轴的速度大小为ωRC .相对于地面,轮胎上缘的速度大小为ωRD .相对于地面,轮胎上缘的速度大小为2ωR【解析】 因为轮胎不打滑,相对于地面,轮胎与地面接触处保持相对静止,该点相当于转动轴,它的速度为零,车轴的速度为ωR ,而轮胎上缘的速度大小为2ωR ,故选项A 、B 、D 正确,C 错误.【答案】 C3.一小球沿半径为2 m 的轨道做匀速圆周运动,若周期T =4 s ,则( ) A .小球的线速度大小是0.5 m/s B .经过4 s ,小球的位移大小为4π m C .经过1 s ,小球的位移大小为2 2 m D .若小球的速度方向改变了π2rad ,经过时间一定为1 s【解析】 小球的周期为T =4 s ,则小球运动的线速度为v =2πrT=π,选项A 错误;经过4 s 后,小球完成一个圆周运动后回到初始位置,位移为零,选项B 错误;经过1 s 后,小球完成14个圆周,小球的位移大小为s =2R =2 2 m ,选项C 正确;圆周运动是周期性运动,若方向改变π2弧度,经历的时间可能为t =(n +1)·T 4=(n +1) s 或t =(n +3)·T4=(n +3) s ,选项D 错误.【答案】 C4. (2016·沈阳高一检测)荡秋千是儿童喜爱的一项体育运动,当秋千荡到最高点时,小孩的加速度方向是图2中的( )图2A .竖直向下a 方向B .沿切线b 方向C .水平向左c 方向D .沿绳向上d 方向【解析】 如图,将重力分解,沿绳子方向T -G cos θ=m v 2R,当在最高点时,v =0,故T =G cos θ,故合力方向沿G 2方向,即沿切线b 方向,由牛顿第二定律,加速度方向沿切线b 方向.【答案】 B5.在光滑杆上穿着两个小球m 1、m 2,且m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,如图3所示,此时两小球到转轴的距离r 1与r 2之比为( )图3A .1∶1B .1∶ 2C .2∶1D .1∶2【解析】 两球向心力、角速度均相等,由公式F 1=m 1r 1ω2,F 2=m 2r 2ω2,即m 1r 1ω2=m 2r 2ω2,r 1r 2=m 2m 1=12,故选D.【答案】 D6.如图4所示,是从一辆在水平公路上行驶着的汽车后方拍摄的汽车后轮照片.从照片来看,汽车此时正在( )图4A .直线前进B .向右转弯C .向左转弯D .不能判断【解析】 从汽车后方拍摄的后轮照片可以看到汽车的后轮发生变形,汽车不是正在直线前进,而是正在转弯,根据惯性、圆周运动和摩擦力知识,可判断出地面给车轮的静摩擦力水平向左,所以汽车此时正在向左转弯,应选答案C.【答案】 C7.(2016·泉州高一检测)如图5所示,乘坐游乐园的翻滚过山车时,质量为m 的人随车在竖直平面内旋转,下列说法正确的是( )图5A .车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B .人在最高点时对座位不可能产生大小为mg 的压力C .人在最低点时对座位的压力等于mgD .人在最低点时对座位的压力大于mg【解析】 过山车是竖直面内杆系小球圆周运动模型的应用.人在最低点时,由向心力公式可得:F -mg =m v 2R ,即F =mg +m v 2R >mg ,故选项C 错误,选项D 正确;人在最高点,若v >gR 时,向心力由座位对人的压力和人的重力的合力提供,若v =gR 时,向心力由人的重力提供,若v <gR 时,人才靠保险带拉住,选项A 错误;F >0,人对座位产生压力,压力大小F =m v 2R-mg ,当v 2=2Rg 时F =mg ,选项B 错误.【答案】 D8.如图6所示,长0.5 m 的轻质细杆,一端固定有一个质量为3 kg 的小球,另一端由电动机带动,使杆绕O 点在竖直平面内做匀速圆周运动,小球的速率为2 m/s.g 取10 m/s 2,下列说法正确的是( )图6A .小球通过最高点时,对杆的拉力大小是24 NB .小球通过最高点时,对杆的压力大小是6 NC .小球通过最低点时,对杆的拉力大小是24 ND .小球通过最低点时,对杆的拉力大小是54 N【解析】 设小球在最高点时受杆的弹力向上,则mg -N =m v 2l ,得N =mg -m v 2l =6 N ,故小球对杆的压力大小是6 N ,A 错误,B 正确;小球通过最低点时N -mg =m v 2l ,得N =mg+m v 2l=54 N ,小球对杆的拉力大小是54 N ,C 错误,D 正确.【答案】 BD9.如图7所示,在双人花样滑冰运动中,有时会看到被男运动员拉着的女运动员离开地面在空中做圆周运动的精彩场面,目测重力为G的女运动员做圆周运动时和水平冰面的夹角约为30°,重力加速度为g,估算该女运动员( )图7A.受到的拉力为3GB.受到的拉力为2GC.向心加速度为3gD.向心加速度为2g【解析】女运动员做圆周运动,对女运动员受力分析可知,受到重力,男运动员对女运动员的拉力,如图所示,竖直方向合力为零,有F sin 30°=G得F=2G,B项正确.水平方向的合力提供匀速圆周运动的向心力,有F cos 30°=ma向,即2mg cos 30°=ma向,所以a向=3g,C项正确.【答案】BC10.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图8所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h,下列说法中正确的是( )图8A.h越高,摩托车对侧壁的压力将越大B.h越高,摩托车做圆周运动的线速度将越大C.h越高,摩托车做圆周运动的周期将越大D.h越高,摩托车做圆周运动的向心力将越大【解析】摩托车受力如图所示.由于N=mg cos θ所以摩托车受到侧壁的压力与高度无关,保持不变,摩托车对侧壁的压力F也不变,A错误;由F=mg tan θ=m v2r=mω2r知h变化时,向心力F不变,但高度升高,r变大,所以线速度变大,角速度变小,周期变大,选项B、C正确,D错误.【答案】BC二、计算题(共3小题,共40分)11.(10分)如图9所示,水平转盘上放有质量为m的物体,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零).物体和转盘间的最大静摩擦力是其正压力的μ倍.求:【导学号:35390038】图9(1)当转盘的角速度ω1=μg2r时,细绳的拉力T 1; (2)当转盘的角速度ω2=3μg2r时,细绳的拉力T 2. 【解析】 设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μmg =mω20r ,解得ω0=μgr. (1)因为ω1=μg2r<ω0,所以物体所需向心力小于物体与盘间的最大摩擦力,则物体与盘产生的摩擦力还未达到最大静摩擦力,细绳的拉力仍为0,即T 1=0.(2)因为ω2=3μg2r>ω0,所以物体所需向心力大于物体与盘间的最大静摩擦力,则细绳将对物体施加拉力T 2,由牛顿第二定律得T 2+μmg =mω22r ,解得T 2=μmg2.【答案】 (1)T 1=0 (2)T 2=μmg212.(15分)如图10所示,在内壁光滑的平底试管内放一个质量为1 g 的小球,试管的开口端与水平轴O 连接.试管底与O 相距5 cm ,试管在转轴带动下在竖直平面内做匀速圆周运动.g 取10 m/s 2,求:图10(1)转轴的角速度达到多大时,试管底所受压力的最大值等于最小值的3倍? (2)转轴的角速度满足什么条件时,会出现小球与试管底脱离接触的情况?【解析】 (1)当试管匀速转动时,小球在最高点对试管的压力最小,在最低点对试管的压力最大.在最高点:F 1+mg =mω2r 在最低点:F 2-mg =mω2rF 2=3F 1联立以上方程解得ω=2gr=20 rad/s(2)小球随试管转到最高点,当mg >mω2r 时,小球会与试管底脱离,即ω<g r. 【答案】 (1)20 rad/s (2)ω<g r13.(15分)“太极球”是近年来在广大市民中较流行的一种健身器材.做该项运动时,健身者半马步站立,手持太极球拍,拍上放一橡胶太极球,健身者舞动球拍时,球却不会掉落地上.现将太极球简化成如图11甲所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的A 、B 、C 、D 位置时球与板无相对运动趋势.A 为圆周的最高点,C 为最低点,B 、D 与圆心O 等高.设球的重力为1 N ,不计拍的重力.求:(1)C 处球拍对球的弹力比在A 处大多少?(2)设在A 处时球拍对球的弹力为F ,当球运动到B 、D 位置时,板与水平方向需有一定的夹角θ,请在图乙中作出tan θ F 的关系图象.甲 乙图11【解析】 (1)设球运动的线速度为v ,半径为R则在A 处时F ′+mg =m v 2R① 在C 处时F -mg =m v 2R②由①②式得ΔF =F -F ′=2mg =2 N.(2)在A 处时球拍对球的弹力为F ,球做匀速圆周运动的向心力F 向=F +mg ,在B 处不受摩擦力作用,受力分析如图则tan θ=F 向mg =F +mg mg=F +1 作出的tan θ F 的关系图象如图 【答案】 (1)2 N (2)见解析图。