2014高考数学课后作业8-3直线与圆的位置关系及空间直角坐标系新人教A版

合集下载

高中数学高考总复习直线与圆圆与圆的位置关系及空间坐标系习题及详解word资料9页

高中数学高考总复习直线与圆圆与圆的位置关系及空间坐标系习题及详解word资料9页

高中数学高考总复习直线与圆圆与圆的位置关系及空间坐标系习题及详解一、选择题1.(文)(2019·黑龙江哈三中)直线x +y =1与圆x 2+y 2-2ay =0(a >0)没有公共点,则a 的取值范围是( )A .(0,2-1)B .(2-1,2+1)C .(-2-1,2+1)D .(0,2+1)[答案] A[解析] 圆的方程x 2+(y -a )2=a 2,由题意知圆心(0,a )到直线x +y -1=0距离大于a ,即|a -1|2>a ,解得-1-2<a <-1+2,∵a >0,∴0<a <2-1.(理)(2019·宁德一中)直线x -y +m =0与圆x 2+y 2-2x -1=0有两个不同交点的一个充分不必要条件是( )A .-3<m <1B .-4<m <2C .0<m <1D .m <1 [答案] C[解析] 根据直线与圆有两个不同的交点,可知圆心到直线的距离d 小于半径.∵圆x 2+y 2-2x -1=0的圆心是(1,0),半径是2,∴d =|1-0+m |2<2,∴|m +1|<2,∴-3<m <1,故所求的m 的取值集合应是(-3,1)的一个真子集,故选C. 2.直线l :2x sin α+2y cos α+1=0,圆C :x 2+y 2+2x sin α+2y cos α=0,l 与C 的位置关系是( )A .相交B .相切C .相离D .不能确定[答案] A[解析] 圆心C (-sin α,-cos α)到直线l 的距离为 d =|-2sin 2α-2cos 2α+1|(2sin α)2+(2cos α)2=12,圆半径r =1,∵d <r ,∴直线l 与⊙C 相交.3.(文)(2019·青岛市质检)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .2B .1+ 2C .2+22D .1+2 2[答案] B[解析] 圆心C (1,1)到直线x -y -2=0距离d =2,∴所求最大值为d +r =2+1. (理)(2019·山东肥城联考)若圆x 2+y 2-6x -2y +6=0上有且仅有三个点到直线ax -y +1=0(a 是实数)的距离为1,则a 等于( )A .±1B .±24C .±2D .±32[答案] B[解析] 圆(x -3)2+(y -1)2=4,半径为2, 由题意圆心(3,1)到直线的距离是1, ∴|3a |a 2+1=1,∴a =±24.4.(2019·深圳中学)过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A 、B 两点,如果|AB |=8,则( )A .l 的方程为5x +12y +20=0或x +4=0B .l 的方程为5x -12y +20=0或x +4=0C .l 的方程为5x -12y +20=0D .l 的方程为5x +12y +20=0 [答案] A[解析] 圆x 2+y 2+2x -4y -20=0化为(x +1)2+(y -2)2=25,圆心C (-1,2),半径r =5,点在圆内,设l 斜率为k ,方程为y =k (x +4),即kx -y +4k =0,∵|AB |=8,∴圆心到直线距离为52-42=3, ∴|-k -2+4k |k 2+1=3,∴k =-512,当斜率不存在时,直线x =-4也满足.故选A.5.设直线x +ky -1=0被圆O :x 2+y 2=2所截弦的中点的轨迹为M ,则曲线M 与直线x -y -1=0的位置关系是( )A .相离B .相切C .相交D .不确定[答案] C[解析] ∵直线x +ky -1=0过定点N (1,0),且点N (1,0)在圆x 2+y 2=2的内部,∴直线被圆所截弦的中点的轨迹M 是以ON 为直径的圆,圆心为P ⎝⎛⎭⎫12,0,半径为12,∵点P ⎝⎛⎭⎫12,0到直线x -y -1=0的距离为24<12, ∴曲线M 与直线x -y -1=0相交,故选C.6.已知直线ax +by -1=0(a ,b 不全为0)与圆x 2+y 2=50有公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( )A .66条B .72条C .74条D .78条[答案] B[解析] 因为在圆x 2+y 2=50上,横坐标、纵坐标都为整数的点一共有12个,即:(1,±7),(5,±5),(7,±1),(-1,±7),(-5,±5),(-7,±1),经过其中任意两点的割线有12×(12×11)=66条,过每一点的切线共有12条,可知与该圆有公共点且公共点的横坐标、纵坐标都为整数的直线共有66+12=78条,而方程ax +by -1=0表示的直线不过原点,上述78条直线中过原点的直线有6条,故符合条件的直线共有78-6=72条.故选B.7.(2019·温州十校)在平面直角坐标系xOy 中,过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2的一条切线(切点为T )交双曲线的右支于点P ,若M 为FP 的中点,则|OM |-|MT |等于( )A .b -aB .a -b C.a +b2D .a +b[答案] A[解析] 如图,F ′是双曲线的右焦点,由双曲线的定义得,|PF |-|PF ′|=2a .又M 为PF 的中点,∴|MF |-|OM |=a ,即|OM |=|MF |-a .又直线PF 与圆相切, ∴|FT |=OF 2-OT 2=b ,∴|OM |-|MT |=|MF |-a -(|MF |-|FT |)=|FT |-a =b -a ,故选A.8.(文)(2019·广东茂名)圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14 B.⎝⎛⎦⎤0,14 C.⎝⎛⎭⎫-14,0D.⎝⎛⎭⎫-∞,14 [答案] A[解析] 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝⎛⎭⎫a +b 22=14,故选A. (理)(2019·泰安质检)如果直线y =kx +1与圆x 2+y 2+kx +my -4=0交于M 、N 两点,且M 、N 关于直线x +y =0对称,则不等式组⎩⎪⎨⎪⎧kx -y +1≥0kx -my ≤0y ≥0表示的平面区域的面积是( )A.14B.12 C .1D .2[答案] A[解析] ∵直线y =kx +1与圆的两交点M 、N 关于直线x +y =0对称,∴圆心在直线x +y =0上,且两直线y =kx +1与x +y =0垂直,∴⎩⎪⎨⎪⎧k =1-k 2+⎝⎛⎭⎫-m 2=0,∴⎩⎪⎨⎪⎧k =1m =-1,∴不等式组化为⎩⎪⎨⎪⎧x -y +1≥0x +y ≤0y ≥0,表示的平面区域如图,故其面积S =12|OA |·y B =14.9.(文)若动圆C 与圆C 1:(x +2)2+y 2=1外切,与圆C 2:(x -2)2+y 2=4内切,则动圆C 的圆心的轨迹是( )A .两个椭圆B .一个椭圆及双曲线的一支C .两双曲线的各一支D .双曲线的一支 [答案] D[解析] 设动圆C 的半径为r ,圆心为C ,依题意得 |C 1C |=r +1,|C 2C |=r -2, ∴|C 1C |-|C 2C |=3,故C 点的轨迹为双曲线的一支.(理)台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( )A .0.5小时B .1小时C .1.5小时D .2小时[答案] B[解析] 以A 为原点,正东方向为x 轴,正北方向为y 轴,建立直角坐标系,则A (102t,102t ),B (40,0).当满足下列条件时,B 城市处于危险区内,即(102t -40)2+(102t )2≤302,解得2-12≤t ≤2+12,故选B.10.(2019·山东聊城模考)若在区间(-1,1)内任取实数a ,在区间(0,1)内任取实数b ,则直线ax -by =0与圆(x -1)2+(y -2)2=1相交的概率为( )A.38 B.516 C.58D.316[答案] B[解析] 由题意知,圆心C (1,2)到直线ax -by =0距离d <1,∴|a -2b |a 2+b 2<1,化简得3b -4a <0,如图,满足直线与圆相交的点(a ,b )落在图中阴影部分,E ⎝⎛⎭⎫34,1,∵S 矩形ABCD =2,S 梯形OABE =⎝⎛⎭⎫14+1×12=58,由几何概型知,所求概率P =582=516.二、填空题11.(2019·四川广元市质检)已知直线l :x -2y -5=0与圆O :x 2+y 2=50相交于A 、B 两点,则△AOB 的面积为______.[答案] 15[解析] 圆心(0,0)到直线l 距离d =5,圆半径R =52,∴弦长|AB |=2(52)2-(5)2=65,∴S △AOB =12|AB |·d =12×65×5=15.12.(文)(2019·天津南开区模拟)过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线OA 、OB ,A 、B 为切点,则线段AB 的长为________.[答案] 4[解析] 圆(x -3)2+(y -4)2=5的圆心C (3,4),半径为r =5,|CO |=5,∴切线长|OA |=25,由12|OA |·|CA |=12|OC |·d ,得d =2, ∴弦长|AB |=2d =4.(理)(2019·甘肃质检)若直线2x -y +c =0按向量a =(1,-1)平移后与圆x 2+y 2=5相切,则c 的值为________.[答案] 8或-2[解析] 设直线2x -y +c =0上点P (x 0,y 0),按a 平移后移到点P ′(x ,y ),则⎩⎪⎨⎪⎧x =x 0+1y =y 0-1,∴⎩⎪⎨⎪⎧x 0=x -1y 0=y +1代入直线2x -y +c =0中得2x -y -3+c =0,此时直线与圆x 2+y 2=5相切, ∴|-3+c |5=5,∴c =8或-2. 13.(2019·湖南文)若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________;圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.[答案] -1 x 2+(y -1)2=1[解析] 过P 、Q 两点的直线的斜率k PQ =b -(3-a )a -(3-b )=a +b -3a +b -3=1,∴线段PQ 的垂直平分线l 的斜率为-1,线段PQ 的中点坐标为⎝⎛⎭⎫a -b +32,b -a +32,∴PQ 的垂直平分线l 的方程为y -b -a +32=-⎝⎛⎭⎫x -a -b +32,即y =-x +3,设圆心(2,3)关于直线l :y =-x +3的对称点为(a ,b ),则⎩⎪⎨⎪⎧b +32=-a +22+3b -3a -2=1,解得⎩⎪⎨⎪⎧a =0b =1,故所求的圆的方程为x 2+(y -1)2=1.14.(2019·江苏,9)在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.[答案] (-13,13)[解析] 由题意知,圆心O (0,0)到直线12x -5y +c =0的距离d <1,∴|c |13<1,∴-13<c <13.三、解答题15.(2019·广东湛江)已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程.(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使得|PM |取得最小值的点P 的坐标.[解析] (1)将圆C 配方得(x +1)2+(y -2)2=2.①当直线在两坐标轴上的截距为零时,设直线方程为y =kx ,由直线与圆相切得|-k -2|k 2+1=2,即k =2±6,从而切线方程为y =(2±6)x .②当直线在两坐标轴上的截距不为零时,设直线方程为x +y -a =0, 由直线与圆相切得x +y +1=0,或x +y -3=0. ∴所求切线的方程为y =(2±6)x x +y +1=0或x +y -3=0(2)由|PO |=|PM |得,x 12+y 12=(x 1+1)2+(y 1-2)2-2⇒2x 1-4y 1+3=0. 即点P 在直线l :2x -4y +3=0上,|PM |取最小值时即 |OP |取得最小值,直线OP ⊥l , ∴直线OP 的方程为2x +y =0.解方程组⎩⎪⎨⎪⎧2x +y =02x -4y +3=0得P 点坐标为⎝⎛⎭⎫-310,35. 16.(文)(2019·北京延庆县模考)已知长方形ABCD ,AB =22,BC =1,以AB 的中点O 为原点建立如图所示的平面直角坐标系xOy .(1)求以A 、B 为焦点,且过C 、D 两点的椭圆的标准方程;(2)过点P (0,2)的直线l 交(1)中椭圆于M 、N 两点,判断是否存在直线l ,使得以弦MN 为直径的圆恰好过原点,并说明理由.[解析] (1)由题意可得点A ,B ,C 的坐标分别为(-2,0),(2,0),(2,1). 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),则有2a =|AC |+|BC |=(-2-2)2+(0-1)2+(2-2)2+(0-1)2=4>22, ∴a =2,b 2=a 2-c 2=4-2=2, 椭圆的标准方程为x 24+y 22=1.(2)假设满足条件的直线l 存在,由条件可知直线l 的斜率存在, 设直线l 的方程为:y =kx +2(k ≠0),设M (x 1,y 1),N (x 2,y 2).联立方程⎩⎪⎨⎪⎧x 2+2y 2=4y =kx +2,消去y 并整理得(1+2k 2)x 2+8kx +4=0∴x 1+x 2=-8k 1+2k 2,x 1x 2=41+2k 2若以弦MN 为直径的圆恰好过原点,则OM →⊥ON →, ∴x 1x 2+y 1y 2=0,∴(1+k 2)x 1x 2+2k (x 1+x 2)+4=0, ∴4(1+k 2)1+2k 2-16k 21+2k 2+4=0,即8-4k 21+2k 2=0,解得k =±2检验知k 值满足判别式Δ>0∴直线l 的方程为y =2x +2或y =-2x +2. (理)(2019·哈三中)已知圆C :(x -3)2+(y -4)2=16.(1)由动点P 引圆C 的两条切线P A 、PB ,若直线P A 、PB 的斜率分别为k 1、k 2,且满足k 1+k 2+k 1·k 2=-1,求动点P 的轨迹方程;(2)另作直线l :kx -y -k =0,若直线l 与圆C 交于Q 、R 两点,且直线l 与直线l 1:x +2y +4=0的交点为M ,线段QR 的中点为N ,若A (1,0),求证:|AM |·|AN |为定值.[解析] (1)由k 1+k 2+k 1·k 2=-1得,(k 1+1)(k 2+1)=0,∴k 1=-1或k 2=-1.设切线方程为x +y =m ,则由圆心到直线距离公式得:m =-7±42,∴P 点轨迹方程为:x +y -7±42=0;(2)由⎩⎪⎨⎪⎧y =k (x -1)x +2y +4=0得M ⎝ ⎛⎭⎪⎫2k -42k +1,-5k 2k +1 由⎩⎪⎨⎪⎧(x -3)2+(y -4)2=16y =k (x -1)消去y 得(k 2+1)x 2-(2k 2+8k +6)x +k 2+8k +9=0此方程两根即Q 、R 两点的横坐标,由根与系数的关系及中点坐标公式可得x N =k 2+4k +3k 2+1,代入y =k (x-1)得y N =4k 2+2kk 2+1,即N ⎝ ⎛⎭⎪⎫k 2+4k +3k 2+1,4k 2+2k k 2+1,又A (1,0)则由两点间距离公式可得: |AM |·|AN |=10为定值.17.(文)已知定直线l :x =-1,定点F (1,0),⊙P 经过 F 且与l 相切. (1)求P 点的轨迹C 的方程.(2)是否存在定点M ,使经过该点的直线与曲线C 交于A 、B 两点,并且以AB 为直径的圆都经过原点;若有,请求出M 点的坐标;若没有,请说明理由.[解析] (1)由题设知点P 到点F 的距离与点P 到直线l 的距离相等. ∴点P 的轨迹C 是以F 为焦点,l 为准线的抛物线 ∴点P 的轨迹C 的方程为:y 2=4x(2)设AB 的方程为x =my +n ,代入抛物线方程整理得:y 2-4my -4n =0设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=4my 1y 2=-4n .∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴y 1y 2+x 1x 2=0.即y 1y 2+y 124·y 224=0.∴y 1y 2=-16,∴-4n =-16,n =4. ∴直线AB :x =my +4恒过存在M (4,0)点.(理)设点F ⎝⎛⎭⎫0,32,动圆P 经过点F 且和直线y =-32相切,记动圆的圆心P 的轨迹为曲线w .(1)求曲线w 的方程;(2)过点F 作互相垂直的直线l 1、l 2,分别交曲线w 于A 、C 和B 、D 两个点,求四边形ABCD 面积的最小值.[解析] (1)由抛物线的定义知点P 的轨迹为以F 为焦点的抛物线,p 2=32,即p =3,∴w :x 2=6y .(2)设AC :y =kx +32,由⎩⎪⎨⎪⎧y =kx +32(k ≠0)x 2=6y ⇒x 2-6kx -9=0. 设A (x 1,y 1),C (x 2,y 2),易求|AC |=6(k 2+1), ∵l 1与l 2互相垂直,∴以-1k 换k 得|BD |=6⎝⎛⎭⎫1k 2+1, S ABCD =12|AC ||BD |=12×6(k 2+1)×6⎝⎛⎭⎫1k 2+1 =18⎝⎛⎭⎫2+k 2+1k 2≥18(2+2)=72, 当k =±1时取等号,∴四边形ABCD 面积的最小值为72.。

高考数学复习 83 直线与圆的位置关系及空间直角坐标系课件 新人教A

高考数学复习 83 直线与圆的位置关系及空间直角坐标系课件 新人教A

B.(- 2, 2)
C.(- 42, 42)
D.(-18,18)
分析:可写出直线的点斜式方程,由相交知 d<r.
解析:直线
l
的方程为
y=k(x+2),由题意得,
|3k| 1+k2
<1.解得- 42<k< 42,故选 C.
答案:C
(理)(2010·江西文,2011·河南五市联考)直线 y=kx+ 3 与圆 (x- 2)2+(y- 3)2= 4 相交 于 M, N 两点,若
答案:B
(文)若过点 A(4,0)的直线 l 与曲线(x-2)2+y2=1 有
公共点,则直线 l 的斜率的取值范围为( )
3.待定系数法 求圆的方程、求圆的切线方程等解析几何的许多问 题都要利用待定系数法,要通过训练深刻领会熟练掌握 待定系数法.
4.空间特殊点的特征 (1)空间点的对称特征 关于坐标平面、坐标轴对称点的特点是:关于谁谁 不变,其它变相反.如点 P(1,4,-3)关于 y 轴对称点,y 坐标不变,其余相反为 P′(-1,4,3). (2)坐标轴、坐标平面上点的坐标特征:无谁谁为 0. 如 xOy 平面上的点为(x,y,0).
(2)代数方法:由Axx-+aB2y++Cy-=b02=r2 消元得到的一
元二次方程的判别式为 Δ,则 Δ>0⇔直线与圆_相__交__;Δ=0⇔直线与圆_相__切__; Δ<0⇔直线与圆_相__离___.
2.圆的切线 (1)求过圆上的一点(x0,y0)的圆的切线方程:先求切 点与圆心连线的斜率 k,再由垂直关系知切线斜率为-1k, 由点斜式方程可求得切线方程.如果 k=0 或 k 不存在, 则可直接得切线方程为 y=y0 或 x=x0.
②x 轴上的点形如(x,0,0),y 轴上的点形如(0,y,0), z 轴上的点形如(0,0,z);

14年高考数学真题及解析--圆和直线的位置关系

14年高考数学真题及解析--圆和直线的位置关系

1、[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=02.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-83.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3 C.⎣⎡⎦⎤0,π6 D.⎣⎡⎦⎤0,π34.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .45、[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .496.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-117.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.8、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.9、[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12 C. [-2,2] D. ⎣⎡⎦⎤-22,2210.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.11.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.1、D 2.B 3.D 4.B 5 C6.C [解析] 依题意可得C 1(0,0),C 2(3,4),则|C 1C 2|=33+42=5.又r 1=1,r 2=25-m ,由r 1+r 2=25-m +1=5,解得m =9.7、25 55 [解析] 由题意可得,圆心为(2,-1),r =2,圆心到直线的距离d =|2-2-3|12+22=35 5,所以弦长为2r 2-d 2=2 4-95=2555 . 8、439、A10.(x -2)2+(y -1)2=411.0或6。

最新新人教a版高中数学(必修242《直线、圆的位置关系》ppt课件课件ppt

最新新人教a版高中数学(必修242《直线、圆的位置关系》ppt课件课件ppt
plasminogen activators.
• Humoral plasminogen activators • Tissue plasminogen activators • Fibrin or fibrinogen degradation products
FDP (Significant biological activity)
港口
.
O
轮船
例1、如图,已知直线l:3x+y-6和圆心为C的 圆x2+y2-2y-4=0,判断直线l与圆的位置关系; 如果相交,求它们的交点坐标。 y
l B
C. A
O
x
解法一:由直线l 与圆o 的方程,得
{ 3xy60 ① x2y22y40 ②
消去y ,得 x23x20
因为 ( 3 )24 1210
• Fragments X, Y and E
(potent antithrombins)
2
所以,所求直线 l 有两条,它们的方程分别为
求解
y31x3 或 y32x3
2
即 x2y90 或 2xy30
求圆心在直线 3xy 0上 与
x 轴相切,且被直线 x y 0
截得的弦长为 2 7 的圆的方程
问题:一艘轮船在沿直线返回港口的途中,接
到气象台的台风预报:台风中心位于轮船正西 70km处,受影响的范围是半径长为30km的圆形区 域。已知港口位于台风中心正北40km处,如果这 艘轮船不改变航线,那么它是否会受到台风的影 响?
一、DIC原因和发病机制 二、促进DIC发生发展的因素(诱发困素) 三、DIC的分期和分型 四、DIC的功能代谢变化(病理生理变化) 五、DIC防治的病理生理基础

《直线、圆的位置关系》人教A版高中数学必修2

《直线、圆的位置关系》人教A版高中数学必修2

《直线、圆的位置关系》人教A版高中数学必修24.2直线、圆的位置关系4.2.1直线与圆的位置关系点到直线的距离公式,圆的标准方程和一般方程分别是什么?第一幅请同学们观察太阳与海平面的关系第二幅第三幅下面我们以太阳的起落为例.以蓝线为水平线,圆圈为太阳!注意观察!!一、直线与圆的位置关系1.直线和圆只有一个公共点,叫做直线和圆相切.2.直线和圆有两个公共点,叫做直线和圆相交.3.直线和圆没有公共点时,叫做直线和圆相离..l圆心O到直线l的距离d半径rod>r1.直线l和⊙O相离,此时d与r大小关系为_________ll.半径rod=r2.直线l和⊙O相切,此时d与r大小关系为_________l.半径rodr直线与圆相离直线l:Ax+By+C=0,圆O:(x-a)2+(y-b)2=r2(r>0)d=r直线与圆相切d、直线与圆的位置关系的判定方法:1.利用圆心到直线的距离d与半径r的大小关系判断:△<0n=0直线与圆相离n=1△=0直线与圆相切n=2△>0直线与圆相交2.利用直线与圆的公共点的个数进行判断:ylB.CAOx例1.如图,已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系;如果相交,求它们交点的坐标.方法二:(代数法)判断直线l与圆的位置关系,就是看由它们的方程组有无实数解、有几组实数解.方法一:(几何法)可以依据圆心到直线的距离与半径长的关系,判断直线与圆的位置关系;1.判断直线与圆的位置关系.【练习】解:方程经过配方,得圆心坐标是(1,0),半径r=1.圆心到直线3x+4y+2=0的距离因为d=r,所以直线3x+4y+2=0与圆相切.解:将圆的方程写成标准形式,得x2+(y+2)2=25,所以,圆心的坐标是(0,-2),半径长r=5.如图,因为直线l被圆所截得的弦长是,所以弦心距为即圆心到所求直线l的距离为.例2已知过点M(-3,-3)的直线l被圆x2+y2+4y-21=0所截得的弦长为,求直线l的方程.因为直线l过点M(-3,-3),所以可设所求直线l的方程为y+3=k(x+3),即kx-y+3k-3=0.根据点到直线的距离公式,得到圆心到直线l的距离因此,即两边平方,并整理得到2k2-3k-2=0,解得k=,或k=2.所以,所求直线l有两条,它们的方程分别为y+3=(x+3),或y+3=2(x+3).即x+2y+9=0,或2x-y+3=0.【练习】2.已知直线4x+3y-35=0与圆心在原点的圆C相切,求圆C的方程.解:由题意可知圆C的圆心为(0,0),已知直线4x+3y-35=0与圆C相切∴圆C的半径r=∴圆C的方程为x2+y2=721.⊙O的半径为3,圆心O到直线l的距离为d,若直线l与⊙O没有公共点,则d为()A.d>3B.d<3C.d≤3D.d=32.圆心O到直线的距离等于⊙O的半径,则直线和⊙O的位置关系是()A.相离B.相交C.相切D.相切或相交AC3.直线x-y-2=0与圆(x-1)2+(y-1)2=1的位置关系为________.相离4.直线x+2y-1=0和圆x2-2x+y2-y+1=0的位置关系是______.相交5.圆心为M(3,-5),且与直线x-7y+2=0相切的圆的方程为.(x-3)2+(y+5)2=32直线Ax+By+C=0(A,B不同时为零)和圆(x-a)2+(y-b)2=r2,则圆心(a,b)到此直线的距离为则有以下关系:位置相离相切相交d与rd>rd=rddd交点个数0个1个2个判断直线和圆的位置关系几何方法代数方法求圆心坐标及半径r(配方法)消去y圆心到直线的距离d(点到直线距离公式)作业设计课本P132习题4.2A组1、2、3。

2014年文数高考母题题源系列 14直线与圆的位置关系 Word版含解析]

2014年文数高考母题题源系列 14直线与圆的位置关系 Word版含解析]

【母题来源】2014全国II 卷文–12 【母题原题】设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )⎡⎣ (D )⎡⎢⎣⎦【命题意图】本题主要考查考查直线与圆的位置关系,考查数形结合能力和逻辑思维能力、分析问题和解决问题的能力、化归能力.【方法技巧】1.判断直线与圆的位置关系常见的有两种方法(1)代数法:――――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交,=0⇔相切,<0⇔相离.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d<r ⇔相交,d =r ⇔相切,d>r ⇔相离.2.圆的弦长的常用求法(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则(l2)2=r 2-d 2(2)代数方法:运用韦达定理及弦长公式: |AB|=1+k 2|x 1-x 2|=+k 21+x 22-4x 1x 2].注意:常用几何法研究圆的弦的有关问题.求过一点的圆的切线方程时,首先要判断此点是否在圆上.然后设出切线方程,用待定系数法求解.注意斜率不存在情形.【试题拓展】求圆的的切线方程有两种情况,一是求过圆上一点()00,P x y 圆的切线方程,其方法如下:先求斜率(利用圆的切线垂直于经过切点的半径来求),再由点斜式写圆的切线方程;二是求过圆外一点()00,P x y 圆的切线方程,有两条,其方法如下:若斜率存在,可用待定系数法,再利用圆心到切线的距离等于半径列出关系式求出切线的斜率即可.【拓展一】求过圆2210x y +=上一点(2M 的圆的切线方程.1.【2014高考四川卷文第9题】设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A 、B 、C 、D 、 【答案】B2.【2014高考浙江卷文第5题】已知圆02222=+-++a y x y x 截直线02=++y x 所得弦的长度为4,则实数a 的值为( )A.2-B. 4-C. 6-D.8-3.【2014高考安徽卷文第6题】过点(P 的直线l 与圆122=+y x 有公共点,则直线l的倾斜角的取值范围是( )A.]60π,( B.]30π,( C.]60[π, D.]30[π,4. 【2014高考北京卷文第7题】已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( )A.7B.6C.5D.45.【黑龙江省佳木斯市第一中学2014届高三第三次调研】圆心在曲线2(0)y x x=>上,且与直线210x y ++=相切的面积最小的圆的方程为( ) A.22(1)(2)5x y -+-= B.22(2)(1)5x y -+-= C.22(1)(2)25x y -+-= D.22(2)(1)25x y -+-=6【北京市西城区2014届高三上学期期末考试数学试题】已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( )(A )2y x =+-(B )1y x =+-(C )2y x =-+ (D )1y x =+-7.【【百强校】2013-2014学年浙江省嘉兴一中高二下学期期中文科数学卷】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线1:20l x y a -+=,22:210l x y a -++=,和圆:22240x y x ++-=相切,则实数a 的取值范围是( )A .7a >或3a <-B .a >a <C .3a -≤≤7a ≤D .7a ≥或3a ≤- 【答案】C 【解析】8.【2014高考大纲卷文第16题】直线l 1和l 2是圆222x y +=的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的交角的正切值等于 .的圆心,且与直线10x y ++=垂直,则l 的方程是 ( ).20.20.30.30A x y B x y C x y D x y +-=-+=+-=-+=30x y -+=,故选D .考点:圆的方程,直线的垂直,直线方程.10. 【2014高考湖北卷文第17题】 已知圆1:22=+y x O 和点)0,2(-A ,若定点)2)(0,(-≠b b B 和常数λ满足:对圆O 上那个任意一点M ,都有||||MA MB λ=,则(1)=b ;(2)=λ .11.【2014高考湖南卷文第6题】若圆221:1C x y +=与圆222:680C x y x y m +--+=,则m =( ).21A .19B .9C .11D -12.【2014高考江苏卷第9题】在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .13.【2014高考山东卷文第14题】 圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为32,则圆C 的标准方程为 .15.【2014高考全国1文第20题】已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积16.【组卷网合作校特供】已知圆22:1O x y +=和点(1,4)M . (1)过点M 向圆O 引切线,求切线的方程;(2)求以点M 为圆心,且被直线28y x =-截得的弦长为8的圆M 的方程;(3)设P 为(2)中圆M 上任意一点,过点P 向圆O 引切线,切点为Q ,试探究:平面内是否存在一定点R ,使得PQPR为定值?若存在,请求出定点R 的坐标,并指出相应的定值;若不存在,请说明理由.【答案】(1):1x =或158170x y -+= (2)22(1)(4)36x y -+-=(3)存在定点R (1,4)--,此时PQ PR 为定值2或定点R 14(,)1717--,此时PQ PR 为定值617.【2013-2014学年福建省清流一中高一下学期第三阶段模块考数学试卷】已知圆22:4O x y +=和圆22:(4)1C x y +-=.(1)判断圆O和圆C的位置关系;(2)过圆C的圆心C作圆O的切线l,求切线l的方程;(3)过圆C的圆心C作动直线m交圆O于A,B两点.试问:在以AB为直径的所有圆中,M?若存在,求出圆P的方程;若不存在,请是否存在这样的圆P,使得圆P经过点(2,0)说明理由.18.【【百强校】2014届甘肃省兰州一中高考模拟四文科数学试卷】给定椭圆C :22221(0)x y a b a b +=>>,称圆心在原点O 的圆是椭圆C 的“准圆”.若椭圆C 的一个焦点为0)F ,,其短轴上的一个端点到F . (1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12l l ,交“准圆”于点M N ,.(ⅰ)当点P 为“准圆”与y 轴正半轴的交点时,求直线12l l ,的方程并证明12l l ; (ⅱ)求证:线段MN 的长为定值.考点:直线与圆及圆锥曲线的位置关系问题.。

(安徽专用)2014届高考数学 第八章 第四节 直线、圆的位置关系课件 文 新人教A版

(安徽专用)2014届高考数学 第八章 第四节 直线、圆的位置关系课件 文 新人教A版

【尝试解答】 (1)∵圆O1的方程为:x2+(y+1)2=4, ∴圆心O1(0,-1),半径r1=2. 设圆O2的半径为r2,由两圆外切知|O1O2|=r1+r2, 又|O1O2|= (2-0)2+(1+1)2=2 2, ∴r2=|O1O2|-r1=2 2-2, 圆O2的方程为(x-2)2+(y-1)2=12-8 2. (2)设圆O2的方程为(x-2)2+(y-1)2=r2 2, 又圆O1的方程为:x2+(y+1)2=4, 两式相减得两圆公共弦AB所在的直线方程为:4x+4y 2 +r2 -8=0,
第四节
直线、圆的位置关系
1.判断直线与圆的位置关系常用的两种方法 (1)几何法:利用圆心到直线的距离d和圆半径r的大小 关系: d>r ⇔相离. d<r ⇔相交;_______ d=r ⇔相切;_____ _______
2.圆与圆的位置关系 设圆O1:(x-a1)2+(y-b1)2=r2 1(r1>0), 2 圆O2:(x-a2)2+(y-b2)2=r2 (r2>0).
1 作O1H⊥AB于H,则|AH|= |AB|= 2, 2
2 ∵r1=2,∴|O1H|= r2 - | AH | = 2, 1 2 |4×0+4×(-1)+r2 - 8| | r 2 2-12| 又|O1H|= = , 2 2 4 2 4 +4
|r2 2-12| 2 ∴ = 2,得r2 = 4 或 r 2 2=20, 4 2 圆O2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.
方法 位置关系 相离 外切
代数法:联立两圆 几何法:圆心距d与r1, 方程组成方程组的 r2的关系 解的情况 d>r1+r2 无解 ______________ ___________ d=r1+r2 一组实数解 ______________ ________________ |r1-r2|<d<r1+r2 _____________________ d=|r1-r2|(r1≠r2) ___________________ 0____________( ≤d<|r1-r2| r ≠r ) 1 2 两组不同的实数解 ___________________ 一组实数解 ________________ 无解 ___________

人教a版高考数学(理)一轮课件:8.3空间点、直线、平面间的位置关系

人教a版高考数学(理)一轮课件:8.3空间点、直线、平面间的位置关系
第3讲
空间点、直线、平面间的 位置关系
考纲展示
理解空间直线、平面位置关系的定义 , 并了 解以下可以作为推理依据的公理和定理. 公理 1: 如果一条直线上的两点在一个平面 内, 那么这条直线上所有的点都在此平面内. 公理 2:过不在同一条直线上的三点,有且只 有一个平面. 公理 3 : 如果两个不重合的平面有一个公共 点 ,那么它们有且只有一条过该点的公共直 线. 公理 4: 平行于同一条直线的两条直线平行. 定理 : 空间中如果一个角的两边与另一个角 的两边分别平行, 那么这两个角相等或互补.
)

A.空间中不同三点确定一个平面 B.空间中两两相交的三条直线确定一个平面 C.一条直线和一个点能确定一个平面 D.梯形一定是平面图形 【答案】D 【解析】空间中不共线的三点确定一个平面,A 错;空间中两两相交于不同 点的三条直线确定一个平面,B 错;经过直线和直线外一点确定一个平面,C 错;D 正确.
∵ E,F 分别是 AB,AA1 的中点,∴ EF∥BA1. 又 A1B∥D1C,∴ EF∥CD1.故 E,C,D1,F 四点共面. (2)∵ EF∥CD1,EF<CD1,∴ CE 与 D1F 必相交,设交点为 P,则由 P∈CE, CE⊂ 平面 ABCD,得 P∈平面 ABCD.同理 P∈平面 ADD1A1.又平面 ABCD∩ 平面 ADD1A1=DA,∴ P∈直线 DA.故 CE,D1F,DA 三线共点.
(填序号).
①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面; ③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面. 【答案】①② 【解析】没有公共点的两条直线平行或异面,故命题①错;命题②错,此时两 直线有可能相交;命题③正确,因为若直线 a 和 b 异面,c∥a,则 c 与 b 不可能 平行,用反证法证明如下:若 c∥b,又 c∥a,则 a∥b,这与 a,b 异面矛盾,故 c b; 命题④也正确,若 c 与两异面直线 a,b 都相交,由公理 3 可知,a,c 可以确定一 个平面,b,c 也能确定一个平面,这样,a,b,c 共可确定两个平面.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高考数学人教A 版课后作业1.(2011·山东烟台调研)圆x 2+y 2-2x +4y -4=0与直线2tx -y -2-2t =0(t ∈R)的位置关系为( )A .相离B .相切C .相交D .以上都有可能 [答案] C[解析] ∵直线2t (x -1)-(y +2)=0过圆心(1,-2),∴直线与圆相交.[点评] 直线方程中含参数t ,故可由直线方程过定点来讨论,∵2t (x -1)-(y +2)=0,∴直线过定点(1,-2),代入圆方程中,12+(-2)2-2×1+4×(-2)-4=-9<0,∴点(1,-2)在圆内,故直线与圆相交.2.(2011·唐山二模)圆x 2+y 2=50与圆x 2+y 2-12x -6y +40=0的公共弦长为( ) A. 5 B. 6 C .2 5 D .2 6[答案] C[解析] x 2+y 2=50与x 2+y 2-12x -6y +40=0作差,得两圆公共弦所在的直线方程为2x +y -15=0,圆x 2+y 2=50的圆心(0,0)到2x +y -15=0的距离d =35,因此,公共弦长为250-352=25,选C.3.(2011·山东济宁一模)过点(-2,0)且倾斜角为π4的直线l 与圆x 2+y 2=5相交于M 、N两点,则线段MN 的长为( )A .2 2B .3C .2 3D .6[答案] C[解析] l 的方程为x -y +2=0,圆心(0,0)到直线l 的距离d =2,则弦长|MN |=2r 2-d 2=2 3.4.(文)已知圆x 2+y 2=9与圆x 2+y 2-4x +4y -1=0关于直线l 对称,则直线l 的方程为( )A .4x -4y +1=0B .x -4=0C .x +y =0D .x -y -2=0[答案] D[解析] 两圆方程相减得4x -4y +1=9, 即x -y -2=0,选D.[点评] 直线l 为两圆心连线段的中垂线.(理)已知圆O 1:(x -a )2+(y -b )2=4,O 2:(x -a -1)2+(y -b -2)2=1(a 、b ∈R),那么两圆的位置关系是( )A .内含B .内切C .相交D .外切 [答案] C[解析] 两圆半径分别为2,1,因为1<|O 1O 2|=5<3,所以两圆相交. 5.直线x sin θ+y cos θ=1+cos θ与圆x 2+(y -1)2=4的位置关系是( ) A .相离 B .相切 C .相交 D .以上都有可能 [答案] C[解析] 圆心到直线的距离d =|cos θ-1-cos θ|sin 2θ+cos 2θ=1<2, ∴直线与圆相交.6.(2011·江南十校联考)若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为( )A .2x +y -3=0B .x +y -1=0C .x -y -3=0D .2x -y -5=0 [答案] C[解析] 由题知圆心C 的坐标为(1,0),因为CP ⊥AB ,k CP =-1,所以k AB =1,所以直线AB 的方程为y +1=x -2,即x -y -3=0,故选C.7.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,O 为原点,且OA →·OB →=2,则实数a 的值等于________.[答案] ± 6[解析] 本题考查直线与圆的位置关系和向量的运算.设OA →、OB →的夹角为θ,则OA →·OB →=R 2·cos θ=4cos θ=2,∴cos θ=12,∴θ=π3,则弦AB 的长|AB →|=2,弦心距为3,由圆心(0,0)到直线的距离公式有:|0+0-a |2=3,解之得a =± 6. 8.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.[答案] (x -2)2+(y -2)2=2[解析] ∵⊙A :(x -6)2+(y -6)2=18的圆心A (6,6),半径r 1=32,∵A 到l 的距离52,∴所求圆B 的直径2r 2=22, 即r 2= 2.设B (m ,n ),则由BA ⊥l 得n -6m -6=1, 又∵B 到l 距离为2,∴|m +n -2|2=2,解出m =2,n =2.1.(2011·东北三校二模)与圆x 2+(y -2)2=1相切,且在两坐标轴上截距相等的直线共有( )A .2条B .3条C .4条D .6条[答案] C[解析] 由题意可知,过原点且与圆相切的直线共有2条,此时在两坐标轴上的截距都是0;当圆的切线在两坐标轴上的截距相等且不为零时,易知满足题意的切线有2条;综上共计4条.2.(2011·江西理,9)若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( )A. (-33,33) B. (-33,0)∪(0, 33) C. [-33 ,33] D .( -∞, -33 )∪( 33,+∞) [答案] B[解析] 曲线C 1表示以(1,0)为圆心,半径为1的圆,曲线C 2:y (y -mx -m )=0表示直线y =0与y -mx -m =0,若有四个不同的交点,则直线y -mx -m =0与圆有两个不同的交点且不过点(0,0),则由|2m |1+m2<1得,-33<m <33,且m ≠0,故选B. 3.设A 为圆C :(x +1)2+y 2=4上的动点,PA 是圆的切线,且|PA |=1,则P 点的轨迹方程为( )A .(x +1)2+y 2=25B .(x +1)2+y 2=5 C .x 2+(y +1)2=25 D .(x -1)2+y 2=5 [答案] B[解析] 设P (x ,y ),由题意可知|PC |2=|PA |2+|AC |2=12+22=5,所以P 点轨迹为圆,圆心为C (-1,0),半径为 5.∴方程为(x +1)2+y 2=5,故选B.4.(文)(2011·海淀期末)已知直线l :y =-1,定点F (0,1),P 是直线x -y +2=0上的动点,若经过点F 、P 的圆与l 相切,则这个圆面积的最小值为( )A.π2B .πC .3πD .4π[答案] B[解析] 由于圆经过点F 、P 且与直线y =-1相切,所以圆心到点F 、P 与到直线y =-1的距离相等.由抛物线的定义知圆心C 在以点(0,1)为焦点的抛物线x 2=4y 上,圆与直线x -y +2=0的交点为点P .显然,圆心为抛物线的顶点时,半径最小为1,此时圆面积最小,为π.故选B.(理)(2010·宁夏联考)若关于x ,y 的方程组⎩⎪⎨⎪⎧ax +by =1x 2+y 2=10有解,且所有的解都是整数,则有序数对(a ,b )所对应的点的个数为( )A .24B .28C .32D .36 [答案] C[解析] x 2+y 2=10的整数解为:(1,3),(3,1),(1,-3),(-3,1),(-1,3),(3,-1),(-1,-3),(-3,-1),所以这八个点两两所连的不过原点的直线有24条,过这八个点的切线有8条,每条直线确定了唯一的有序数对(a ,b ),所以有序数对(a ,b )所对应的点的个数为32.5.(文)(2011·济南三模)双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r=________.[答案]3[解析] 由双曲线的方程可知,其中的一条渐近线方程为y =22x ,圆的圆心坐标为(3,0),则圆心到渐近线的距离d =|322|62=3,所以圆的半径为 3.(理)(2011·杭州二检)已知A ,B 是圆O :x 2+y 2=16上的两点,且|AB |=6,若以AB 为直径的圆M 恰好经过点C (1,-1),则圆心M 的轨迹方程是________.[答案] (x -1)2+(y +1)2=9[解析] 设圆心为M (x ,y ),由|AB |=6知,圆M 的半径r =3,则|MC |=3,即x -12+y +12=3,所以(x -1)2+(y +1)2=9.6.(文)(2011·新课标全国文,20)在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上.(1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A ,B 两点,且OA ⊥OB ,求a 的值.[解析] (1)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为r =32+t -12=3.所以圆C 的方程为(x -3)2+(y -1)2=9.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组:⎩⎪⎨⎪⎧x -y +a =0,x -32+y -12=9.消去y ,得到方程2x 2+(2a -8)x +a 2-2a +1=0.由已知可得,判别式△=56-16a -4a 2>0. 因此,x 1,2=8-2a ±56-16a -4a 24,从而x 1+x 2=4-a ,x 1x 2=a 2-2a +12. ①由于OA ⊥OB ,可得x 1x 2+y 1y 2=0.又y 1=x 1+a ,y 2=x 2+a ,所以2x 1x 2+a (x 2+x 2)+a 2=0. ② 由①,②得a =-1,满足Δ>0,故a =-1.(理)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|PA |、|PO |、|PB |成等比数列,求PA →·PB →的取值范围.[解析] (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2,∴圆O 的方程为x 2+y 2=4. (2)由(1)知A (-2,0),B (2,0).设P (x ,y ),由|PA |、|PO |、|PB |成等比数列得,x +22+y 2·x -22+y 2=x 2+y 2,即x 2-y 2=2.PA →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2 =2(y 2-1).由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4x 2-y 2=2,由此得y 2<1.所以PA →·PB →的取值范围为[-2,0).7.已知定直线l :x =-1,定点F (1,0),⊙P 经过 F 且与l 相切. (1)求P 点的轨迹C 的方程.(2)是否存在定点M ,使经过该点的直线与曲线C 交于A 、B 两点,并且以AB 为直径的圆都经过原点;若有,请求出M 点的坐标;若没有,请说明理由.[解析] (1)由题设知点P 到点F 的距离与点P 到直线l 的距离相等. ∴点P 的轨迹C 是以F 为焦点,l 为准线的抛物线 ∴点P 的轨迹C 的方程为:y 2=4x(2)设AB 的方程为x =my +n ,代入抛物线方程整理得:y 2-4my -4n =0设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=4my 1y 2=-4n .∵以AB 为直径的圆过原点,∴OA ⊥OB , ∴y 1y 2+x 1x 2=0.即y 1y 2+y 214·y 224=0. ∴y 1y 2=-16,∴-4n =-16,n =4.∴直线AB :x =my +4恒过M (4,0)点.1.(2010·广东执信中学)已知点P (a ,b )(ab ≠0)是圆O :x 2+y 2=r 2内一点,直线m 是以P 为中点的弦所在的直线,若直线n 的方程为ax +by =r 2,则( )A .m ∥n 且n 与圆O 相离B .m ∥n 且n 与圆O 相交C .m 与n 重合且n 与圆O 相离D .m ⊥n 且n 与圆O 相离 [答案] A[解析] 由点P (a ,b )(ab ≠0)是圆O :x 2+y 2=r 2内一点得,a 2+b 2<|r |,即a 2+b 2<r 2,直线OP 的斜率为k 1=b a,故直线m 的斜率k m =-1k 1=-a b,其方程为ax +by =a 2+b 2,又直线n :ax +by =r 2,故m ∥n ;另一方面,圆心O 到直线n :ax +by =r 2的距离为d =|-r 2|a 2+b 2>r 2|r |=|r |,故直线n 与圆O 相离.2.设直线x +ky -1=0被圆O :x 2+y 2=2所截弦的中点的轨迹为M ,则曲线M 与直线x -y -1=0的位置关系是( )A .相离B .相切C .相交D .不确定 [答案] C[解析] ∵直线x +ky -1=0过定点N (1,0),且点N (1,0)在圆x 2+y 2=2的内部,∴直线被圆所截弦的中点的轨迹M 是以ON 为直径的圆,圆心为P ⎝ ⎛⎭⎪⎫12,0,半径为12,∵点P ⎝ ⎛⎭⎪⎫12,0到直线x -y -1=0的距离为24<12, ∴曲线M 与直线x -y -1=0相交,故选C.3.已知直线ax +by -1=0(a ,b 不全为0)与圆x 2+y 2=50有公共点,且公共点的横、纵坐标均为整数,那么这样的直线共有( )A .66条B .72条C .74条D .78条 [答案] B[解析] 因为在圆x 2+y 2=50上,横坐标、纵坐标都为整数的点一共有12个,即:(1,±7),(5,±5),(7,±1),(-1,±7),(-5,±5),(-7,±1),经过其中任意两点的割线有12×(12×11)=66条,过每一点的切线共有12条,可知与该圆有公共点且公共点的横坐标、纵坐标都为整数的直线共有66+12=78条,而方程ax +by -1=0表示的直线不过原点,上述78条直线中过原点的直线有6条,故符合条件的直线共有78-6=72条.故选B.4.直线l :2x sin α+2y cos α+1=0,圆C :x 2+y 2+2x sin α+2y cos α=0,l 与C 的位置关系是( )A .相交B .相切C .相离D .不能确定 [答案] A[解析] 圆心C (-sin α,-cos α)到直线l 的距离为d =|-2sin 2α-2cos 2α+1|2sin α2+2cos α2=12,圆半径r =1, ∵d <r ,∴直线l 与⊙C 相交.5.(2010·广东茂名)圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎝ ⎛⎭⎪⎫-∞,14 [答案] A[解析] 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝⎛⎭⎪⎫a +b 22=14,故选A. 6.若动圆C 与圆C 1:(x +2)2+y 2=1外切,与圆C 2:(x -2)2+y 2=4内切,则动圆C 的圆心的轨迹是( )A .两个椭圆B .一个椭圆及双曲线的一支C .两双曲线的各一支D .双曲线的一支 [答案] D[解析] 设动圆C 的半径为r ,圆心为C ,依题意得 |C 1C |=r +1,|C 2C |=r -2, ∴|C 1C |-|C 2C |=3,故C 点的轨迹为双曲线的一支.7.(2010·山东聊城模考)若在区间(-1,1)内任取实数a ,在区间(0,1)内任取实数b ,则直线ax-by=0与圆(x-1)2+(y-2)2=1相交的概率为( )A.38B.516C.58D.316[答案] B[解析] 由题意知,圆心C(1,2)到直线ax-by=0距离d<1,∴|a-2b|a2+b2<1,化简得3b -4a<0,如图,满足直线与圆相交的点(a,b)落在图中阴影部分,E⎝⎛⎭⎪⎫34,1,∵S矩形ABCD=2,S梯形OABE=⎝⎛⎭⎪⎫14+1×12=58,由几何概型知,所求概率P=582=516.8.(2011·苏州市调研)已知直线kx-y+1=0与圆C:x2+y2=4相交于A,B两点,若点M在圆C上,且有OM→=OA→+OB→(O为坐标原点),则实数k=________.[答案]0[解析] 画图分析可知(图略),当A,B,M均在圆上,平行四边形OAMB的对角线OM=2,此时四边形OAMB为菱形,故问题等价于圆心(0,0)到直线kx-y+1=0的距离为1.所以d=1k2+1=1,解得k=0.。

相关文档
最新文档