三角函数必考题型小综合(一)

合集下载

三角函数综合检测试题(含解析)

三角函数综合检测试题(含解析)

三角函数综合检测第Ⅰ部分(选择题,共60分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知点(tan ,cos )P αα在第三象限,则角α在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限 2.函数2sin6x y π=,x ∈R 的最小正周期是( ) A .12 B .6 C .12πD .6π 3.下列函数中,既是奇函数又在区间()1,1-上是增函数的是( )A .1y x =B .tan y x =C .sin y x =-D .cos y x =4.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为( )A .135平方米B .270平方米C .540平方米D .1080平方米5.已知cos α=,()sin αβ-=,α、β0,2π⎛⎫∈ ⎪⎝⎭,则cos β的值为( )A BC D .12 6.已知函数()sin(2)()2f x x x R π=-∈下列结论错误的是( )A .函数()f x 的最小正周期为πB .函数()f x 是偶函数C .函数()f x 的图象关于直线4x π=对称 D .函数()f x 在区间[0,]2π上是增函数7.函数y =2x sin2x 的图象可能是A .B .C .D .8.函数()sin()f x A x ωϕ=+ (0,0,2A πωϕ>><)的部分图象如图所示,若12,,63x x ππ⎛⎫∈- ⎪⎝⎭,且()()12f x f x =,则12()f x x +=( )A .1B .12C .22D .32二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 全部选对的得5分,部分选对的得3分,有选错的得0分.9.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数 B .在区间0,2π⎛⎫ ⎪⎝⎭上单调递增 C .最大值为2 D .其图象关于点,04π⎛⎫ ⎪⎝⎭对称 10.定义:角θ与ϕ都是任意角,若满足2πθϕ+=,则称θ与ϕ“广义互余”.已知1sin()4πα+=-,则下列角β中,可能与角α“广义互余”的是( )A .15sin β=B .1cos()4πβ+=C .tan 15β=D .15tan β= 11.关于函数f (x )=sin|x |+|sin x |的叙述正确的是( )A .f (x )是偶函数B .f (x )在区间,2ππ⎛⎫ ⎪⎝⎭单调递增 C .f (x )在[-π,π]有4个零点D .f (x )的最大值为212.下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +) B .πsin(2)3x - C .πcos(26x +) D .5πcos(2)6x - 第Ⅱ部分(选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分13.若2sin 3x =-,则cos2x =__________. 14.函数()sin cos f x ax ax =的最小正周期是π,则实数a =________ 15.函数cos y x π=的单调减区间为__________.16.在平面直角坐标系xOy 中,角α与角β均以x 轴的非负半轴为始边,它们的终边关于x 轴对称.若1sin 3α=,则sin β=__________,cos 2β=__________. 四、解答题:本小题共6小题,共70分。

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析

高三数学三角函数综合试题答案及解析1.已知函数,则的值为 .【答案】.【解析】∵,两边求导,∴,令,得,∴,∴,即.【考点】导数的运用.2.已知函数.(1)求的最小正周期和最小值;(2)若,且,求的值.【答案】(1),;(2).【解析】(1)首先根据二倍角公式进行化简,并将函数的解析式化为的形式,然后利用最小正周期公式,最小值为,可得结果;(2)将代入,化简,利用得到三角函数值,根据,得到的值.此题考察三角函数的化简求值,属于基础题.试题解析:(1)解:, 4分,,所以的最小正周期为,最小值为. 8分(2)解:,所以, 11分因为,,所以,因此的值为. 13分【考点】1.三角函数的化简;2.三角函数的求值.3.函数的值域为.【答案】【解析】令,则.【考点】1、三角函数;2、二次函数;3、换元法.4.已知,,则x= .(结果用反三角函数表示)【答案】【解析】本题关键是注意反三角函数值的取值范围,适当利用诱导公式,,,而,故,即.【考点】反正弦函数.5.已知函数.(Ⅰ)求的单调减区间;(Ⅱ)求在区间上最大值和最小值.【答案】(Ⅰ)函数的单调减区间是:;(Ⅱ).【解析】(Ⅰ)将降次化一,化为的形式,然后利用正弦函数的单调区间,即可求得其单调递增区间.(Ⅱ)由(Ⅰ)可得,又的范围为,由此可得的范围,进而求得的范围.试题解析:.函数的单调减区间是:.的范围为,所以,所以即:【考点】1、三角恒等变换;2、三角函数的单调区间及范围.6.如图,两座建筑物的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9和15,从建筑物的顶部看建筑物的视角.⑴求的长度;⑵在线段上取一点点与点不重合),从点看这两座建筑物的视角分别为问点在何处时,最小?【答案】⑴;⑵当为时,取得最小值.【解析】⑴根据题中图形和条件不难想到作,垂足为,则可题中所有条件集中到两个直角三角形中,由,而在中,再由两角和的正切公式即可求出的值,又,可求出的值;⑵由题意易得在两直角三角形中,可得,再由两角和的正切公式可求出的表达式,由函数的特征,可通过导数求出函数的单调性和最值,进而求出的最小值,即可确定出的最小值.试题解析:⑴作,垂足为,则,,设,则 2分,化简得,解之得,或(舍)答:的长度为. 6分⑵设,则,. 8分设,,令,因为,得,当时,,是减函数;当时,,是增函数,所以,当时,取得最小值,即取得最小值, 12分因为恒成立,所以,所以,,因为在上是增函数,所以当时,取得最小值.答:当为时,取得最小值. 14分【考点】1.两角和差的正切公式;2.直角三角形中正切的表示;3.导数在函数中的运用7.已知以角为钝角的的三角形内角的对边分别为、、,,且与垂直.(1)求角的大小;(2)求的取值范围【答案】(1);(2).【解析】(1)观察要求的结论,易知要列出的边角之间的关系,题中只有与垂直提供的等量关系是,即,这正是我们需要的边角关系.因为要求角,故把等式中的边化为角,我们用正弦定理,,,代入上述等式得,得出,从而可求出角;(2)要求的范围,式子中有两个角不太好计算,可以先把两个角化为一个角,由(1),从而,再所其化为一个三角函数(这是解三角函数问题常用方法),下面只要注意这个范围即可.试题解析:1)∵垂直,∴(2分)由正弦定理得(4分)∵,∴,(6分)又∵∠B是钝角,∴∠B(7分)(2)(3分)由(1)知A∈(0,),, (4分),(6分)∴的取值范围是(7分)【考点】(1)向量的垂直,正弦定理;(2)三角函数的值域.8.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.9.若,且,则 ( )A.B.C.D.【答案】B.【解析】,故选B.【考点】1.三角函数诱导公式;2.三角函数平方关系.10.在△ABC中,角均为锐角,且,则△ABC的形状是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形【答案】D.【解析】又角均为锐角,则且中,,故选D.【考点】1.诱导公式;2.正弦函数的单调性.11.已知函数为常数).(Ⅰ)求函数的最小正周期;(Ⅱ)若时,的最小值为,求a的值.【答案】(Ⅰ)的最小正周期;(Ⅱ).【解析】(Ⅰ)求函数的最小正周期,由函数为常数),通过三角恒等变化,把它转化为一个角的一个三角函数,从而可求函数的最小正周期;(Ⅱ)利用三角函数的图像,及,可求出的最小值,让最小值等于,可求出a的值.试题解析:(Ⅰ)∴的最小正周期(Ⅱ)时,时,取得最小值【考点】三角函数的性质.12.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.【答案】(1);(2).【解析】(1)函数.通过二倍角的逆运算将单角升为二倍角,再化为一个三角函数的形式,从而求出函数的周期.(2)x的范围是所以正弦函数在是递增的.所以f(x)的范围是本题考查三角函数的单调性,最值,三角函数的化一公式,涉及二倍角的逆运算等.三角函数的问题要关注角度的变化,角度统一,二次式化为一次的,三角函数名称相互转化.切化弦,弦化切等数学思想.试题解析:(1) 4分6分故的最小正周期为 8分(2)当时, 10分故所求的值域为 12分【考点】1.三角函数的化一公式.2.二倍角公式.3.函数的单调性最值问题.13.下列命题中:函数的最小值是;②在中,若,则是等腰或直角三角形;③如果正实数满足,则;④如果是可导函数,则是函数在处取到极值的必要不充分条件.其中正确的命题是_____________.【答案】②③④.【解析】当,等号成立时当且仅当“即”,显然不成立,则命题①不正确;在中,若,则或,则是等腰或直角三角形,故②正确;由,因为正实数,满足,所以,故③正确;如果是可导函数,若函数在处取到极值,则,当,,但函数在处无极值,则是函数在处取到极值的必要不充分条件,故④正确.【考点】基本不等式、三角函数性质、不等式及导数的性质.14.已知向量,函数.(1)求函数的最小正周期;(2)已知分别为内角、、的对边, 其中为锐角,且,求和的面积.【答案】(1);(2).【解析】(1)根据题意,再利用二倍角公式及辅助角公式将化简为;(2)将代入,得,因为,所以,再利用余弦定理,解出,最后根据三角形面积公式求出. 试题解析:(1)由题意所以.由(1),因为,所以,解得.又余弦定理,所以,解得,所以.【考点】1.三角函数恒等变形;2.三角函数周期;3.余弦定理及三角形面积公式.15.已知,,其中,若函数,且函数的图象与直线y=2两相邻公共点间的距离为.(l)求的值;(2)在△ABC中,以a,b,c(分别是角A,B,C的对边,且,求△ABC周长的取值范围.【答案】(1);(2).【解析】(1)先根据,结合二倍角公式以及和角公式化简,求得,函数最大值是,那么函数的图像与直线两相邻公共点间的距离正好是一个周期,然后根据求解的值;(2)先将代入函数的解析式得到:,由已知条件以及,结合三角函数的图像与性质可以解得,所以,由正弦定理得,那么的周长可以表示为:,由差角公式以及和角公式将此式化简整理得,,结合角的取值以及三角函数的图像与性质可得.试题解析:(1), 3分∵,∴函数的周期,∵函数的图象与直线两相邻公共点间的距离为.∴,解得. 4分(2)由(Ⅰ)可知,,∵,∴,即,又∵,∴,∴,解得. 7分由正弦定理得:,所以周长为:, 10分,所以三角形周长的取值范围是. 12分【考点】1.和角公式;2.差角公式;3.二倍角公式;4.三角函数的图像与性质;5.正弦定理16.已知向量,(Ⅰ)当时,求的值;(Ⅱ)求函数在上的值域.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)本小题主要利用向量平行的坐标运算得到,然后解出,再利用二倍角正切公式可得;(Ⅱ)本小题首先化简函数解析式,然后根据三角函数的图像与性质,得到三角函数的取值范围,进而求值域;试题解析:(Ⅰ),, 2分即,, 4分6分(Ⅱ)=10分,12分,即 14分【考点】1.平行向量;2.三角函数的图像与性质.17.已知 .【答案】【解析】.【考点】1.两角差的正切公式;2.三角函数的拆角方法.18.已知∈(,),sin=,则tan()等于()A.-7B.-C.7D.【答案】A.【解析】由题意,则.【考点】三角函数运算.19.在中,的对边分别为且成等差数列.(1)求B的值;(2)求的范围.【答案】(1);(2)【解析】(1)对于三角形问题中的边角混合的式子,可以利用正弦定理和余弦定理边角转化,或边化角转化为三角函数问题,或角化边转化为代数问题来处理,该题由等差中项列式,再利用正弦定理边化角为,,又根据三角形内角的关系,得,进而求;(2)由(1)得,可得,代入所求式中,化为自变量为的函数解析式,再化为,然后根据的范围,确定的范围,进而结合的图象确定的范围,进而求的范围.试题解析:(1)成等差数列,∴,由正弦定理得,,代入得,,即:,,又在中,,∵,∴;(2)∵,∴,∴===,∵,∴,∴,∴的取值范围是.【考点】1、等差中项;2、正弦定理;3、型函数的值域.20.取得最小值a时,此时x的值为b,则取得最大值时,的值等于________。

三角函数和相似三角形综合题

三角函数和相似三角形综合题

三角函数和相似三角形综合题1、〔2021•哈尔滨〕在Rt△ABC中,∠C=90°,AB=4,AC=1,那么cosB的值为〔〕A .154B.14C .1515D.417172、〔2021•金华〕在Rt△ABC中,∠C=90°,AB=5,BC=3,那么tanA的值是〔〕A.34B.43C.35D.453、〔2021•聊城〕在Rt△ABC中,cosA=12,那么sinA的值是〔〕A.22B.32C.33D.124、〔2021•安顺〕如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,那么AD的长为〔〕A.65B.85C.75D.2355、〔2021•滨州〕如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,那么tan∠DAC的值为〔〕A.2+3B.23C.3+3D.336、〔2021•白银〕美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.假设AB=132米,求观景亭D到南滨河路AC的距离约为多少米?〔结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14〕7、〔2021•淮安〕A,B两地被大山阻隔,假设要从A地到B地,只能沿着如下图的公路先从A地到C地,再由C地到B地.现方案开凿隧道A,B两地直线贯穿,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?〔结果精确到0.1km,2≈1.414,3≈1.732〕8、〔2021•常德〕如图1,2分别是某款篮球架的实物图与示意图,底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离〔精确到0.01米〕〔参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414〕9〔2021•张家界〕位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两局部组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度〔最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824〕10、〔2021•兰州〕“兰州中山桥“位于兰州滨河路中段白塔山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥“之美誉.它像一部史诗,记载着兰州古往今来历史的变迁.桥上飞架了5座等高的弧形钢架拱桥.小芸和小刚分别在桥面上的A,B两处,准备测量其中一座弧形钢架拱梁顶部C处到桥面的距离AB=20m,小芸在A处测得∠CAB=36°,小刚在B处测得∠CBA=43°,求弧形钢架拱梁顶部C处到桥面的距离.〔结果精确到0.1m〕〔参考数据sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93〕11、〔2021•丽水〕如图是某小区的一个健身器材,BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离〔精确到0.1m〕.〔参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75〕12、〔2021•宜宾〕如图,为了测量某条河的宽度,现在河边的一岸边任意取一点A,又在河的另一岸边去两点B、C测得∠α=30°,∠β=45°,量得BC长为100米.求河的宽度〔结果保存根号〕.13、〔2021•内江〕如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,那么DE:EC=〔〕A.2:5 B.2:3 C.3:5 D.3:214、〔2021聊城〕如图,D是△ABC的边BC上一点,AB=4,AD=2.∠DAC=∠B,假设△ABD的面积为a,那么△ACD的面积为〔〕A.a B.C.D.一、圆中相似三角形的判定15.〔2021•衢州〕如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD 于点E,交半圆O于点F.CE=12,BE=9.〔1〕求证:△COD∽△CBE.〔2〕求半圆O的半径r的长二、利用圆中相似三角形证明圆中的比例线段15.〔2021•黄冈〕:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME 平分∠DMN.求证:〔1〕DE是⊙O的切线;〔2〕ME2=MD•MN三、利用圆中相似进行计算16.〔2021荆门〕:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.〔1〕求证:BC是⊙O的切线;〔2〕假设AC=3,BC=4,求BE的长.。

三角函数解三角形综合

三角函数解三角形综合

1.已知函数fx=sinωx﹣2sin2+mω>0的最小正周期为3π,当x∈0,π时,函数fx 的最小值为0.1求函数fx的表达式;2在△ABC中,若fC=1,且2sin2B=cosB+cosA﹣C,求sinA的值.解:Ⅰ.依题意:函数.所以.,所以fx的最小值为m.依题意,m=0..Ⅱ∵,∴..在Rt△ABC中,∵,∴.∵0<sinA<1,∴.2.已知函数其中ω>0,若fx的一条对称轴离最近的对称中心的距离为.I求y=fx的单调递增区间;Ⅱ在△ABC中角A、B、C的对边分别是a,b,c满足2b﹣acosC=c•cosA,则fB恰是fx的最大值,试判断△ABC的形状.解答解:Ⅰ∵,=,∵fx的对称轴离最近的对称中心的距离为,∴T=π,∴,∴ω=1,∴.∵得:,∴函数fx单调增区间为;Ⅱ∵2b﹣acosC=c•cosA,由正弦定理,得2sinB﹣sinAcosC=sinC•cosA2sinBcosC=sinAcosC+sinCcosA=sinA+C,∵sinA+C=sinπ﹣B=sinB>0,2sinBcosC=sinB,∴sinB2cosC﹣1=0,∴,∵0<C<π,∴,∴,∴.∴,根据正弦函数的图象可以看出,fB无最小值,有最大值y max=1,此时,即,∴,∴△ABC为等边三角形.3.已知函数fx=sinωx+cosωx++cosωx﹣﹣1ω>0,x∈R,且函数的最小正周期为π:1求函数fx的解析式;2在△ABC中,角A、B、C所对的边分别是a、b、c,若fB=0,•=,且a+c=4,试求b的值.解答解:1fx=sinωx+cosωx++cosωx﹣﹣1==.∵T=,∴ω=2.则fx=2sin2x﹣1;2由fB==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=a+c2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.4.已知函数.1求fx单调递增区间;2△ABC中,角A,B,C的对边a,b,c满足,求fA的取值范围.解答解:1fx=﹣+sin2x=sin2x﹣cos2x=sin2x﹣,令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z, 则fx的增区间为﹣+kπ, +kπk∈Z;2由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知不等式得:2bccosA>bc,即cosA>,∵A为△ABC内角,∴0<A<,∵fA=sin2A﹣,且﹣<2A﹣<,∴﹣<fA<,则fA的范围为﹣,.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且bsinAcosC+csinAcosB=a.1求角A的大小;2设函数fx=tanAsinωxcosωx﹣cos2ωxω>0,其图象上相邻两条对称轴间的距离为,将函数y=fx的图象向左平移个单位,得到函数y=gx图象,求函数gx在区间﹣,上值域.解:1∵bsinAcosC+csinAcosB=a,∴由正弦定理可得:sinBsinAcosC+sinCsinAcosB=sinA,∵A为锐角,sinA≠0,∴sinBcosC+sinCcosB=,可得:sinB+C=sinA=,∴A=.2∵A=,可得:tanA=,∴fx=sinωxcosωx﹣cos2ωx=sin2ωx﹣cos2ωx=sin2ωx﹣,∵其图象上相邻两条对称轴间的距离为,可得:T=2×=,解得:ω=1,∴fx=sin2x﹣,∴将函数y=fx的图象向左平移个单位,得到图象对应的函数解析式为y=gx=sin2x+﹣=sin2x+,∵x∈﹣,,可得:2x+∈,,∴gx=sin2x+∈,1.6.已知向量,向量,函数.Ⅰ求fx单调递减区间;Ⅱ已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,,c=4,且fA恰是fx 在上的最大值,求A,b,和△ABC的面积S.解:Ⅰ∵=+1+sin2x+=sin2x﹣cos2x+2=sin2x﹣+2,…∴, 所以:fx的单调递减区间为:.…Ⅱ 由1知:,∵时,,由正弦函数图象可知,当时fx 取得最大值3,…7分∴,…8分由余弦定理,a 2=b 2+c 2﹣2bccosA,得:,∴b=2,…10分∴.…12分7.已知函数.Ⅰ作出在一个周期内的图象;Ⅱ分别是中角的对边,若,求的面积.()cos sin 6f x x x π⎛⎫=++ ⎪⎝⎭()f x a b c ,,ABC △ A B C ,,() 1a f A b ===,,ABC △利用“五点法”列表如下:……………………………………………………4分 画出在上的图象,如图所示:Ⅱ由Ⅰ,在中,,所以.由正弦定理可知,,所以,………………9分又,∴,∴,∴. 因此.…………………………12分 ()f x 5 33ππ⎡⎤-⎢⎥⎣⎦,()sin 3f A A π⎛⎫=+ ⎪⎝⎭ABC △0A π<<3A π=sin sin a b A B =1sin sin 3B =1sin 2B =203B π<<6B π=2C π=11122S ab ==ABC △8.已知函数fx=m+2cos2x•cos2x+θ为奇函数,且f=0,其中m∈R,θ∈0,πⅠ求函数fx的图象的对称中心和单调递增区间Ⅱ在△ABC中,角A,B,C的对边分别是a,b,c,且f+=﹣,c=1,ab=2,求△ABC的周长.解答解:Ⅰf=﹣m+1sinθ=0,∵θ∈0,π.∴sinθ≠0,∴m+1=0,即m=﹣1,∵fx为奇函数,∴f0=m+2cosθ=0,∴cosθ=0,θ=.故fx=﹣1+2cos2xcos2x+=cos2x•﹣sin2x=﹣sin4x,由4x=kπ,k∈Z得:x=kπ,k∈Z,故函数fx的图象的对称中心坐标为:kπ,0,k∈Z,由4x∈+2kπ, +2kπ,k∈Z得:x∈+kπ, +kπ,k ∈Z,即函数fx的单调递增区间为+kπ, +kπ,k∈Z,Ⅱ∵f+=﹣sin2C+﹣,C为三角形内角,故C=,∴c2=a2+b2﹣2abcosC==,∵c=1,ab=2,∴a+b=2+,∴a+b+c=3+,即△ABC的周长为3+.9.已知向量=sin,1,=cos,cos2,记fx=•.Ⅰ若fx=1,求cosx+的值;Ⅱ在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足2a﹣ccosB=bcosC,求f2A的取值范围.解答解:Ⅰ向量=sin,1,=cos,cos2,记fx=•=sincos+cos2=sin+cos+=sin+,因为fx=1,所以sin=,所以cosx+=1﹣2sin2=,Ⅱ因为2a﹣ccosB=bcosC,由正弦定理得2sinA﹣sinCcosB=sinBcosC所以2sinAcosB﹣sinCcosB=sinBcosC所以2sinAcosB=sinB+C=sinA,sinA≠0,所以cosB=,又0<B<,所以B=,则A+C=,即A=﹣C,又0<C<,则<A<,得<A+<,所以<sinA+≤1,又f2A=sinA+,所以f2A的取值范围.10.已知向量,函数fx=.1求函数fx的最小正周期及在上的值域;2在△ABC中,若fA=4,b=4,△ABC的面积为,求a的值.解答解:1向量,函数fx==2+sin2x+2cos2x=3+sin2x+cos2x=3+2sin2x+,可得函数fx的最小正周期为=π,x∈,即有2x+∈﹣,,可得sin2x+∈﹣,1,则在上的值域为2,5;2在△ABC中,若fA=4,b=4,△ABC的面积为,可得3+2sin2A+=4,即sin2A+=,由0<A<π,可得<2A+<,可得2A+=,即A=,由=bcsinA=•4c•sin=c,解得c=1,则a2=b2+c2﹣2bccosA=16+1﹣8×=13,即a=.11.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…12..已知向量x ∈R,设函数fx=﹣1.1求函数fx 的单调增区间;2已知锐角△ABC 的三个内角分别为A,B,C,若fA=2,B=,边AB=3,求边BC .解答解:由已知得到函数fx=﹣1=2cos 2x+2sinxcosx ﹣1=cos2x+sin2x=2cos2x ﹣;所以1函数fx 的单调增区间是2x ﹣∈2kπ﹣π,2kπ,即x ∈kπ﹣,kπ+,k ∈Z ;已升级到最新版2已知锐角△ABC 的三个内角分别为A,B,C,fA=2,则2cos2A ﹣=2,所以A=,又B=,边AB=3,所以由正弦定理得,即,解得BC=.13.. 1求函数的单调递减区间;2在中,角的对边分别为,若,的面积为,求a 的最小值.2()sin 2f x x x =+()f x ABC ∆,,A B C ,,a b c ()12A f =ABC∆试题解析:1, 令,解得,,∴的单调递减区间为. 14.已知fx=•,其中=2cosx,﹣sin2x,=cosx,1,x ∈R .1求fx 的单调递减区间;2在△ABC 中,角A,B,C 所对的边分别为a,b,c,fA=﹣1,a=,且向量=解答解:1由题意知.3分∵y=cosx 在a 2上单调递减,∴令,得∴fx 的单调递减区间,6分2∵,∴,又,∴,即,8分∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=b+c 2﹣3bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3c .∴b=3,c=2.12 分.111()cos 22sin(2)2262f x x x x π=-=-+3222262k x k πππππ+≤-≤+536k x k ππππ+≤≤+k Z ∈()f x 5[,]36k k ππππ++k Z ∈15.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA ﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…16.在△ABC中,角A,B,C所对的边分别为a,b,c,fx=2sinx﹣Acosx+sinB+Cx∈R,函数fx的图象关于点,0对称.Ⅰ当x∈0,时,求fx的值域;Ⅱ若a=7且sinB+sinC=,求△ABC的面积.解答解:Ⅰfx=2sinx﹣Acosx+sinB+C=2sinxcosA﹣cosxsinAcosx+sinA=2sinxcosxcosA﹣2cos2xsinA+sinA=sin2xcosA﹣cos2xsinA=sin2x﹣A,由于函数fx的图象关于点,0对称,则f=0,即有sin﹣A=0,由0<A<π,则A=,则fx=sin2x﹣,由于x∈0,,则2x﹣∈﹣,,即有﹣<sin2x﹣≤1.则值域为﹣,1;Ⅱ由正弦定理可得===, 则sinB=b,sinC=c,sinB+sinC=b+c=,即b+c=13,由余弦定理可得a2=b2+c2﹣2bccosA,即49=b2+c2﹣bc=b+c2﹣3bc,即有bc=40,则△ABC的面积为S=bcsinA=×40×=10.17.已知函数fx=2sinxcosx﹣3sin2x﹣cos2x+3.1当x∈0,时,求fx的值域;2若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cosA+C,求fB的值.解答解:1∵fx=2sinxcosx﹣3sin2x﹣cos2x+3=sin2x﹣3﹣+3=sin2x﹣cos2x+1=2sin2x++1,∵x∈0,,∴2x+∈,,∴sin2x+∈,1,∴fx=2sin2x++1∈0,3;2∵=2+2cosA+C,∴sin2A+C=2sinA+2sinAcosA+C,∴sinAcosA+C+cosAsinA+C=2sinA+2sinAcosA+C,∴﹣sinAcosA+C+cosAsinA+C=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA=== ,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴fB=f60°=218.设函数fx=cos2x﹣+2cos2x.1求fx的最大值,并写出使fx取得最大值时x的集合;2求fx的单调递增区间;3已知△ABC中,角A,B,C的对边分别为a,b,c,若fB+C=,b+c=2,求a的最小值.解答解:1由三角函数公式化简可得fx=cos2x﹣+2cos2x=cos2xcos+sin2xsin+2cos2x=﹣cos2x﹣sin2x+1+cos2x=cos2x﹣sin2x+1=cos2x++1,当2x+=2kπ即x=kπ﹣k∈Z时,fx取得最大值2,此时x的集合为{x|x=kπ﹣,k∈Z};2由2kπ+π≤2x+≤2kπ+2π可解得kπ+≤x≤kπ+,∴fx的单调递增区间为得kπ+,kπ+,k∈Z;3由2可得fB+C=cos2B+2C++1=,∴cos2B+2C+=,由角的范围可得2B+2C+=,变形可得B+C=,A=, 由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc=b+c2﹣3bc=4﹣3bc≥4﹣32=1当且仅当b=c=1时取等号,故a的最小值为119.已知函数,x∈R.1求函数fx的最大值和最小正周期;2设△ABC 的内角A,B,C 的对边分别a,b,c,且c=3,fC=0,若sinA+C=2sinA,求a,b 的值.解答解:1 (3)∵,∴,∴fx 的最大值为0,最小正周期是…6分2由,可得∵0<C <π,∴0<2C <2π,∴∴,∴∵sinA+C=2sinA,∴由正弦定理得①…9分由余弦定理得∵c=3∴9=a 2+b 2﹣ab②由①②解得,…12分20..已知向量,设函数.1求在上的最值;2在中,分别是角的对边,若,,求的值.()()3sin 22,cos ,1,2cos m x x n x =+=()f x m n =⋅()f x 0,4π⎡⎤⎢⎥⎣⎦ABC ∆,,a b c ,,A B C ()4,1f A b ==ABC ∆a;2.21.已知函数fx=sin 2x+sin2x .1求函数fx 的单调递减区间;2在△ABC 中,角A,B,C 的对边分别为a,b,c,若f =,△ABC 的面积为3,求a 的最小值.解答解:1∵fx=sin 2x+sin2x=+sin2x=sin2x ﹣+,∴2kπ+≤2x ﹣≤2kπ+,k ∈Z,解得:kπ+≤x ≤kπ+,k ∈Z,∴函数fx 的单调递减区间为:kπ+,kπ+,k ∈Z .()()min max 4,5f x f x ∴==()12sin 234,sin 2662f A A A ππ⎛⎫⎛⎫=++=∴+= ⎪ ⎪⎝⎭⎝⎭1352,2666663AA A ππππππ⎛⎫+∈∴+=∴= ⎪⎝⎭1sin 2ABC S bc A ∆==2c ∴=2222cos 3a b c bc A a ∴=+-=∴=2∵f=,即: sin2×﹣+=,化简可得:sinA﹣=,又∵A∈0,π,可得:A﹣∈﹣,,∴A﹣=,解得:A=,∵S△ABC=bcsinA=bc=3,解得:bc=12,∴a==≥=2.当且仅当b=c时等号成立.故a的最小值为2.22.已知函数fx=2sinxcosx+2,x∈R.1求函数fx的最小正周期和单调递增区间;2在锐角三角形ABC中,若fA=1,,求△ABC的面积.解答解:1fx=2sinxcosx+=sin2x+=2sin2x+,∴函数fx的最小正周期为π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得,∴函数fx的单调增区间是k,k k∈Z,2由已知,fA=2sin2A+=1,∴sin2A+=,∵0<A<,∴,∴2A+=,从而A=,又∵=,∴,∴△ABC的面积S===.23.已知向量=sinx,﹣1,向量=cosx,﹣,函数fx=+•.1求fx的最小正周期T;2已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且fA恰是fx在0,上的最大值,求A和b.解答解:1∵向量=sinx,﹣1,向量=cosx,﹣,∴fx=+•=sin2x+1+sinxcosx+=+1+sin2x+= sin2x﹣cos2x+2=sin2x﹣+2,∵ω=2,∴函数fx的最小正周期T==π;2由1知:fx=sin2x﹣+2,∵x∈0,,∴﹣≤2x﹣≤,∴当2x﹣=时,fx取得最大值3,此时x=,∴由fA=3得:A=, 由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即b﹣22=0,∴b=2.24.在中,分别是角的对边,且满足. 1求角的大小;2设函数,求函数在区间上的值域.25.已知函数在处取最小值.ABC ∆c b a ,,C B A ,,CBc b a cos cos 2=-C 23sin sin 2cos cos sin 2)(2-+=C x C x x x f )(x f ]2,0[π2()2sin coscos sin sin (0)2f x x x x ϕϕϕπ=+-<<x π=1求的值;2在中,分别为内角的对边,已知求角.试题分析:1利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;2由可得,再由正弦定理求出,从而求出角的值,即可求角.2因为,所以,因为角为的内角,所以. 又因为所以由正弦定理,得, 也就是, 因为,所以或. 当时,; 当时,. 26.已知函数的最小正周期为.ϕABC∆,,a b c ,,A B C 1,()a b f A ===C ()sin()f x x ϕ=+x π=0ϕπ<<2πϕ=()f A =6A π=sin B B C ()2f A =cos 2A =A ABC ∆6A π=1,a b ==sin sin a bA B=sin 1sin 22b A B a ===b a >4B π=34B π=4B π=76412C ππππ=--=34B π=36412C ππππ=--=2()2sin(0)2xf x x ωωω=->3π1求函数在区间上的最大值和最小值; 2已知分别为锐角三角形中角的对边,且满足,,求的面积.答案及解析:26.1,;2.试题分析:1利用三角恒等变换相关公式化简函数解析式得,由周期为,可求的值,由三角函数性质可求函数的最值.2及正弦定理可求得,从而是求出解的值,由可求出角及角,由正弦定理求出边,即可求三角形面积.27.已知函数.Ⅰ求函数fx 的单调递增区间;Ⅱ在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知,a=2,,求△ABC 的面积.解答解:Ⅰ =sin2xcos+cos2xsin+cos2x=sin2x+cos2x=sin2x+cos2x=sin2x+.令 2kπ﹣≤2x+≤2kπ+,k ∈z,求得 kπ﹣≤x ≤kπ+,()f x 3[,]4ππ-,,a b c ABC ,,A B C 2,()1b f A ==2sin b A =ABC ∆min ()1f x =max ()1f x =33+()2sin()16f x x πω=+-3πω2sin b A =sin B =B ()1f A =4A π=51246C πππ==+a函数fx的单调递增区间为kπ﹣,kπ+,k∈z.Ⅱ由已知,可得 sin2A+=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得 sinC=,…∴S=ab•sinC==.28.已知函数fx=Asinωx+φA>0,ω>0,|φ|<,x∈R,且函数fx的最大值为2,最小正周期为,并且函数fx的图象过点,0.1求函数fx解析式;2设△ABC的角A,B,C的对边分别为a,b,c,且f=2,c=,求a+2b的取值范围.解答解:1根据题意得:A=2,ω=4,即fx=2sin4x+φ,把,0代入得:2sin+φ=0,即sin+φ=0,∴+φ=0,即φ=﹣,则fx=2sin4x﹣;2由f=2sinC﹣=2,即sinC﹣=1,∴C﹣=,即C=,由正弦定理得: ==2R,即=2R=1,∴a+2b=2RsinA+4RsinB=sinA+2sinB=sinA+2sin﹣A=sinA+2sin cosA﹣2cossinA=sinA+cosA﹣sinA=cosA,∵<cosA<1,即<cosA<,∴a+2b的范围为,.29.已知函数fx=2cos2x+cos2x+.1若fα=+1,0<a<,求sin2α的值;2在锐角△ABC中,a,b,c分别是角A,B,C的对边;若fA=﹣,c=3,△ABC的面积S△ABC=3,求a的值.解答解:1化简可得fx=2cos2x+cos2x+=1+cos2x+cos2x﹣sin2x=cos2x﹣sin2x+1=cos2x++1,∴fα=cos2α++1=+1,∴cos2α+=,∵0<α<,∴0<2α+<,∴sin2α+==,∴2∵fx=cos2x++1,∴fA=cos2A++1=﹣,∴cos2A+=﹣,又∵A∈0,,∴2A+∈,,∴2A+=,解得A=又∵c=3,S △ABC =bcsinA=3,∴b=4由余弦定理得a 2=b 2+c 2﹣2bccosA=13, ∴a=30.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=πωπωωx x x x f 0>ω,R ∈x ,且函数)(x f 的最小正周期为π.1求函数)(x f 的解析式;2在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.参考答案1, ……………3分 又,所以,, ………………………………………………5分所以,. …………………………………………………6分π()cos 12sin 16f x x x x ωωω⎛⎫=+-=+- ⎪⎝⎭πT =2=ωπ()2sin 216f x x ⎛⎫=+- ⎪⎝⎭2,故, 所以,或, 因为是三角形内角,所以.……9分 而,所以,, …………………………11分 又,所以,,所以,,所以,. …………………………………14分31.已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .Ⅰ求()f x 的单调递增区间;Ⅱ在△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,已知()12f A =,且△ABC 外求a 的值. 试题解析:Ⅰ∵x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π ………………2分x x 2cos 212sin 23+==)62sin(π+x ………………3分 由∈+≤+≤+-k k x k (226222πππππZ 得,∈+≤≤+-k k x k (63ππππZ 5分π()2sin 2106f B B ⎛⎫=+-= ⎪⎝⎭π1sin 262B ⎛⎫+= ⎪⎝⎭ππ22π66B k +=+π5π22π66B k +=+Z ∈k B π3B =3cos 2BA BC ac B ⋅=⋅=3=ac 4=+c a 1022=+c a 7cos 2222=-+=B ac c a b 7=a∴)(x f 的单调递增区间是∈++-k k k ](6,3[ππππZ (7)Ⅱ∵21)62sin()(=+=πA A f ,π<<A 0,62626ππππ+<+<A于是6562ππ=+A ∴ 3π=A ∵ABC ∆外接圆的半径为由正弦定理2sin a R A =,得2sin 3a R A ===,32.在中,分别是角A,B,C 的对边,已知,且1求的大小;2设且的最小正周期为,求在的最大值;试题解析:1∵ ∴∴ 又∵0<x < ∴A=2.==++=+== sin x+∵ = ∴=2 ∴=sin2x+∵ ∴2x+, ∴时.33.已知函数fx=sinxcosx++1.1求函数fx 的单调递减区间;2在△ABC中,a,b,c分别是角A、B、C的对边fC=,b=4,•=12,求c.解答解:1fx=sinx cosx﹣sinx+1=sin2x﹣+1=sin2x++.令≤2x+≤,解得≤x≤.∴函数fx的单调递减区间是,,k∈Z.2∵fC=sin2C++=,∴sin2C+=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.34.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2﹣b2=ac,且b=c.1求角A的大小;2设函数fx=1+cos2x+B﹣cos2x,求函数fx的单调递增区间.解答解:1在△ABC中,因为,所以.…在△ABC中,因为,由正弦定理可得,所以,,,故…2由1得===…,得即函数fx 的单调递增区间为…35.ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知46cos ,a .55A == 1当3B π=时,求b 的值;2设B x =02x π⎛⎫<< ⎪⎝⎭,求函数()22x f x b =+的值域.36.已知函数fx=sinxsinx+cosx .1求fx 的最小正周期和最大值;2在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c,若f =1,a=2,求三角形ABC面积的最大值. 解答解:1fx=sin 2x+sinxcosx=﹣cos2x+sin2x=sin2x ﹣.∴fx的最小正周期T==π,fx的最大值是.2∵f=sinA﹣+=1,∴sinA﹣=,∴A=.∵a2=b2+c2﹣2bccosA,∴12=b2+c2﹣bc,∴b2+c2=12+bc≥2bc,∴bc≤12.∴S==bc≤3.∴三角形ABC面积的最大值是3.37.已知向量=cos2x, sinx﹣,=1,,设函数fx=.Ⅰ求函数fx取得最大值时x取值的集合;Ⅱ设A,B,C为锐角三角形ABC的三个内角,若cosB=,fC=﹣,求sinA的值.解答解:Ⅰ∵向量=cos2x, sinx﹣,=1,,∴函数fx==cos2x+sinx﹣2=cos2x+sin2x+cos2x﹣sinxcosx=cos2x﹣sin2x+=cos2x++故当cos2x+=1时,函数fx取得最大值,此时2x+=2kπ,解得x=kπ﹣,k∈Z,故x取值的集合为{x|x=kπ﹣,k∈Z};Ⅱ∵A,B,C为锐角三角形ABC的三个内角,且cosB=,∴sinB==,又fC=cos2C++=﹣,∴cos2C+=﹣,∴2C+=,解得C=,∴sinA=sin﹣B=cosB+sinB==38..已知向量=sin2x+2,cosx,=1,2cosx,设函数fx=1求fx的最小正周期与单调递增区间;2在△ABC中,a,b,c分别是角A,B,C所对应的边,若fA=4,b=1,得面积为,求a的值.解答解:1∵向量=sin2x+2,cosx,=1,2cosx,∴函数fx=•=sin2x+2+2cos2x=sin2x+cos2x+3=2sin2x++3,∵ω=2,∴T=π,令2kπ﹣≤2x+≤2kπ+,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则fx的最小正周期为π;单调递增区间为kπ﹣,kπ+,k∈Z;2由fA=4,得到2sin2A++3=4,即sin2A+=,∴2A+=或2A+=,解得:A=0舍去或A=,∵b=1,面积为,∴bcsinA=,即c=2,由余弦定理得:a2=b2+c2﹣2bccosA=1+4﹣2=3,则a=.39..设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足S=.Ⅰ求B;Ⅱ若b=,设A=x,,求函数y=fx的解析式和最大值.解答解:Ⅰ∵S=acsinB,cosB=,S=a2+c2﹣b2,∴acsinB=•2accosB,∴tanB=,又B∈0,π,∴B=;Ⅱ由Ⅰ知B=,△ABC的内角和A+B+C=π,又A>0,C>0,得0<A<,由正弦定理,知a===2sinx,c==2sin﹣x,∴y=﹣1a+2c=2﹣1sinx+4sin﹣x=2sinx+2cosx=2sinx+0<x<,当x+=,即x=时,y取得最大值2.40.在△ABC中,a,b,c分别是内角A,B,C的对边,且2a﹣ccosB﹣bcosC=0.1求∠B;2设函数fx=﹣2cos2x+B,将fx的图象向左平移后得到函数gx的图象,求函数gx的单调递增区间.解答解:1由2a﹣ccosB﹣bcosC=0及正弦定理得,2sinA﹣sinCcosB﹣sinBcosC=0,即2sinAcosB﹣sinB+C=0,因为A+B+C=π,所以sinB+C=sinA,因为sinA≠0,所以cosB=,由B是三角形内角得,B=,2由1得,B=,则fx=﹣2cos2x+B=﹣2cos2x+,所以gx=﹣2cos2x++,=﹣2cos2x+=2sin2x,由得,故函数gx的单调递增区间是:.41..已知函数 fx=sin2x﹣cos2x﹣,x∈R.1求函数fx的最小正周期和单调递减区间;2设△ABC的内角A,B,C的对边分别为a,b,c且c=,fC=0.若sinB=2sinA,求a,b的值.解答解:1∵fx=sin2x﹣cos2x﹣,x∈R.=sin2x﹣﹣=sin2x﹣﹣1∴T==π∴由2kπ+≤2x﹣≤2kπ+,k∈Z可解得:x∈kπ,kπ+ ,k∈Z∴fx单调递减区间是:kπ,kπ+,k∈Z2fC=sin2C﹣﹣1=0,则sin2C﹣=1∵0<C<π,∴C=∵sinB=2sinA,∴由正弦定理可得b=2a①∵c=,∴由余弦定理可得c2=a2+b2﹣ab=3②由①②可得a=1,b=2.42..在锐角△ABC中,角A,B,C的对边分别为a,b,c,且,1求角B的值;2设A=θ,求函数的取值范围.解:1∵由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,sinB+C=sinAcosB,∴cosB= ,∴B=.…2锐角△ABC中,A+B=,∴θ∈,,…=1﹣cos+2θ﹣cos2θ=1+sin2θ﹣cos2θ=sin2θ﹣cos2θ+1=2sin2θ﹣+1.…9分∵θ∈,,∴2θ﹣∈,,∴2<2sin2θ﹣+1≤3.所以:函数fθ的取值范围是2,3.…12分。

初中数学三角函数综合练习题

初中数学三角函数综合练习题

三角函数综合练习题一.选择题(共10小题)1.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.3.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35° B.mcos35° C.D.4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.5.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米6.一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m8.如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()A.8()m B.8()m C.16()m D.16()m9.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米10.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos ∠ABC的值是()A.B.C.D.二.解答题(共13小题)11.计算:(﹣)0+()﹣1﹣|tan45°﹣|12.计算:.13.计算:sin45°+cos230°﹣+2sin60°.14.计算:cos245°﹣+cot230°.15.计算:sin45°+sin60°﹣2tan45°.16.计算:cos245°+tan60°•cos30°﹣3cot260°.17.如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)20.如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)21.如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).22.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).2016年12月23日三角函数综合练习题初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数的定义;熟练掌握圆周角定理是解决问题的关键.3.(2016•三明)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35° B.mcos35° C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.4.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosA的值为()A.B.C.D.【分析】先根据等腰三角形的性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形的性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosA 的值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形的性质与判定,三角形内角和定理,线段垂直平分线的性质,相似三角形的判定与性质,难度适中.证明△BCE∽△ABC是解题的关键.5.(2016•南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.6.(2016•金华)一座楼梯的示意图如图所示,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BC的长度,由矩形的面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯的面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.【点评】本题考查了解直角三角形的应用、矩形面积的计算;由三角函数表示出BC是解决问题的关键.7.(2016•长沙)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×=40(m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),∴BC=BD+CD=160(m).故选A.【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题的关键.8.(2016•南通)如图,为了测量某建筑物MN的高度,在平地上A处测得建筑物顶端M的仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端M的仰角为45°,则建筑物MN的高度等于()A.8()m B.8()m C.16()m D.16()m【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角的正切列式求出x的值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MN的高度等于8(+1)m;故选A.【点评】本题是解直角三角形的应用,考查了仰角和俯角的问题,要明确哪个角是仰角或俯角,知道仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角;并与三角函数相结合求边的长.9.(2016•重庆)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.10.(2016•广东模拟)如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC的顶点都是网格中的格点,则cos∠ABC的值是()A.B.C.D.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得AB的长,又由余弦的定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1的长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.【点评】此题考查了锐角三角函数的定义以及勾股定理.此题比较简单,注意数形结合思想的应用.二.解答题(共13小题)11.(2016•成都模拟)计算:(﹣)0+()﹣1﹣|tan45°﹣|【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+3×﹣︳1﹣︳=1+2﹣+1=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.12.(2016•顺义区二模)计算:.【分析】要根据负指数,绝对值的性质和三角函数值进行计算.注意:()﹣1=3,|1﹣|=﹣1,cos45°=.【解答】解:原式===2.【点评】本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;二次根式的化简是根号下不能含有分母和能开方的数.13.(2016•天门模拟)计算:sin45°+cos230°﹣+2sin60°.【分析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2016•黄浦区一模)计算:cos245°﹣+cot230°.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.15.(2016•深圳校级模拟)计算:sin45°+sin60°﹣2tan45°.【分析】根据特殊角的三角函数值进行计算.【解答】解:原式=×+2×﹣2×1=+3﹣2=.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=; cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=.16.(2016•虹口区一模)计算:cos245°+tan60°•cos30°﹣3cot260°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(2016•青海)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间的距离约为48m【点评】此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键18.(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置C的深度约为3米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.(2016•黄石)如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡的高度EF;(2)求山峰的高度CF.( 1.414,CF结果精确到米)【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦的定义可计算出BH的长,从而得到EF的长;(2)先在Rt△CBE中利用∠CBE的正弦计算出CE,然后计算CE和EF的和即可.【解答】解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CF的高度约为541米.【点评】本题考查了解直角三角形的应用﹣坡度与坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i═tanα.20.(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得C 的仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OC的高度以及此人所在的位置点P的垂直高度.(侧倾器的高度忽略不计,结果保留根号)【分析】在直角△AOC中,利用三角函数即可求解;在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200(米)(2)设PE=x米,∵tan∠PAB==,∴AE=3x.在Rt△PCF中,∠CPF=45°,CF=200﹣x,PF=OA+AE=200+3x,∵PF=CF,∴200+3x=200﹣x,解得x=50(﹣1)米.答:电视塔OC的高度是200米,所在位置点P的铅直高度是50(﹣1)米.【点评】考查了解直角三角形的应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2016•泸州)如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC 的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN 是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.【点评】本题考查解直角三角形、仰角、坡度等概念,解题的关键是添加辅助线构造直角三角形,记住坡度的定义,属于中考常考题型.22.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.23.(2016•丹东模拟)某型号飞机的机翼形状如图,根据图示尺寸计算AC和AB的长度(精确到0.1米,≈1.41,≈1.73 ).【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得AC的长;在Rt△BFD中已知∠BDF与FB的长,进而得出AB的长.【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.【点评】此题考查了三角函数的基本概念,主要是正切函数的概念及运算,关键把实际问题转化为数学问题加以计算.本文由作者精心整理,校对难免有瑕疵之处,欢迎批评指正,如有需要,请关注下载。

高一数学第1章三角函数综合训练卷

高一数学第1章三角函数综合训练卷

三角函数综合训练卷(120分钟:满分150分)一、选择题(每题5分:共60分)1.函数y=sin (2-πx )的最小正周期为( ) A .1 B .2 C .π D .2π 2.函数)32sin(4π+=x y 的图象( )A .关于原点对称B .)0,6(π-为其对称中心C .关于y 轴对称D .关于直线6π=x 对称3.函数)32tan(π-=x y 在一个周期内的图象是( )4.已知函数f (x )满足f (x+π)=f (-x ):f (-x )=f (x ):则f (x )可以是( ) A .sin2x B .cosx C .sin|x| D .|sinx|5.A 为△ABC 的一个内角:sinA+cosA 的取值范围是( ) A .]2,1(- B .)2,2( C .)2,2(-D .]2,2[-6.若x x 22cos sin <:则x 的取值范围是( )A .},42432|{Z k k x k x ∈+<<-ππππ B .},45242|{Z k k x k x ∈+<<-ππππC .},44|{Z k k x k x ∈+<<-ππππD .},43242|{Z k k x k x ∈+<<-ππππ 7.函数f (x )=2sin ωx (ω>0)在]4,3[ππ-上为增函数:那么( ) A .230≤<ω B .0<ω≤2 C .7240≤<ω D .ω≥28.函数y=sin2x+acos2x 的图象关于直线8π-=x 对称:那么实数a 的值为( )A .2B .2-C .1D .-19.已知x :y ∈R :1422=+y x :则x+2y 的最大值为( ) A .5 B .4 C .17D .610.已知21sin ≥x :tgx ≤-1:函数xy cos 11-=取得最小值时的最小正数x 等于( ) A .43π B .2πC .4πD .6π11.方程lgx=sinx 的实根个数为( )A .1个B .2个C .3个D .4个 12.函数f (x )=Msin (ωx+ϕ)(ω>0)在区间[a :b]上为增函数:f (a )=-M :f (b )=M :则函数g (x )=Mcos (ωx+ϕ)在[a :b]上( )A .为增函数B .可以取得最小值-MC .为减函数D .可以取得最大值M二、填空题(每题4分:共16分) 13.函数)3sin(3π+=ax y 的最小正周期为1:则实数a 的值为____________。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .23 B . -23 C .21 D . -21 2.α是第四象限角,5tan 12α=-,则sin α= A .15 B .15- C .513 D .513-3. )12sin12(cos ππ- )12sin12(cosππ+=A .-23 B .-21 C . 21 D .234. 已知sinθ=53,sin2θ<0,则tanθ等于A .-43 B .43 C .-43或43 D .545.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-6. ()2tan cot cos x x x +=A .tan xB . sin xC . cos xD . cot x7.函数y =x x sin sin -的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ]αcos 81=α,且)2,0(πα∈,则sin α+cos α的值为A.25 B. -25 C. ±25 D. 239. 2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2πB .ω=21,θ=2π C .ω=21,θ=4π D .ω=2,θ=4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则 A .a b c << B .a c b << C .b c a << D .b a c <<13.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是A .2π B .4π- C .4π D .34π14. 函数f (x )=xxcos 2cos 1-A .在⎪⎭⎫⎢⎣⎡20π, 、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减 B .在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递减C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 (每小题5分,共20分,)15. 已知⎪⎭⎫⎝⎛-∈2,2ππα,求使sin α=32成立的α=16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图,则函数表达式为18.已知βα,为锐角,且cos α=71 cos )(βα+= 1411-, 则cos β=_________ 19.给出下列命题:(1)存在实数α,使1cos sin =αα (2)存在实数α,使23cos sin =+αα (3)函数)23sin(x y +=π是偶函数 (4)若βα、是第一象限的角,且βα>,则βαsin sin >.其中正确命题的序号是________________________________三.解答题(每小题12分,共60分,) 20.已知函数y =3sin )421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知)cos(2-)sin(πθπθk k +=+Z k ∈ 求:(1)θθθθsin 3cos 5cos 2sin 4+-; (2)θθ22cos 52sin 41+22.设0≥a ,若b x a x y +-=sin cos 2的最大值为0,最小值为-4,试求a 与b 的值,并求y 的最大、最小值及相应的x 值.23.已知21)tan(=-βα,71tan -=β,且),0(,πβα∈,求βα-2的值.24.设函数a x x x x f ++=ωωωcos sin cos 3)(2(其中ω>0,R a ∈),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[ππ-的最小值为3,求a 的值.测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin32 1 y=)48sin(4-ππ+x 21(3) 三、解答题:20.已知函数y=3sin )421(π-x(1)用五点法作出函数的图象; (2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解 (1)列表:x2π π23 π25 π27 π29421π-x 02π ππ232π 3sin )421(π-x 03 0 -3 0描点、连线,如图所示:…………………………………………………………………………………………5 (2)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π. ………………………………………………………….8 (3)令421π-x =2π+k π(k ∈Z ), 得x=2k π+23π(k ∈Z ),此为对称轴方程. 令21x-4π=k π(k ∈Z )得x=2π+2k π(k ∈Z ). 对称中心为)0,22(ππ+k(k ∈Z )…………………………………………………………………………..12 21.已知sin(θ+k π)=-2cos(θ+k π) (k ∈Z ). 求:(1)θθθθsin 3cos 5cos 2sin 4+-;(2)41sin 2θ+52cos 2θ.解:由已知得cos(θ+k π)≠0, ∴tan(θ+k π)=-2(k ∈Z ),即tan θ=-2..................................................................................................2 (1)10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ (7)(2)41sin 2θ+52cos 2θ=θθθθ2222cos sin cos 52sin 41++=2571tan 52tan 4122=++θθ (12)22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值. 解:原函数变形为y =-41)2(sin 22a b a x ++++………………………………………2 ∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时 y max =1+b +42a =0 ①当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7 y 取得最大、小值时的x 值分别为: x =2kπ-2π(k ∈Z),x =2kπ+2π(k ∈Z)若a >2时,2a ∈(1,+∞)∴y max =-b a a b a +=+++-41)21(22=0 ③y min =-441)21(22-=+-=++++b a a b a ④ 由③④得a =2时,而2a =1 (1,+∞)舍去.............................................11 故只有一组解a =2,b =-2.. (12)23.已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π) 得β∈(2π, π) ① (2)由tanα=tan[(α-β)+β]=31 α∈(0,π) ∴ 0<α<2π (6)∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1 (10)由①②知 2α-β∈(-π,0)∴2α-β=-43π (12)24.设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.解:(1) f(x)=23cos2ωx +21sin2ωx +23+a (2)=sin(2ωx +3π)+23+a …………………………………………………..4 依题意得2ω·6π+3π=2π解得ω=21………………………………….6 (2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦⎤⎢⎣⎡67,0π…………………………………8 故-21≤sin(x +3π)≤1……………………………………………..10 从而f(x)在⎥⎦⎤⎢⎣⎡-65,3ππ上取得最小值-21+23+a 因此,由题设知-21+23+a =3故a =213+ (12)三角函数综合练习题1.已知α是第二象限角,且3sin()5πα+=- ,则tan 2α的值为 ( )A .45B .237-C .247-D .83-)2(cos 2π+=x y 的单调增区间是( )(A )π(π,π)2k k + k ∈Z (B )π(π, ππ)2k k ++ k ∈Z(C )(2π, π2π)k k +k ∈Z (D )(2ππ, 2π2π)k k ++k ∈Zx x y cos sin +=的图像,只需把x x y cos sin -=的图象上所有的点( ) (A )向左平移4π个单位长度(B )向右平移4π个单位长度(C )向左平移2π个单位长度(D )向右平移2π个单位长度4. 已知(,)2απ∈π,1tan()47απ+=,那么ααcos sin +的值为( )(A )51-(B )57 (C )57- (D )435.已知函数()sin y x =ω+ϕ(0,0)2πω><ϕ≤的部分图象如图所示,则点P (),ωϕ的坐标为( ) (A )(2,)3π(B )(2,)6π (C )1(,)23π (D )1(,)26π①x x y cos sin +=,②x x y cos sin 22=,则下列结论正确的是( )(A )两个函数的图象均关于点(,0)4π-成中心对称 (B )两个函数的图象均关于直线4x π=-成中心对称(C )两个函数在区间(,)44ππ-上都是单调递增函数 (D )两个函数的最小正周期相同7. 已知函数()x x x f cos sin 3-=,R x ∈,若()1≥x f ,则x 的取值范围为( ) A. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,3ππππ B . ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,232ππππC. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,656ππππ D. ⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ8.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 Ay(C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9.如右上图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=__________. 10.在ABC 中,若5b =,4B π∠=,tan 2A =,则sin A =_______,a =______.11.已知,2)4tan(=+πx 则xx2tan tan 的值为__________.12.设sin1+=43πθ(),则sin 2θ=_________. 13.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=______.14.在ABC 中,60,3B AC ==2AB BC +的最大值为 。

(完整版)三角函数综合测试题(含答案)(3),推荐文档

(完整版)三角函数综合测试题(含答案)(3),推荐文档

三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .B . -C .D . -232321212.是第四象限角,,则 α5tan 12α=-sin α=A . B . C .D .1515-513513-3. =12sin12(cos ππ-12sin12(cosππ+ A .-B .-C .D .232121234. 已知sinθ=,sin2θ<0,则tanθ等于53 A .- B .C .-或D .43434343545.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再sin(3y x π=-将所得的图象向左平移个单位,得到的图象对应的僻析式是3πA .B . 1sin2y x =1sin(22y x π=-C . D .1sin(26y x π=-sin(26y x π=-6. ()2tan cot cos x x x +=A .B .C .D . tan x sin x cos x cot x 7.函数y = 的值域是xx sin sin-A. { 0 } B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ]8.已知sin cos ,且,则sin +cos 的值为α81=α)2,0(πα∈ααA.B. -C.D.2525±25239. 是2(sin cos )1y x x =--A .最小正周期为的偶函数B .最小正周期为的奇函数2π2πC .最小正周期为的偶函数D .最小正周期为的奇函数ππ10.在内,使成立的取值范围为)2,0(πx x cos sin >x A . B .C .D .)45,()2,4(ππππ ),4(ππ45,4(ππ23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则A .ω=2,θ=B .ω=,θ=C .ω=,θ=D .ω=2,θ=2π212π214π4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则A .a b c << B .a c b << C .b c a <<D .b a c<<13.已知函数的图象关于直线对称,则可能是()sin(2)f x x ϕ=+8x π=ϕA .B .C .D .2π4π-4π34π14. 函数f (x )=xxcos 2cos 1- A .在 、上递增,在、上递减⎪⎭⎫⎢⎣⎡20π,⎥⎦⎤ ⎝⎛ππ,2⎪⎭⎫⎢⎣⎡23,ππ⎥⎦⎤ ⎝⎛ππ2,23B .在、上递增,在、上递减⎪⎭⎫⎢⎣⎡20π,⎥⎦⎤ ⎝⎛23ππ,⎥⎦⎤ ⎝⎛ππ,2⎥⎦⎤ ⎝⎛ππ223,C .在、上递增,在、 上递减⎪⎭⎫⎢⎣⎡ππ,2⎥⎦⎤ ⎝⎛ππ223⎪⎭⎫⎢⎣⎡20π,⎥⎦⎤⎝⎛23ππ,D .在、上递增,在、上递减⎪⎭⎫⎢⎣⎡23,ππ⎥⎦⎤⎝⎛ππ2,23⎪⎭⎫⎢⎣⎡20π,⎥⎦⎤⎝⎛ππ,2二.填空题(每小题5分,共20分,)15. 已知,求使sin =成立的= ⎪⎭⎫⎝⎛-∈2,2ππαα32α16.sin15°cos75°+cos15°sin105°=_________17.函数y=Asin(x+)(>0,||< ,x ∈R )的部分图象如图,ωϕωϕ2π则函数表达式为 18.已知为锐角,且cos = cos = , 则cos =_________βα,α71)(βα+1411-β19.给出下列命题:(1)存在实数,使 (2)存在实数,使α1cos sin=ααα23cos sin=+αα(3)函数是偶函数 (4)若是第一象限的角,且,则)23sin(x y +=πβα、βα>.其中正确命题的序号是________________________________βαsin sin >三.解答题(每小题12分,共60分,)20.已知函数y =3sin 421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知 )cos(2-)sin(πθπθk k +=+Z k ∈求:(1);(2)θθθθsin 3cos 5cos 2sin 4+-θθ22cos 52sin 41+22.设,若的最大值为0,最小值为-4,试求与的值,0≥a b x a x y +-=sin cos 2a b并求的最大、最小值及相应的值.y x 23.已知,,且,求的值.21)tan(=-βα71tan -=β),0(,πβα∈βα-224.设函数(其中>0,),且f (x )的图象在a x x x x f ++=ωωωcos sin cos 3)(2ωR a ∈y 轴右侧的第一个最高点的横坐标为.6π(1)求的值;ω(2)如果在区间的最小值为,求的值.)(x f 65,3[ππ-3a 测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin1 y=(3)32)48sin(4-ππ+x 21三、解答题:20.已知函数y=3sin 421(π-x (1)用五点法作出函数的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.解 (1)列表:x2π23π25π27π29421π-x 02πππ232π3sin 421(π-x 030-3描点、连线,如图所示:…………………………………………………………………………………………5(2)周期T===4,振幅A=3,初相是-. ωπ2212ππ4π………………………………………………………….8(3)令=+k (k ∈Z ),421π-x 2ππ得x=2k +(k ∈Z ),此为对称轴方程.π23π令x-=k (k ∈Z )得x=+2k (k ∈Z ).214ππ2ππ对称中心为)0,22(ππ+k (k ∈Z )…………………………………………………………………………..1221.已知sin(+k )=-2cos(+k ) (k ∈Z ).θπθπ求:(1);θθθθsin 3cos 5cos 2sin 4+-(2)sin 2+cos 2.41θ52θ解:由已知得cos(+k )≠0,θπ∴tan(+k )=-2(k ∈Z ),即tan =-θπθ2..................................................................................................2(1)………………………………………………………………10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ…7(2)sin 2+cos 2==………………………………….1241θ52θθθθθ2222cos sin cos 52sin 41++2571tan 52tan 4122=++θθ22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值.解:原函数变形为y =- (2)412(sin 22a b a x ++++∵-1≤sinx≤1,a≥0∴若0≤a≤2,当sinx =-时2a y max =1+b +=0①42a 当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7y 取得最大、小值时的x 值分别为:x =2kπ-(k ∈Z),x =2kπ+(k ∈Z)2π2π若a >2时,∈(1,+∞)2a ∴y max =-=0 ③b a a b a +=+++-41)21(22y min =- ④441)21(22-=+-=++++b a a b a 由③④得a =2时,而=1 (1,+∞)舍去 (112)a 故只有一组解a =2,b =-2 (12)23.已知tan(α-β)=,β=-,且α、β∈(0,),求2α-β的值.21tan 71π解:由tanβ=- β∈(0,π) 得β∈(, π)① (2)712π由tanα=tan[(α-β)+β]= α∈(0,π)∴310<α< (6)2π∴ 0<2α<π由tan2α=>0∴知0<2α<②432π∵tan(2α-β)==1 (10)βαβαtan 2tan 1tan 2tan +-由①②知 2α-β∈(-π,0)∴2α-β=- (124)3π24.设函数(其中ω>0,a ∈R ),且f(x)的图象在y a x x x x f ++=ϖϖϖcos sin cos 3)(2轴右侧的第一个最高点的横坐标为.6π(1)求ω的值;(2)如果在区间的最小值为,求a 的值.)(x f 65,3[xπ-3解:(1) f(x)=cos2x +sin2x ++a……………………………….223ω21ω23=sin(2x +)++a…………………………………………………..4ω3π23依题意得2·+=解得= (6)ω6π3π2πω21(2) 由(1)知f(x)=sin(2x +)++a ω3π23又当x ∈时,x +∈…………………………………8⎦⎤⎢⎣⎡-65,3ππ3π⎥⎦⎤⎢⎣⎡67,0π故-≤sin(x +)≤1 (10)213π从而f(x)在上取得最小值-++a ⎥⎦⎤⎢⎣⎡-65,3ππ2123因此,由题设知-++a =故a = (122)1233213+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数必考题型小综合(一)
1、(2008北京)已知函数2π()sin sin 2f x x x x ωωω⎛

=+ ⎪⎝

(0ω>)的最小正周期为π.
(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦
,上的取值范围.
2、(2011北京)已知函数()4cos sin()16
f x x x π
=+
-
(Ⅰ)求()f x 的最小正周期:
(Ⅱ)求()f x 在区间,64ππ⎡⎤
-⎢⎥⎣⎦
上的最大值和最小值。

3、已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.
(Ⅰ)求函数()f x 的最小正周期,对称轴方程和单调增区间; (Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦
,上的最小值和最大值.
4.已知函数()sin()(0,||)f x x ωϕωϕπ=+><的图象如图所示. (Ⅰ)求,ωϕ的值;
(Ⅱ)设()()()4
g x f x f x π
=-,求函数()g x 的单调递增区间.
5
、已知πsin()4A +
=,ππ(,)42
A ∈. (Ⅰ)求cos A 的值;(Ⅱ)求函数5
()cos 2sin sin 2
f x x A x =+的值域.
6
、2
()sin cos f x x x x ωωω=+,其中0ω>,且()f x 的图像在y 轴右侧第一个最高点的横坐标为
6
π, (Ⅰ)求()f x 的解析式;(Ⅱ)求出()f x 的单调递减区间;
(Ⅲ)由x y sin =的图象,经过怎样的变换,可以得到()f x 的图象?。

相关文档
最新文档