Electrodeposition of soft-magnetic cobalt–molybdenum coatings
CoFeB_Ta_CoFeB中的自旋轨道转矩效应

摘要实现高速,高密度,低功耗的非易失性磁存储是自旋电子学的重点研究方向。
近年来,利用自旋轨道转矩翻转具有垂直易磁化的磁性超薄膜实现信息写入的研究引起了广泛的关注。
目前利用自旋轨道转矩翻转单层铁磁薄膜,由于铁磁材料固有的杂散场,并且翻转需要的临界电流密度在106A/cm2及以上,不利于实现高密度低功耗存储。
人工反铁磁兼具铁磁材料易操控以及反铁磁材料零的杂散场,高的热稳定性,快的磁化动力学等特点,用其替代铁磁材料,有望推动高速,高密度,低功耗磁存储的发展。
本文基于CoFeB/Ta/CoFeB垂直易磁化体系,研究了自旋轨道转矩翻转人工反铁磁,并研究了Ta的厚度变化对于体系翻转所需要的临界电流密度的影响。
实验中制备了同时具有垂直易磁化和层间反铁磁耦合的CoFeB/Ta/CoFeB人工反铁磁结构。
利用重金属Ta自旋霍尔效应产生的自旋流注入到相邻的两层CoFeB中,对CoFeB磁矩产生自旋轨道转矩效应,实现在两层CoFeB磁矩在两个反平行态之间的翻转,翻转临界电流密度为 2.44×107A/cm2。
通过求解Stoner-Wohlfarth模型和Landau-Lifshitz-Gilbert方程,解释了观察到的两层CoFeB磁矩在两个反平行态之间翻转的现象。
实验中制备了上层CoFeB具有强的垂直易磁化和下层CoFeB具有较弱的垂直易磁化的CoFeB的CoFeB/Ta/CoFeB体系,通过调整Ta层的厚度,我们观察到了Ta厚度为3nm时2.1×105A/cm2的临界翻转电流密度。
通过输运测试和磁性表征,揭示了低的临界翻转电流密度的原因是Ta为3nm的样品具有低的矫顽力和磁各向异性。
自旋轨道力矩翻转人工反铁磁为高密度磁存储提供了一个可能的途径。
105A/cm2的临界翻转电流密度进一步降低了自旋轨道转矩的功耗,有望推动磁存储在低功耗方面的发展。
关键词:自旋轨道转矩;人工反铁磁;垂直易磁化;临界翻转电流密度AbstractInvestigating non-volatile magnetic storage with high speed, high density and low power consumption is one of the most important research areas of spintronics. Recently, utilizing spin-orbit torque (SOT) to switch perpendicularly magnetized single layer and realize writing information has drawn extensive attention. However, the stray field of ferromagnetic materials and the critical current density, which is at least 106 A/cm2, for SOT induced magnetization switching impede the implement of high density and low power consumption magnetic storage. Synthetic antiferromagnets (SAF) are easily to be manipulated like ferromagnets and have zero stray field, high thermal stability and fast magnetic dynamics like antiferromagnets. Replacing ferromagnetic materials by SAF is expected to promote the development of high speed, high density and low power consumption magnetic storage. Based on CoFeB/Ta/CoFeB systems with perpendicular magnetic anisotropy (PMA), we study the spin-orbit torque switching SAF and the Ta thickness dependence of the critical current density for SOT switching.We deposited SAF CoFeB/Ta/CoFeB heterostructure with PMA and interlayer antiferromagnetic coupling. The spin current generated by the spin Hall effect of tantalum would diffuse up and down into adjacent CoFeB layers and exert SOT on the magnetic moment of CoFeB. Consequently, the magnetization could be switched between two antiparallel states with a critical current density of 2.44×107A/cm2 and these phenomenon can be well replicated by solving Stoner-Wohlfarth model and Landau-Lifshitz-Gilbert equation.We deposited CoFeB/Ta/CoFeB systems with strong PMA of upper CoFeB layer and relatively weak PMA of lower CoFeB layer. By varying the Ta thickness, we found the critical current density for SOT switching could be reduced to 2.1×105A/cm2for samples with Ta thickness of 3nm. Through transportation measurements and magnetization characterization, we found that the reason for this low critical current density is that samples with Ta thickness of 3nm have relative low coercivity and anisotropy.SOT switching SAFs might advance the high density magnetic memories. Critical current density of 105A/cm2 for SOT switching would promote magnetic storage with lower consumption.Key words:spin-orbit torque; synthetic antiferromagnet; perpendicular magnetization; critical current density目录第1章引言 (1)1.1 自旋电子学简介 (2)1.1.1 自旋电子学的形成与发展 (2)1.1.2 垂直磁化体系与反常霍尔效应 (3)1.2 自旋轨道转矩 (5)1.2.1 自旋转移力矩与自旋轨道转矩 (5)1.2.2 Stoner-Wohlfarth模型和Landau-Lifshitz-Gilbert方程 (8)1.3 人工反铁磁 (8)1.4 研究思路及内容 (10)第2章实验方法 (11)2.1 薄膜样品制备 (11)2.1.1 磁控溅射 (11)2.1.2 电子束蒸镀 (12)2.2 霍尔器件加工 (12)2.2.1 紫外曝光 (13)2.2.2 氩离子刻蚀 (14)2.3 性能测试 (16)2.3.1 超导量子干涉仪 (16)2.3.2 电输运性能测试 (16)第3章自旋轨道转矩翻转CoFeB/Ta/CoFeB人工反铁磁 (18)3.1 CoFeB/Ta/CoFeB人工反铁磁结构的制备和磁性表征 (18)3.2 自旋轨道转矩翻转CoFeB/Ta/CoFeB人工反铁磁 (20)3.3 Stoner-Wohlfarth模型模拟 (22)3.4 Landau-Lifshitz-Gilbert方程模拟 (25)3.5 本章小结 (30)第4章 105A/cm2量级临界翻转电流密度的自旋轨道转矩翻转 (31)4.1 MgO/CoFeB/Ta/CoFeB/MgO器件的制备以及SOT翻转 (31)4.2 矫顽力和各向异性场对临界翻转电流密度的影响 (36)4.5 本章小结 (38)第5章结论 (39)参考文献 (40)致谢 (46)声明 (47)个人简历、在学期间发表的学术论文与研究成果 (48)第1章引言信息时代每天会产生大量的信息,如何实现高速度,低功耗,高密度的信息存储是科学家们长期追求的目标。
透射电镜差分相位分析技术磁畴研究

㊀第40卷㊀第11期2021年11月中国材料进展MATERIALS CHINAVol.40㊀No.11Nov.2021收稿日期:2021-07-14㊀㊀修回日期:2021-09-28基金项目:国家自然科学基金资助项目(11804343)第一作者:汤㊀进,男,1989年生,副研究员通讯作者:杜海峰,男,1979年生,研究员,博士生导师,Email:duhf@DOI :10.7502/j.issn.1674-3962.202107019透射电镜差分相位分析技术磁畴研究汤㊀进1,吴耀东1,2,熊奕敏1,田明亮1,杜海峰1(1.中国科学院合肥物质科学研究院强磁场科学中心极端条件凝聚态物理安徽省重点实验室,安徽合肥230031)(2.合肥师范学院物理与材料工程学院,安徽合肥230061)摘㊀要:透射电子显微镜具有高空间磁分辨率和易集成的多场调控等特点,成为当下纳米尺度下先进磁结构观测的主要手段之一㊂首先介绍和比较了透射电镜磁表征的3种模式:洛伦茨模式㊁电子全息模式和差分相位分析模式,然后详细综述了差分相位分析技术表征一类中心对称晶体Fe 3Sn 2材料中新型磁畴结构的研究进展㊂在该研究中,首先结合差分相位分析技术和三维微磁学模拟,阐释了中心对称材料中复杂 多拓扑态 磁畴起源于磁结构的三维特性,随后基于该材料温度诱导自旋重取向内禀物性,在Fe 3Sn 2受限纳米盘中,利用差分相位分析技术发现了一类全新的涡旋状磁结构 靶磁泡 ,研究了其磁场演化行为,最后提出了斯格明子-磁泡基存储器的概念,并实现了磁场和电流高度可控斯格明子-磁泡拓扑磁转变㊂差分相位分析技术揭示的中心对称磁性材料纳米结构中的新颖磁畴及丰富的电流驱动动力学,有望促进未来基于新型磁畴结构的拓扑相关自旋电子学器件的开发㊂关键词:透射电子显微镜;差分相位分析;磁畴;斯格明子-磁泡;中心对称磁体中图分类号:TH742㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2021)11-0851-10Magnetic Domain Imaging by Differential PhaseContrast Technique of Transmission Electronic MicroscopyTANG Jin 1,WU Yaodong 1,2,XIONG Yimin 1,TIAN Mingliang 1,DU Haifeng 1(1.Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China)(2.School of Physics and Materials Engineering,Hefei Normal University,Hefei 230061,China)Abstract :Transmission electronic microscopy (TEM)has become one of the most advanced techniques to observe nano-metric-sized magnetic domains,owing to its high spatial magnetic resolution and easy accessibility in integrating multiple physic fields.Here,we compared three techniques of TEM observing magnetic domains:Lorentz-TEM,electronic hologra-phy and differential phase contrast scanning TEM (DPC-STEM).Then we reviewed recent advances in magnetic domains imaging of a centrosymmetric magnet Fe 3Sn 2by DPC-STEM.We demonstrated physical clarifications to multiple topological states ,which are attributed to three-dimensional (3D)depth-modulated spin configurations,using DPC-STEM and 3D mi-cromagnetic simulations.We then reported a new class of vortex-like spin configurations named target bubble and their field-driven magnetic evolutions in Fe 3Sn 2nanodisks.Finally,we proposed a new strategy to design memory named Skyrmi-on-bubble-based memory,which utilizes Skyrmions and bubbles as binary bits 1 and 0 ,respectively.Current-field-controlled topological Skyrmion-bubble transformations have been also achieved.The novel magnetic domains and their in-triguing electronic-magnetic properties shed by DPC-STEM are expected to facilitate advances in developing topology-related spintronic devices.Key words :transmission electronic microscopy;differential phase contrast;magnetic domain;Skyrmion-bubble;cen-trosymmetric uniaxial magnet1㊀前㊀言磁性材料已经被广泛应用于现代生活中,具有很大的市场价值,其中一个典型代表是自旋电子学磁功能器件[1]㊂自旋电子学是将电子的两个内禀属性电荷和自旋博看网 . All Rights Reserved.中国材料进展第40卷相结合的研究学科㊂以机械硬盘为代表的自旋电子学器件已经取得了较大的商业成功[2]㊂机械硬盘是利用磁化反平行排列的磁畴来表征双数据比特,通过读头的机械转动来实现读写㊂但是传统机械硬盘受到机械振动和热扰动的影响,其性能已趋于功能极限㊂为了突破功能极限,科学家们期望通过发现新型磁结构来构建新一代自旋电子学器件㊂磁斯格明子是新型磁结构的代表[3-5]㊂磁斯格明子是一类涡旋状新型磁结构,具有拓扑非平庸类粒子行为㊁可调的小尺寸和丰富的电磁相关动力学行为等特点[6]㊂磁斯格明子的关键稳定机制是材料体系中的Dzyaloshinskii-Moriya(DM)相互作用[7]㊂根据DM 相互作用类型,磁斯格明子主要分为3种:①具有体DM 相互作用的材料,如B 20型FeGe 和MnSi 材料中的布洛赫(Bloch)型磁斯格明子[3,4,8,9](图1a);②具有表面DM相互作用的材料,如铁磁/重金属异质结薄膜和C 3v 对称晶体GaV 4S 8中的奈尔(Néel)型磁斯格明子[10,11];③具有二维各向异性DM 相互作用的材料,如D 2d 晶体MnPdPtSn 中的反磁斯格明子[12]㊂此外,在传统中心对称单轴铁磁体中,偶极相互作用与单轴磁晶各向异性等的竞争也会产生出一类局域柱状畴磁结构 磁泡,其中类型I 磁泡的闭合畴壁贡献了与Bloch 型手性斯格明子相同的整数拓扑荷,因此其也被称为磁泡斯格明子(图1b)[13-22]㊂近年来,这些具有丰富磁学㊁电学性质的磁斯格明子可以作为信息载体,用来构建存储器㊁逻辑器件㊁神经网络器件和互联信息器件等[23-25],形成了一类新兴的自旋电子学亚类学科 拓扑自旋电子学[26-28]㊂图1㊀非中心对称螺磁体中布洛赫型磁斯格明子(a)[3,4,8,9];中心对称单轴铁磁体中的磁泡斯格明子(b)[13-22]Fig.1㊀Bloch-type Skyrmion in an noncentrosymmetric screw magnet (a)[3,4,8,9];Skyrmion bubble in a centrosymmetric uniaxialferromagnet (b)[13-22]拓扑自旋电子学研究领域关键的科学问题之一是磁斯格明子的电调控[23]㊂而未来自旋电子学器件高存储密度要求磁信息载体的尺寸为纳米尺度,因此需要探索纳米尺度下的磁斯格明子的相关性能,这要求磁表征技术的高空间分辨率㊂现代磁学的发展也得益于先进磁表征技术的发展㊂依据自旋与电流㊁电子㊁光等的相互作用,科学家们已经开发出了多种先进的磁表征技术[26],如表1所示[11,23,29-31]㊂其中,透射电镜不仅能够观测纳米尺度范围内的磁畴,也易于集成多物理场条件,对样品和外界环境要求相对较低[32]㊂因此,透射电镜成为了近年来高分辨率磁表征的重要技术手段,极大地推动了磁斯格明子相关的研究进展,例如磁斯格明子的首次实空间观测[4]㊁磁浮子的首次实空间观测[33]㊁反斯格明子的首次实空间观测等,都是利用透射电镜技术实现的[12]㊂本文将首先介绍基于透射电镜的3种基本磁表征手段,并随后着重综述透射电镜差分相位分析技术表征一类中心对称晶体中的新型磁畴结构的研究进展㊂表1㊀磁表征技术:洛伦茨透射电子显微镜㊁磁力显微镜㊁自旋极化扫描隧道显微镜㊁X 射线显微学㊁表面磁光克尔效应㊁X-射线磁圆二色仪-光发射电子显微镜[11,23,29-31]Table 1㊀Magnetic imaging techniques :Lorentz-transmission elec-tronic microscopy (Lorentz-TEM ),magnetic force mi-croscopy (MFM ),spin-polarized scanning tunneling mi-croscopy (spin-polarized STM ),X-ray holography (X-ray holography ),surfacemagneto-opticalKerreffect(SMOKE ),X-ray magnetic circular dichroism-photoe-mission electron microscopy (XMCD-PEEM )[11,23,29-31]Techniques ResolutionSpatial /nm Time Field /T Temperature/K Lorentz-TEM ~2ms -2~25~1300MFM~10s -16~162~400Spin-polarized STM~0.5s-9~9<10X-ray holography~20nsSMOKE~300ns -9~92~800XMCD-PEEM~25s02~3002㊀透射电镜磁表征技术透射电镜磁表征技术是基于电子在磁场运动过程中受到的洛伦茨力,因此磁表征的透射电镜也被称作洛伦茨透射电镜[4,32]㊂透射电镜电子束的传输方向为垂直于样品表面,由于电子的轨迹只受到与其运动方向垂直的磁场的影响,因此洛伦茨透射电镜只能表征面内磁矩㊂此外,透射模式也表明透射电镜探测到的是样品厚度方向积分的磁矩㊂依据电子受到洛伦茨力发生偏转的探测方式,透射电镜磁表征技术可以分成3种(图2):欠焦/过焦情况下的菲涅尔磁衬度,即传统洛伦茨技术[4];通过分辨样品和全息丝的干涉条纹宽度的变化来获得磁相位,即电子全息技术[34-37];扫描聚焦电子束通过样品后,4个分立探头探测的电子束强度的差异等价于磁相位衬度差分,即差分相位分析扫描透射电镜技术[13,15,16,38-40]㊂258博看网 . All Rights Reserved.㊀第11期汤㊀进等:透射电镜差分相位分析技术磁畴研究图2㊀透射电镜3种磁表征技术示意图:洛伦茨[4]㊁电子全息[34-37]和差分相位分析[13,15,16,38-40]Fig.2㊀Schematic designs of three magnetic imaging techniques of trans-mission electronic microscopy:Lorentz [4],electronic hologra-phy [34-37]and differential phase contrast scanning [13,15,16,38-40]根据不同透射电镜磁成像技术的特点,3种方式各具特色,但也存在着缺点㊂传统离焦下表征的洛伦茨模式是最早也是现在最流行的透射电镜磁成像表征方式[20],具有易于操作㊁比较直观反射磁结构和成像速度快等优点,但是这种方法也有以下缺点:①由于离焦状态下样品边缘具有菲涅尔强衍射,使得该方法不适用于太小受限结构的磁分辨[41];②作为一种间接获得磁相位的方法,传统输运强度分析(transport of intensity equation,TIE)技术解析磁结构的过程中可能会引入一些人为的磁信息,造成严重的偏差[42]㊂电子全息技术是一种正焦模式下直接表征磁相位的方法,能够非常准确和定量地解析磁结构[34-37],但是这种方法也有以下缺点:①电子全息模式观测到的是干涉条纹[34],不能直观反映磁结构,不适用于一些快速磁结构动力学响应的表征;②由于干涉所需的参考光束需要经过真空,因此电子全息只能表征靠近样品边缘的磁结构,有效观测尺寸大约为1μm [37]㊂差分相位分析扫描透射模式也是一种正焦状态下直接探测磁矩的方式(图3),具有磁成像精度高㊁范围广等优点,特别是能够精确表征样品缺陷处的磁结构信息[13,15,16,38-40],但是该方法也有以下缺点:①扫描聚焦模式成像较慢(数十秒以上),不适用于实时磁结构动力学表征;②扫描聚焦模式下会对样品造成损伤㊂从以上讨论可以得出,相比于传统洛伦茨模式,电子全息和差分相位分析都是更为精确的磁相位表征技术,但是电子全息只适用于一些小样品的表征,而差分相位分析技术并不受到样品尺寸的限制,可以表征任意尺寸磁样品的磁结构㊂本文将着重介绍差分相位分析方法在偶极磁斯格明子材料的新型磁结构表征中的近期科研进展㊂3㊀差分相位分析磁畴表征3.1㊀三维磁斯格明子与磁泡由于单轴磁晶各向异性㊁偶极-偶极相互作用㊁交换图3㊀差分相位分析方法分析磁畴的过程[13,15,16,38-40]:(a ~d)扫描透射模式下,4个分立的差分衬度探头A㊁B㊁C 和D 得到聚焦电子束穿过一个直径为1550nm 的Fe 3Sn 2纳米盘的衬度图像;(e)探头A 和C 的差分衬度,与样品中沿着y 轴的磁场强度成正比;(f)探头B 与D 的差分衬度,与样品中沿着x 轴的磁场强度成正比;(g)通过(A -C)2+(B -D)2计算出的整个面内磁场强度分布图;(h)最终重构的面内场强分布图Fig.3㊀Analysis procedure for determining the magnetic structure in a1550nm Fe 3Sn 2disc by using differential phase contrast scan-ning TEM [13,15,16,38-40]:(a ~d)differential phase contrastcomponent images from the four segments of the detectors A,B,C and D,respectively;(e)differential phase contrast compo-nent obtained by subtracting C from A (A -C),which is propor-tional to the field component along the y axis;(f)differential phase contrast component obtained by subtractingD from B (B -D),which is proportional to the field component along the x axis;(g )totalin-planefieldstrengthobtainedfrom(A -C)2+(B -D)2;(h)in-plane magnetization mapping相互作用和外磁场赛曼能的竞争,中心对称单轴磁性材料能够形成局域的柱状磁畴结构,该结构被称为磁泡(图1b)[20,43,44]㊂虽然磁泡在20世纪70~90年代得到了大量的研究,并构建了磁泡存储器等功能性器件[45],但由于该器件的大尺寸(微米尺度)不适用于紧凑的器件设计而逐渐被淘汰[43]㊂最近,新型涡旋局域磁结构斯格明子的发现也重新引起了研究人员对传统磁泡的广泛兴趣[21,22,31,42,46-54]㊂依据柱状磁畴的畴壁磁化分布,磁泡可分为类型I 拓扑非平庸磁泡和类型II 拓扑平庸磁泡[21]㊂其中具有闭合畴壁的类型I 磁泡具有与磁斯格明子相同的拓扑性,也被称为斯格明子磁泡[31,51-54]㊂特别地,最近的研究发现了直径小于50nm 的斯格明子磁泡和自旋转移力矩驱动磁泡动力学行为[17,31,54]㊂这些研究成果也预示着传统磁泡可以被用来构建新型高性能自旋电子学器件[18]㊂为简便表述,后文将中心对称晶体中的类型I 斯格明子磁泡和类型II 磁泡分别称为磁斯格明子和磁泡㊂358博看网 . All Rights Reserved.中国材料进展第40卷虽然中心对称晶体中的磁斯格明子和磁泡结构已经得到了很好的理论解析[55],但在近期采用透射电镜研究磁泡材料磁畴工作中发现了复杂的 多拓扑态 磁结构[22,47]㊂这些复杂磁结构与传统磁斯格明子和磁泡结构有很大差异,同时一直没有得到很好的物理解释,限制了磁泡材料的未来应用性㊂分析可知,这些复杂 多拓扑态 磁结构均是通过透射电镜洛伦茨模式得到,且解析的磁结构被认为是二维的㊂传统洛伦茨模式表征磁结构是通过TIE 技术解析过焦㊁正焦和欠焦菲涅尔磁衬度得到的㊂而为了得到更清晰的磁结构,TIE 技术通常需要设定滤波参数来过滤噪音和非磁背景,但滤波也可能会得到偏离真实情况的磁结构[42];同时TIE 技术也不适用于解析传统均匀铁磁磁畴[14,16]㊂透射电镜技术得到的是沿着样品厚度方向的积分磁化分布,但以往的研究认为磁结构在厚度方向为磁化均匀的[22,47]㊂作者团队[16]采用透射电镜差分相位分析-扫描透射模式和三维微磁学计算模拟相结合的方式,系统地研究了Kagome 中心对称晶体材料Fe 3Sn 2中的复杂 多拓扑态 多环和Φ形-圆弧形磁涡旋结构,如图4所示㊂Fe 3Sn 2是一类室温单轴铁磁体[56-61],单轴磁化易轴在室温下沿着c 轴㊂同时,Fe 3Sn 2为低品质因子材料,即单轴磁晶各向异性K u 小于12μ0M 2s ,μ0和M s 分别为真空磁导率和饱和磁化率㊂通过三维微磁学计算模拟发现[62],对于低品质因子的Fe 3Sn 2薄片样品,强的偶极-偶极相互作用会导致磁斯格明子和磁泡沿着厚度方向发生连续自旋扭转,形成界面涡旋状磁结构㊂因此,上述模拟结果表明,Fe 3Sn 2纳米薄片样品的磁斯格明子和磁泡沿着厚度方向不是均匀磁化的(图4e 和4f),因此在透射电镜解析的磁结构中必须考虑厚度方向的积分磁化分布㊂同时,利用差分相位分析进一步得到了Fe 3Sn 2纳米薄片样品的多环状和圆弧形涡旋磁结构(图4a 和4b),发现其与传统洛伦茨模式解析磁结构有很大差异,但与三维微磁模拟的磁斯格明子和磁泡的积分磁化分布高度一致(图4c 和4d)㊂这些研究结果表明, 多拓扑态 起源于传统中心对称材料中的三维磁斯格明子和磁泡结构,磁结构的复杂性是由于非均匀三维磁结构投射到二维平面后的积分相加所导致的㊂3.2㊀靶磁泡的发现及其磁场驱动演化过程Fe 3Sn 2的磁晶各向异性具有强温度依赖性,单轴磁各向异性常数K u 随着温度降低而减小,因此易磁化方向会由高温时的c 轴转变到低温时的ab 易磁化面,即温度诱导自旋重取向[61]㊂本课题组[13]制备了不同尺寸受限Fe 3Sn 2纳米盘,利用差分相位分析研究了其零磁场下的图4㊀Fe 3Sn 2纳米结构中类型I 斯格明子磁泡和类型II 拓扑平庸磁泡的三维磁结构[16]:(a,b)差分相位分析方法得到的面内自旋分布;(c,d)三维微磁模拟得到的平均面内磁化分布;(e,f)三维微磁模拟得到的厚度调制磁结构Fig.4㊀3D spin texture of type-I Skyrmion bubble and type-II topologi-cally trivial bubble in the Fe 3Sn 2nanostructure [16]:(a,b)in-plane magnetization mappings of two types of bubbles obtainedfrom differential phase contrast technique;(c,d)average in-plane magnetization mappings of two types by 3D micromagnetic simulation;(e,f)depth-modulated 3D magnetic bubbles by 3Dmicromagnetic simulation磁畴演化行为,如图5所示㊂由于在传统洛伦茨模式离焦磁表征模式下,受限小尺寸样品边缘强的菲涅尔衍射条纹给磁结构解析带来极大的干扰,因此正焦模式下工作的差分相位分析技术更适用于精确研究受限体系下的磁畴结构㊂不同于在高温300K 的条纹畴磁基态(图5a),在低温100K 的易面磁化Fe 3Sn 2(001)纳米盘中,偶极-偶极相互作用会诱导面内磁矩沿着圆盘边缘排列,形成经典的软磁磁涡旋结构(图5b)㊂以软磁磁涡旋为种子磁结构,当升高温度到室温,易面磁纳米盘转变为垂直磁纳米盘,Fe 3Sn 2(001)纳米盘中会形成多环靶态磁结构,命名其为 靶磁泡 (图5c)㊂通过分析靶磁泡的中间层磁化分布,发现其自旋从中心到最外边缘旋转了π的整数(k )倍(图5d),因此中心对称晶体中的靶磁泡也可以被看作k π-磁斯格明子㊂这种自旋重取向导致的软磁磁涡旋到靶磁泡的转变可被微磁模拟重复出来(图5e ~5h)㊂458博看网 . All Rights Reserved.㊀第11期汤㊀进等:透射电镜差分相位分析技术磁畴研究图5㊀在Fe 3Sn 2纳米盘中通过在零磁场下加热到室温的方式,利用差分相位分析技术观测到的室温下的条纹畴到低温下的软磁磁涡旋到室温下的靶磁泡(k π-磁斯格明子)的转变[13]:(a)300K 室温条纹畴;(b)100K 磁涡旋;(c)300K 室温靶磁泡;(d)沿着图5c 中A 到B 位置连线相关面内磁化强度;(e)模拟的室温条纹畴;(f)模拟的100K 磁涡旋;(g)模拟的室温靶磁泡;(h)模拟的沿着图5g 中C 到D 位置连线相关面内磁化强度Fig.5㊀Transformation from a soft magnetic vortex at 100K to a target bubble (k π-Skyrmion)at 300K through zero-field warming in an Fe 3Sn 2nanodisk obtained by differential phase contrast [13]:(a)experimental stripes at 300K;(b)soft vortex at 100K;(c)target bubble at300K;(d)position dependent in-plane magnetization amplitude along the line A to B in Fig.5c;(e~g)simulated stripes with uniaxi-al magnetic anisotropy K u =53.0kJ /m 3,soft vortex with K u =2.3kJ /m 3and target bubbles with K u =53.0kJ /m 3;(h)simulated posi-tion dependent in-plane magnetization amplitude along the line C to D in Fig.5g㊀㊀k π-磁斯格明子的拓扑荷为0(k 为奇数)或1(k 为偶数)㊂前期研究表明,k π-磁斯格明子具有k 相关可调自旋波激发和多场调控磁性等特点,其中2π-磁斯格明子(也叫做类斯格明子Skyrmionium)被提出可以用来构建无垂直漂移赛道存储器和斯格明子互联器件等[63,64]㊂但k π-磁斯格明子的研究多为理论模拟研究,仅仅在极少数的磁系统中被观察到[65,66],k π-磁斯格明子(k >2)的实验发现尤其充满挑战㊂通过以软磁磁涡旋为种子磁结构以及调节Fe 3Sn 2(001)纳米盘的直径,得到了丰富的零磁场稳定的k π-磁斯格明子(k =2,3,4和5)㊂与手性磁体中零磁场下两种简并的k π-磁斯格明子相比较,理论上中心对称材料中的零磁场k π-磁斯格明子有2k +1种㊂此外,之前的理论研究也预言了磁场诱导的k π-磁斯格明子的新颖磁性[67-70],但相关的实验研究还很少㊂因此,本课题组[15]进一步利用差分相位分析研究了Fe 3Sn 2(001)纳米盘中的磁场演化行为,如图6所示㊂磁场驱动下,Fe 3Sn 2(001)纳米盘k π-磁斯格明子主要呈现出3个特点:①零磁场下的不规则形状转变为高磁场下的轴对称形状(图6a);②磁场诱导k 系数的减小;③k π-磁斯格明子直径随磁场增强而连续减小(图6b)㊂中心对称Fe 3Sn 2纳米盘中的k π-磁斯格明子具有室温和零磁场稳定性㊁丰富多重简并态以及利用外磁场和图6㊀Fe 3Sn 2纳米结构中采用差分相位分析技术观测到的磁场诱导的k π-磁斯格明子(靶磁泡)的磁演化行为[15]:(a)实验观测的高磁场下稳定的圆形k π-磁斯格明子;(b)k π-磁斯格明子的直径随着磁场强度的变化关系,图中正方形点㊁三角形点和圆形点分别代表4π㊁3π和2π磁斯格明子Fig.6㊀Field-driven magnetic evolutions of k π-Skyrmion in Fe 3Sn 2nan-odisks obtained by differential phase contrast [15]:(a)roundk π-Skyrmions stabilized at high fields;(b)field B dependent diameter of k π-Skyrmions,the square,triangle,and circle sym-bols in Fig.6b denote the parameter k with values of 4,3,and2,respectively558博看网 . All Rights Reserved.中国材料进展第40卷纳米盘直径可实现可调k参数等特点,有望进一步被应用于新型磁电子学器件的设计中㊂3.3㊀可逆电流调控磁斯格明子-磁泡拓扑磁转换中心对称Fe3Sn2材料中有两种局域磁结构:磁斯格明子和磁泡㊂传统的磁斯格明子基存储器是将磁斯格明子和铁磁态看作数据比特的 1 和 0 [29]㊂但是由于热扰动和斯格明子间的相互作用[33,71],斯格明子的非定向运动会造成数据链的混乱㊂而为了抑制斯格明子的无序运动,需要在传统斯格明子基存储器中的每个数据比特位构建人工缺陷,这无疑会增加器件构建的成本㊂我们提出采用磁泡替代传统铁磁空隙当作数据比特 0 来构建磁斯格明子-磁泡存储器,如图7a~7d所示[18]㊂当磁场完全垂直于Fe3Sn2(001)纳米结构时,为了使偶极-偶极相互作用能最小化,柱状畴形成具有闭合磁畴的磁斯格明子稳定相㊂当磁场不是完全垂直于Fe3Sn2 (001)纳米结构而具有大的面内磁场时,为了使赛曼能最小化,柱状畴形成具有朝向面内磁场方向磁畴的磁泡稳定相㊂当磁场的倾斜角度适中时,磁斯格明子和磁泡是稳定共存,也是磁斯格明子-磁泡存储器实现的前提㊂在强受限Fe3Sn2(001)纳米条带中,通过施加一个5ʎ倾斜的磁场,成功实现了磁斯格明子-磁泡单链(图7e),这种磁斯格明子-磁泡单链被当作一串数据比特㊂图7㊀一种基于磁斯格明子和磁泡的存储器原型的提出[18]:(a)斯格明子-磁泡存储器概念设计图;(b)代表数据比特 1 的斯格明子磁结构;(c)用磁泡替代铁磁来代表数据比特 0 ;(d)磁泡的菲涅尔磁衬度;(e)Fe3Sn2纳米条带中实现的磁斯格明子-磁泡单链,可以用来代表磁斯格明子-磁泡存储器中的一串 11011000001 数据链Fig.7㊀Propose of a magnetic memory based on Skyrmions and bubbles[18]:(a)schematic design of Skyrmion-bubble-based magnetic memory;(b)a Skyrmion representing the data bit 1 ;(c)a bubble replacing ferromagnet to represent the data bit 0 ;(d)Fresnel contrast of the bubble;(e)experimental realization of a single Skyrmion-bubble chain to represent the data bit11011000001 in a Fe3Sn2nanostripe㊀㊀磁斯格明子和磁泡的拓扑荷分别为1和0,具有截然不同的拓扑相关物性,如斯格明子霍尔效应和拓扑霍尔效应[72-75]㊂可控的磁斯格明子和磁泡的产生及其相互转换能够促进拓扑相关的磁电子学器件的开发㊂依据磁斯格明子和磁泡的产生机制,通过倾转外磁场能够有效调控磁斯格明子和磁泡的产生和转换[21,50]㊂本课题组[19]研究了Fe3Sn2纳米盘中磁斯格明子和磁泡的稳定性以及他们之间磁场诱导的拓扑磁转换,发现磁盘中磁斯格明子和磁泡的数量不仅与纳米盘直径有关,还与磁场角度相关㊂当纳米盘直径减小到~540nm时,该受限结构中最多只能稳定一个磁斯格明子或磁泡㊂通过固定外磁场强度同时调节其相对于磁盘法向的角度,成功实现了单斯格明子-单磁泡间可控的拓扑磁转换,如图8所示㊂两类磁状态间的拓扑磁转变可以用于器件的写入和删除等功能,但磁场方法不兼容于当代和未来的电子学器件设计和应用,而电学调控磁斯格明子-磁泡的拓扑转变的研究仍有待发掘㊂因此,本课题组进一步探索了电流可控磁斯格明子-磁泡相互转变的可能性[17]㊂在Fe3Sn2(001)纳米薄片中,磁场小角度倾斜于薄片法向时,磁斯格明子和磁泡都是稳定的磁状态㊂当设置磁斯格明子晶格为初始磁状态,施加高密度纳秒电流脉冲后,会发生磁斯格明子到磁泡的转变;当设置磁斯格658博看网 . All Rights Reserved.㊀第11期汤㊀进等:透射电镜差分相位分析技术磁畴研究图8㊀Fe 3Sn 2纳米结构中磁场诱导的斯格明子-磁泡转换[19]:(a~e)洛伦茨模式观测的斯格明子-磁泡转换,(f ~j)对应的微磁模拟的斯格明子-磁泡转变,(k)斯格明子-磁泡转变过程中的拓扑数的变化,(l)斯格明子-磁泡转变过程中的总自由能密度随磁场角度的变化Fig.8㊀Field-induced topological Skyrmion-bubble transformations in Fe 3Sn 2nanodisks [19]:(a ~e)Skyrmion-bubble transformationsobtained by Lorentz-TEM,(f ~j)corresponding Skyrmion-bubble transformations obtained by micromagnetic simulation,(k)winding number as a function of tilted field angle,(l)total free energy density as a function of tilted field angle明子晶格为初始磁状态,施加低密度纳秒电流脉冲后,会发生磁泡到磁斯格明子的转变㊂重要的是,通过调控电流幅度,这种磁斯格明子-磁泡相互转变是完全可逆的,如图9所示[17]㊂利用微磁学计算模拟发现,电流可控磁斯格明子-磁泡相互转变可被归因于自旋转移力矩和焦耳热效应的综合作用㊂当施加高密度电流脉冲时,电流的焦耳热会导致样品升温而发生热退磁,而在两个电流脉冲的间隙,样品又会降温而发生磁恢复过程㊂在热退磁的过程中,样品的饱和磁场强度会降低,而外加磁场强度固定不变,因此会发生磁斯格明子到铁磁态的转变㊂由于磁场是倾斜于样品垂直方向的,因此铁磁态是具有一定面内分量的倾斜铁磁态,面内磁化分量平行于面内磁场分量㊂而在降温的磁化恢复过程中,由于磁泡的畴壁磁化是与倾斜磁化背景一致,因此磁泡更优先于磁斯格明子从倾斜磁化背景中产生㊂特别地,即使磁泡的总自由能能量高于磁斯格明子,这种磁斯格明子到倾斜铁磁到磁泡转变的过程也能够发生㊂而低密度脉冲电流诱导的磁泡到磁斯格明子的产生归因于自旋转移力矩效应㊂磁泡的能量要高于磁斯格明子,自旋转移力矩相当于一个外界激发,能够使高能亚稳磁泡产生变形而处于一个非稳定状态,从而能够越过能量势垒转变到低能磁斯格明子稳定态㊂此外,在Fe 3Sn 2(001)纳米薄片中,在较低外磁场下,磁泡会转变为条纹磁畴㊂之前的研究中已经能够实现电流控制条纹磁畴到磁斯格明子的转变,但其逆过程磁斯格明子到条纹磁畴的转变还比较少见[31,76-82]㊂通过高低纳秒脉冲电流切换,同样能够实现磁斯格明子-条纹磁畴的可逆和可重复的拓扑磁转换㊂4㊀结㊀语本文阐述了将差分相位分析技术应用到偶极磁斯格明子/磁泡材料Fe 3Sn 2中的新型磁结构观测和电驱动拓扑磁转变动力学研究中的进展,研究结果表明,差分相位技术推动了三维磁结构㊁靶磁泡/k π-磁斯格明子等新型磁结构的精确表征,澄清了中心对称晶体中复杂磁结构的起源,并为后续的新型磁结构相关自旋电子学的应用奠定了重要基础㊂本课题组也提出了磁斯格明子-磁泡存储器的概念设计,并在实验室实现了单链磁斯格明子-758博看网 . All Rights Reserved.。
电子科学与技术专业英语微电子技术分册部分单词

缩略词:BJT 双极结型晶体管Bipolar Junction TransistorLED 发光二极管Light Emitting DiodeMOS 金属氧化物半导体场效应晶体管Metal Oxide SemiconductorFET 场效应晶体管Filed Effect Transistorbcc 体心立方Body-centered cubicfcc 面心立方Face-centered cubicSOI Silicon-On-Insulator绝缘层上硅结构CVD Chemical Vapor Deposition化学气相淀积+ plus/positive - negative * minus / negativeX2X square the square root of X3 x cube the cubic root ofX y X to the yth单词:Semiconductor半导体transition 跃迁Conductivit电导率diffusivity piecewise 分段扩散率resistivity 电阻率diffusivity 扩散系数Bipolar transistor 双极型晶体管step junction 突变结Rectifie 整流器metallurgical junction 合金结Photodiode 光电二极管fermi level 费米能级Leakage current 漏电流exponential 指数的Silicon dioxide 二氧化硅dopant 掺杂Lattice 晶格dielectric 电解质dislodge 移出Unit cell 晶胞Facet 晶面bonding 键合phonon 声子Lattice constant 晶格常数tetrahedral 四面体的Diamond lattice 金刚石晶格Level energy 能级Miller indices 弥勒指数acoustic 声学的Hole 空穴lifetime 寿命Permittivity 介电常数continuity equation连续方程Covalent bonding 共价键impurity 杂质Conduct/valence band 导带,价带device 装置,器件Effective density of states 有效态密度magnetic 有磁性的Intrinsic 本征的illumination 照明silicon ,gallium,germanium,gallium arsenideExtrinsic 非本征的reciprocal 倒数,相反的Carrier 载流子agitation 激动,搅拌Bandgap 能带间隙incremental 增加的Mass action law 质量作用定律excitation 激发Donor acceptor 施主受主Injection 注入collision 冲突,抵触impact ionization 碰撞电离superimposed 叠加sufficient 充分的Scatter 散射Drift 漂移succession 连续的drift velocity 漂移速度Mean free time /path 平均自由时间/程Mobility 迁移率saturation 饱和Recombination 复合spatial 空间overwhelm vt.压倒;淹没;受打击Decay 衰减Abrupt 突变derivative 衍生物bias 偏见gradient 梯度;magnitude 量级Direct Recombination 直接复合Photoconductivity 光电导potential barrier [物] 势垒;[电子] 位垒;voltmeter 电压计quantitative 定量的amplification 放大(率steady state 恒稳态;transient state 瞬态;过渡状态; qualitative .定性的rectification n. [电] 整流equilibrium condition 平衡态endeavor 努力conceive 设想;考虑; postulate.假定unfolding 演变; Prime n. 初期;Primitive 原始的,简单的,粗糙的; artistic adj. 艺术的;supervisor n. 监督人,管理人;检查员;Instinct n. 本能,直觉analog n.模拟;类似物analytical adj. 分析的genuine adj. 真实的,真正的inferior n. 下级;次品acronym n. 首字母缩略词; insofar as 在…的范围内;到…程度; embodiment n. 体现;化身;具体化;proliferate vi. 增殖;扩散;激增vt.使激增;constantly adv. 不断地;时常地; complementary adj. 补足的,补充的; dissipation n. 浪费;消散;[物] 损耗; vehicle n. [车辆] 车辆;工具;交通工具;传播媒介Parallelepiped n. 平行六面体; metallurgical adj. 冶金的;冶金学的; Pedestal n. 基架,基座;analogous adj. 类似的;可比拟的; Ambiguity n. 含糊;不明确;retain vt.保持;雇;记住; Resemblance n. 相似;相似之处prototypical adj. 原型的;典型的; Parasitic adj. 寄生的(等于parasitical);Vestigial adj. 退化的;残余的;发育不全的;parallel n. 平行线平行的Grooves n. 细槽,凹槽simultaneously同时发生地remnant n. 剩余adj. 剩余的;Mount n. 山峰;底座;Acknowledge 承认; disturbance 干扰; inevitable 不可避免的;inherent 固有的; subsume 把。
Fe-based amorphous,soft magnetic composites

(3)Those who filled electron shell of the total magnetic moment are zero. Electronic magnetic moment on only unfilled electron shells have total magnetic moment of the unpaired atoms contribute;
(4)All the magnetic moments of the ferromagnetic material mainly by the contribution of electron spin rather than electron orbital motion of contribution.
A soft magnetic material mainly those magnetized easily repeated, and the external magnetic field is removed, a material easy demagnetization. 2. Soft magnetic materials features:
(1)Composition of matter of elementary particles (electrons, protons, neutrons, etc.) have an intrinsic magnetic moments (spin magnetic moment) (2) Micro-current magnetic moment (orbital moment) due to the motion of electrons generated atoms, as well as protons and neutrons in the nucleus of the produced.
基于磁锚定技术的磁性水凝胶辅助内镜黏膜下剥离术

专 论FEATURES引言我国是消化道疾病高发国家,其中消化道肿瘤在消化道疾病中占比大,是重要的医疗负担。
早年因消化道内镜技术检查率低,大部分食管癌、胃癌、结直肠癌发现时已到中晚期,外科手术成为消化道肿瘤的主要治疗手段。
目前,内镜技术普及率明显升高,内镜检查率也大大提高,因此更多的消化道早癌实现了早发现、早诊断、早治疗的目标。
内镜黏膜下剥离术(Endoscopic Submucosal Dissection,ESD)以确切的疗效和微创化治疗使其成了消化道早癌及癌前病变的首选治疗方案[1]。
黏膜创面的暴露是影响ESD术中操作的关键因素。
常规做法是标记病灶后于标记点外侧多点行黏膜下注射药物,以达到抬高病灶,利于切除的目的。
目前常用的黏膜下注射药物有肾上腺素生理盐水混合液[2]、甘油果糖[3]、水凝胶[4]、玻璃酸钠[5]以及多种液体的混合液[6-7]等。
通过药物注射抬高病灶的方法简单易行,但当病灶面积较大时,此法对黏膜创面的暴露效果有限。
为此,有研究者提出了通过悬吊牵引增加黏膜创面的显露的方法[8],也有将特殊设计的机器人增强内镜外科系统MASTER[9]用于切除过程基于磁锚定技术的磁性水凝胶辅助内镜黏膜下剥离术刘豪1a,1b,2a,赵广宾2b,张勇1b,1c,韩珍珍1b,史爱华1b,吕毅1a,1b,严小鹏1a,1b1. 西安交通大学第一附属医院 a. 肝胆外科;b. 精准外科与再生医学国家地方联合工程研究中心;c. 胸外科,陕西西安 710061;2. 西安交通大学 a. 启德书院;b. 机械制造系统工程国家重点实验室,陕西西安 710061[摘 要] 目的 针对内镜黏膜下剥离术(Endoscopic Submucosal Dissection,ESD)术中黏膜创面暴露难题设计基于磁锚定技术的磁性水凝胶辅助ESD手术方案。
方法 分析目前ESD手术中影响黏膜暴露的关键性因素,在前期磁外科相关研究积累的基础上,提出了磁性水凝胶黏膜注射,同时给予体外锚定磁体牵引,以实现黏膜切除中创面的充分暴露的方案,并对其锚定力进行了初步实验。
电子束磁聚焦法测量地磁场

26科技资讯 SC I EN C E & TE C HN O LO G Y I NF O R MA T IO N工 程 技 术电子束的纵向磁聚焦主要用于测量电子的荷质比[1],由于地球本身就是一个大磁体,是否可利用电子束的磁聚焦现象来测量地磁场?目前少有相关的报道。
本文在磁聚焦的理论基础上,分析磁聚焦测量地磁场的可行性和测量方法。
地球具有磁性,所以在地球及近地空间存在着磁场,地磁场的强度与方向随地点而异,通常可用三个物理量来描述:(1)磁偏角α,即地球表面任一点的地磁磁感应强度矢量B 所在的垂直平面(地磁子午面)与地球子午面之间的夹角;(2)地磁场磁感应强度的水平分量B ∥,即地磁场磁感应强度矢量B 在水平面上的投影;(3)磁倾角β,即地磁场磁感应强度矢量B 与水平面之间的夹角[2]。
测出这三个物理量就可确定某一地点的地磁场的大小和方向。
1 磁聚焦法测量地磁场的基本原理1.1磁聚焦的基本原理将示波管置于螺线管内,保持示波管的轴向与螺线管的轴向平行,给螺线管加上励磁电流,则在螺线管内部产生与示波管轴向平行的磁场,与此同时,在示波管的水平偏转板加上偏转电压,则在偏转板之间产生与磁场方向垂直的电场。
当电子以速度v z 沿轴向经过偏转板时因受到电场力的作用而获得一横向速度v x ,v x 与螺线管内部的磁场的磁感应强度B 垂直,而具有速度v x 的电子在磁场中受到洛仑兹力的作用将作圆周运动,因此在磁场和电场的共同作用下的电子将作螺旋线运动[3],并最终打在荧光屏上(如图1所示)。
螺旋线的半径R 、周期T 和螺距h 分别为:eBmv R x(1) eB mv R T x22 (2)eBmv T v h zz 2(3)式中的m和e为电子的质量和电荷量;B 为螺线管内部轴向的磁感应强度大小。
从(1)~(3)式可以看出,螺旋线轨迹的半径R 与v x 成正比,与B 成反比;周期T 、螺距h 与B 成反比,与v x 无关。
双向电泳技术研究进展

双向电泳技术研究进展摘要:双向电泳(two dimensional electrophoresis , 2-DE)技术是获得细胞、组织或器官等蛋白表达图谱的主要手段,是蛋白质组学研究的三大核心技术之一。
本文主要从双向电泳技术的发展,主要操作步骤及其面临的主要挑战等方面对改技术的研究进展进行综述。
关键词:双向电泳;研究1.双向电泳技术的发展蛋白质双向电泳源于1975年O,Farrell. Klose.Scheele 对大肠杆菌、老鼠及几尼猪蛋白质的研究。
它首先根据样品中蛋白质等电点不同进行等电聚焦(IEF)作为第l向,然后再按照蛋白质分子量大小不同进行SDS聚丙烯酰胺凝胶电泳(SDS -PAGE)作为第2向,经染色后可以在凝胶上得到大量的蛋白质点,从而得到样品的蛋白质表达图谱。
根据双向电泳中第l向等电聚焦方法的不同,双向电泳主要分为2个主要类型,ISO-DALT(等电点一道尔顿)IPG.DALT ( 固相pH梯度一道尔顿)双向电泳。
1.1 ISO-DALT双向电泳技术传统的ISO-DALT双向电泳中,首先将载体两性电解质添加在丙烯酰胺凝胶中,凝胶聚合后在电场作用下形成连续的DH值梯度,两性电解质以游离的形式分布于聚丙烯酰胺凝胶的网孔中。
通常采用圆柱状电泳,IEF凝胶制备在圆柱型玻璃管中,可以将样品加在未凝固的凝胶溶液中,也可在凝胶凝固后在玻璃管顶端加样,然后进行等电聚焦,通常在50~100V电压下聚焦1~2 h,让样品进入IEF胶条,然后在200 ~400V或更高电压下进行聚焦,直到电流接近零时为止。
等电聚焦结束后取下凝胶柱,向玻璃管中凝胶与管壁间注水,将凝胶条吹出,用缓冲液平衡凝胶条,主要目的是充分打断多肽链间及多肽链内部的二硫键并使其与SDS充分结合,然后将胶条用琼脂包埋于第2向电泳的凝胶板中,进行第2向SDS-PAGE,SDS-PAGE 可以使用均一的分离胶浓度,也可采用不连续梯度胶或者连续梯度胶。
基于分子动力学的丝网印刷柔性传感器电极导电性机理研究

包装工程第45卷第1期·54·PACKAGING ENGINEERING2024年1月基于分子动力学的丝网印刷柔性传感器电极导电性机理研究潘云霄1,李艳1*,王云燕1,蔡子木1,彭拓凯2,许建林1,任铮1(1.北京印刷学院 a.数字化印刷装备北京市重点实验室 b.印刷装备北京市高等学校工程研究中心北京102600;2.北京化工大学软物质科学与工程高精尖创新中心,北京100029)摘要:目的研究提高丝网印刷柔性传感器电极的导电性,为提升柔性传感器的电学性能提供参考依据。
方法首先采用分子动力学(Molecular Dynamic,MD)模拟方法,建立在Wenzel模型下导电银浆团簇在不同粗糙因子下的对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET)表面铺展的分子动力学模型,其次分别计算各体系下的结合能,用以表征不同体系下PET表面对导电银浆团簇结合能力,接下来通过丝网印刷实验的方法探究银浆与不同粗糙因子PET的结合能力对传感器电极的导电性的影响。
结果仿真结果表明,导电银浆团簇在不同粗糙因子的PET表面的铺展过程中会陷入粗糙表面的凹陷处,且导电银浆与基材的结合能随着PET粗糙因子的增加而增加。
实验结果表明,使用不同粗糙因子的PET 作为承印物能显著提升电极的导电性。
相比于未处理的PET,随着粗糙因子的增加,导电线条的电导率逐渐升高,电阻率逐渐降低,方块电阻逐渐降低。
电导率最大提升了77%,电阻率最大下降了43%,方块电阻最大下降了38%。
结论导电银浆在粗糙表面铺展的过程中会渗入基材的凹陷处,增加了吸附点位,使得银浆与基材的结合更加紧密,银颗粒之间距离变小导电性增强。
因此为了增加导电线条的导电性可以适当增加基材的粗糙度。
关键词:丝网印刷;柔性压力传感器;分子动力学;粗糙因子;结合能;导电性中图分类号:TS802.3 文献标志码:A 文章编号:1001-3563(2024)01-0054-08DOI:10.19554/ki.1001-3563.2024.01.007Mechanism of Electrode Conductivity in Screen Printing Flexible Sensors Based onMolecular DynamicsPAN Yunxiao1, LI Yan1*, WANG Yunyan1, CAI Zimu1, PENG Tuokai2, XU Jianlin1, REN Zheng1(1. a. Beijing Key Laboratory of Digitization Printing Equipment, b. Engineering Research Center of Printing Equipmentof Beijing Universities, Beijing Institute of Graphic Communication, Beijing 102600, China; 2. Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China)ABSTRACT: The work aims to improve the conductivity of the electrode in the screen printing flexible sensor, and provide a reference for improving the electrical properties of the flexible sensor. Firstly, the molecular dynamic (MD) simulation method was used to establish the molecular dynamics model of conductive silver paste spreading on the surface of polyethylene terephthalate (PET) under different roughness factors in Wenzel model. Secondly, the binding收稿日期:2023-08-28基金项目:国家新闻出版署智能与绿色柔版印刷重点实验室招标课题(ZBKT202006);超弹性现象对柔版印刷质量影响研究(ZBKT202103)*通信作者第45卷第1期潘云霄,等:基于分子动力学的丝网印刷柔性传感器电极导电性机理研究·55·energy of each system was calculated to characterize the binding ability of PET surface to conductive silver paste clusters in different systems. Then, the effect of the binding ability of silver paste and PET with different roughness factors on the conductivity of sensor electrode was explored by screen printing experiment. The simulation results showed that the conductive silver paste fell into the depression of rough surface during the spreading on PET surface with different roughness factors, and the binding energy between conductive silver paste and substrate increased with the increase of PET roughness factors. According to the experimental results, the conductivity of the electrode was significantly improved by PET with different roughness factors as the substrate. Compared with untreated PET, with the increase of roughness factor, the conductivity of conductive lines gradually increased by 77%, the resistivity gradually decreased by 43%, and the block resistance gradually decreased by 38%. Conductive silver paste will penetrate into the depression of the substrate during the spreading on rough surface, which increases the adsorption point, making the combination of silver paste and substrate closer, narrowing the distance between silver particles and enhancing the conductivity. Therefore, in order to increase the conductivity of the conductive lines, the roughness of the substrate can be appropriately increased.KEY WORDS: screen printing; flexible pressure sensor; nolecular dynamics; roughness factor; binding energy; conductivity柔性电子技术是建立在可弯曲或可延伸基材上的新兴的电子技术,产生了柔性通信、柔性显示、柔性医疗、柔性传感等新的应用,要求产品在弯曲,压缩或拉伸状态下仍能正常工作,有着非常广阔的应用前景,受到学术界和产业界的广泛关注[1-5]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Electrodeposition of soft-magnetic cobalt–molybdenum coatingscontaining low molybdenum percentagesElvira G o mez,Eva Pellicer,Elisa Vall e s*Electrodep,Departament de Qu ımica F ısica,Universitat de Barcelona,Mart ıi Franqu e s 1,08028Barcelona,SpainReceived 29September 2003;accepted 9December 2003Available online 10May 2004AbstractElectrodeposition of cobalt–molybdenum alloys has been optimised to obtain coatings that show low coercivity and high sat-uration magnetisation.For this purpose,low molybdenum percentages were required (610%).Solutions containing a fixed sodiumcitrate concentration (0.2mol dm À3)and variable concentrations of CoSO 4and Na 2MoO 4were tested.0.1mol dm À3CoSO 4+0.005mol dm À3Na 2MoO 4or 0.3mol dm À3CoSO 4+0.012mol dm À3Na 2MoO 4solutions,both at pH 4,were useful to obtain Co–Mo coatings of several microns with a molybdenum percentage 610%,although higher process efficiency was obtained from the second solution.These coatings showed a fluffy morphology and a close-packed hexagonal structure (hcp)with (110)+(100)preferred orientation.These films exhibited a soft magnetic behaviour and their coercivity (H c )was clearly lower than that corresponding to pure-cobalt deposits and they maintained,moreover,high saturation magnetisation (M s ).Ó2004Published by Elsevier B.V.Keywords:Cobalt–molybdenum alloy;Electrodeposition;XRD;Magnetic films1.IntroductionElectrodeposition is a useful method to obtain me-tallic coatings,which satisfy many properties such as hardness,corrosion resistance,catalytic properties,etc.In this regard,the preparation of cobalt alloys,which exhibit a soft magnetic behaviour,has been gaining importance because these materials are needed for mi-croelectronic devices [1–9].Molybdenum incorporation in cobalt alloys is one way to achieve a soft magnetic response of the material [10].In a previous paper [11]we obtained homogeneous non-stressed 20–25%Mo cobalt–molybdenum deposits from a sulphate–citrate bath at pH 6.6.Those deposits showed low coercivity but also lower saturation mag-netisation than pure-cobalt.To obtain Co–Mo coatings with low coercivity but high saturation magnetisation,lower molybdenum percentages are desirable.Previous experiments demonstrated that molybdenum incorpo-ration in the deposits was constrained by decreasing the pH [12].Here we examine the electrochemical response of various solutions at low pH as well as the characteri-sation of the Co–Mo deposits obtained.Baths tested contained a fixed sodium citrate concentration (0.2mol dm À3).The cobalt sulphate concentration ranged be-tween 0.1and 0.3mol dm À3and sodium molybdate was varied between 0.005and 0.012mol dm À3to prevent high molybdenum incorporation in the deposits.2.ExperimentalThe study of the electrodeposition process and de-posit preparation was performed in a conventional three-electrode cell using a microcomputer-controlled Autolab potentiostat/galvanostat with PGSTAT30equipment and GPES software.Solutions contained CoSO 4,Na 3C 6H 5O 7and Na 2MoO 4,all of analytical grade.The pH was adjusted to 4.0by adding H 2SO 4.All solutions were freshly prepared with water,which was first doubly distilled and then treated with a Millipore*Corresponding author.Tel.:+34-93-402-1234;fax:+34-93-402-1234.E-mail address:e.valles@ub.es (E.Vall e s).0022-0728/$-see front matter Ó2004Published by Elsevier B.V.doi:10.1016/j.jelechem.2003.12.032Journal of Electroanalytical Chemistry 568(2004)29–36/locate/jelechemJournal ofElectroanalyticalChemistryMilli Q system.Before and during the experiments,so-lutions were deaerated with argon.The temperature was maintained at25°C.For the electrochemical study,the working electrode was a vitreous carbon(Metrohm)electrode of0.0314 cm2.It was polished to a mirrorfinish before each ex-periment using alumina of different grades(3.75and 1.85l m)and cleaned ultrasonically for2min in water. For deposit preparation,copper(John Matthey99.99%, 0.720cm2)and graphite(Alfa Aesar,0.352cm2)elec-trodes were used.They were polished before each ex-periment using sandpaper(2400and4000)followed by damp alumina of0.3l m.The reference electrode was an Ag j AgCl j1mol dmÀ3NaCl electrode mounted in a Luggin capillary containing0.5mol dmÀ3Na2SO4so-lution.All potentials are referred to this electrode.The counter electrode was a platinum spiral.Voltammetric experiments were carried out at50mV sÀ1,scanning initially fromÀ500mV towards negative potentials.Only one cycle was run in cyclic voltam-metric experiments.Two linear sweep voltammetries (partial scans)were combined in some cases to obtain complementary information.For preparation of the deposits,the solution was stirred moderately(x¼60rpm)to avoid the depletion of the minority species(molybdate)to the electrode during the experiments and to maintain homogeneous deposit composition.The morphology of the deposits was examined with scanning electron microscopy,using Hitachi S2300 equipment.Deposit composition was determined with an X-ray analyser incorporated in a Leica Cambridge Stereoscan S-360scanning electron microscope using standards of pure molybdenum and pure cobalt before each quantitative analysis.X-ray diffraction(XRD)phase analysis was per-formed on a Philips MRD diffractometer with low-res-olution parallel beam optics.The Cu K a radiation (k¼1:5418 A)was selected by means of a diffracted beamflat graphite monochromator.2h diffractograms were obtained in the2h range of20–100°with a step range of0.05°and a measuring time of500per step. The magnetic measurements were performed with a Manics DSM8pendulum-type magnetometer at room temperature.The efficiency of deposit preparation was calculated from measurement of the thickness of the deposits(us-ing a Zeiss Axiovert405M Microscope).3.Results and discussion3.1.Voltammetric studyAccording to previous knowledge of the influence of pH on the composition of cobalt–molybdenum deposits [12],various baths adjusted to pH4.0were tested.The Co(II)concentration was varied from0.1to0.3mol dmÀ3as it was expected that the molybdenum content in the deposits would also be reduced by increasing Co(II) concentration in solution.The electrochemical response of a solution containing 0.3mol dmÀ3CoSO4+0.005mol dmÀ3Na2MoO4+0.2 mol dmÀ3Na3C6H5O7was analysed by means of the voltammetric technique(Fig.1).A reduction peak prior to a sharp current increase attributable to hydrogen evolution was recorded during the negative scan.When the scan was reversed at lower limits prior to the hy-drogen coevolution current,a single peak was recorded during the positive scan.In contrast,when the scan was reversed at higher negative limits,a double peak was recorded.This behaviour was observed for all Co(II) concentrations studied.In order to determine the nature of this double oxi-dation peak,which appeared at large negative limits, two linear sweep voltammetries were combined:a neg-ative going scan sweep,followed by an oxidation scan performed from an initial potential at which no current was detected.Fig.2shows that the peak at more neg-ative potentials was enhanced when deposition contin-ued in the positive going sweep.The two combined linear sweep voltammetries were used to analyse the oxidation response when different negative limits were applied(Fig.3(A)).A single oxi-dation peak was recorded when the negative limit was fixed at potentials prior to the reduction peak or at potentials for which the reduction peak was developed (Fig.3(B),curve a).The oxidation of deposits formed by scanning to more negative potentials showed a shoulder-shape positive current prior to the main peak(Fig.3(B), curves b,c).At even more negative lower limits a double peak was recorded accompanied by a clear decrease of the Q ox=Q red ratio(Fig.3(B),curved).Fig.1.Cyclic voltammograms of a0.3mol dmÀ3CoSO4+0.2mol dmÀ3Na3C6H5O7+0.005mol dmÀ3Na2MoO4solution.Quiescent conditions.Lower limitðE cÞ¼(a)À1300mV and(b)À1500mV.30 E.G o mez et al./Journal of Electroanalytical Chemistry568(2004)29–36For deposits formed in a single scan towards large negative limits,in some experiments the potential was held during the oxidation scan.When the potential was held at a value close to the onset of the oxidation,the peak at more negative potentials disappeared and that at more positive potentials remained in the same position (Fig.4).As these peaks were independent,it seemed that they were related to the formation of two different types of Co–Mo deposit.When cyclic voltammetries were recorded while stir-ring the solution,the reduction peak evolved to a pla-teau,revealing that it was influenced by mass transport (Fig.5).The oxidation of the deposit began at more positive potentials than those corresponding to quies-cent conditions and only a single peak was recorded.This result revealed that the supply of electroactive species to the electrode favoured the formation of a more homogeneous deposit,which was oxidised in a single peak.For a fixed Co(II)concentration,voltammetric studies from solutions with a variable molybdate con-centration were performed.Fig.6(A)shows that,at low negative limits,the general trends of the electrochemical response were maintained when the molybdate concen-tration was increased from 0.005to 0.012mol dm À3.A reduction peak was observed during the negative scan and only a single oxidation peak was obtained in the positive scan.However,this oxidation peak moved to more negative potentials as the molybdate concentration was increased,corresponding to the formation of Co–Mo deposits with higher molybdenum percentages [13].In contrast,different features were observed when the negative limit was raised to potentials at which the hy-drogen evolution current was significant (Fig.6(B)).Asingle oxidation peak was recorded for [MoO 2À4]¼0.012mol dm À3,even under quiescent conditions,whereas the double peak mentioned above was observed for[MoO 2À4]¼0.005mol dm À3.This result made it evident that a more homogeneous deposit was formed for mo-lybdate concentrations greater than 0.005mol dm À3.Zooming the reduction zone of the voltammetry of Fig.6,a low current attributed to molybdenum oxide formation [14]was observed.Moreover,a tiny shoulder appeared (Fig.7(A),continuous line).None of these features was observed when a reduction scan from a molybdate-free solution was performed (Fig.7(A),da-shed line).In order to investigate the nature of this shoulder,various negative scans in the range of these low currents were carried out,followed by the corre-sponding oxidation scans.At the negative limits for which the shoulder developed,an oxidation peak cen-tred at À200mV was recorded (Fig.7(B),curve a).The oxidation peak of a pure cobalt deposit formed at low reduction charges in citrate media appeared in the same position (Fig.7(B),curve c).Meanwhile,for more neg-ative lower limits the oxidation peak,attributed to Co–Mo oxidation,was centred at À250mV (Fig.7(B),curveFig.2.0.3mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.005moldm À3Na 2MoO 4solution.Quiescent conditions.(a)Cyclic voltam-mogram,E c ¼À1500mV;(b)combined linear sweep voltammetries (reduction scan to E c ¼À1500mV +oxidation scan from À500mV).Fig.3.0.2mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.005mol dm À3Na 2MoO 4solution.Quiescent bined linear sweep voltammetries.(A)Reduction scans to E c ¼(a)À1175mV,(b)À1300mV,(c)À1400mV and (d)À1500mV.(B)Corresponding oxidation scans from À550mV.E.G o mez et al./Journal of Electroanalytical Chemistry 568(2004)29–3631b).Obviously,the position of these peaks corresponded to low reduction charges,since they shifted,as usual,to more positive potentials when the reduction charge in-creased.These results were in accord with the proposed mechanism for Co–Mo electrodeposition [12].This proposal suggests that the presence of a small amount of cobalt nuclei on the intermediate molybdenum oxides is always necessary to induce alloy ple-mentary galvanostatic experiments at very low current densities revealed that the typical nucleation spike ap-peared after a previous reduction process assigned to molybdenum oxide formation [14](Fig.8,curves a and b).When a more negative current density was applied,only a nucleation spike attributed to Co–Mo,which appeared at shorter deposition times,was observed (Fig.8,curve c).The Q ox =Q red ratio was estimated for different bath compositions from the two combined linear sweep vol-tammetries (negative going sweep of the reduction scan+oxidation scan)(Table 1).For a [MoO 2À4]¼0.005mol dm À3,the Q ox =Q red ratio increased strongly when the Co(II)concentration was raised from 0.1to 0.2mol dm À3and increased slightly from 0.2to 0.3mol dm À3.For a 0.3mol dm À3Co(II)concentration,the Q ox =Q red ratio decreased slightly when the molybdate concentra-tion was increased moderately.In all cases,a low Q ox =Q red ratio was observed at very low negative limits,for which molybdenum oxide formation was important,and these intermediates were hardly oxidised [13].On the other hand,Q ox =Q red was also low at very negative lower limits as a consequence of considerable hydrogen evolution.However,for each bath composition,there was always a potential range at which deposits could be prepared with reasonable efficiency.3.2.Preparation and characterisation of depositsDeposits were prepared mainly galvanostatically to facilitate control of the deposited charge.AlldepositsFig.4.0.2mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.005moldm À3Na 2MoO 4solution.Quiescent conditions.(a)Oxidation scan from À550mV of a deposit formed during a reduction scan to E c ¼À1500mV,(b)oxidation scan holding the potential at À400mV during 60s of a deposit obtained under the sameconditions.Fig.5.Cyclic voltammograms of a 0.2mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.005mol dm À3Na 2MoO 4solution.E c ¼À1500mV.(a)Quiescent conditions,(b)stirredconditions.Fig.6.Cyclic voltammograms of a 0.3mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+x mol dm À3Na 2MoO 4solution.Quiescent conditions.(a)x ¼0:005,(b)x ¼0:012.(A)E c ¼À1300mV.(B)E c ¼À1500mV.32 E.G o mez et al./Journal of Electroanalytical Chemistry 568(2004)29–36were obtained under a moderate stirring of the solution (x ¼60rpm)as it was demonstrated in voltammetric experiments that it was necessary to maintain the flux of the species to the electrode,thereby obtaining deposits of homogeneous composition.Copper or graphite sub-strates were used since thick deposits could not be pre-pared on vitreous carbon [11].Compositional analysis of samples prepared from the baths previously studied re-vealed,as a general trend,that the molybdenum content in Co–Mo deposits was low,dependent on the applied current density in acidic media (Table 2).Moreover,the efficiency of deposition increased in direct proportion to Co(II)concentration.This result was in agreement with previous voltammetric experiments.Our experimental conditions led to deposits with molybdenum percentages that ranged between <3%and 10%Mo.The molybdenum percentage increased di-rectly with molybdate concentration and indirectly with Co (II)concentration.Moreover,a practically constant composition was observed for different deposition charges,revealing that the stirring conditions used were adequate to assure a constant composition throughout the thickness of the deposit (Table 3).Deposits with very low molybdenum percentages (lower than 5%)were black and showed an needle-like morphology,very similar to that corresponding to pure-cobalt (Fig.9(A)).Deposits with molybdenum percent-ages ranging between 5and 10%were less dark,tendingFig.8.E –t transients recorded from a 0.3mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.012mol dm À3Na 2MoO 4solution.Quiescent conditions.(a)À160l A cm À2,(b)À255l A cm À2and (c)À796l A cm À2.Table 1Q ox =Q red ratios obtained from voltammetric experiments as a function of the lower limit for different electrolyte concentrations Q ox =Q redÀE (mV)1040105010701100116012251500[Co(II)]¼0.1M–––0.010.230.240.15[MoO 2À4]¼0.005M[Co(II)]¼0.2M–0.090.350.500.700.700.60[MoO 2À4]¼0.005M[Co(II)]¼0.3M0.100.390.500.670.820.840.47[MoO 2À4]¼0.005M[Co(II)]¼0.3M0.160.300.420.600.870.850.39[MoO 2À4]¼0.012M[Na 3C 6H 5O 7]¼0.2M.Fig.7.(A)Reduction scans to E c ¼(a)À1018mV,(b)À1035mV of a 0.3mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.012mol dm À3Na 2MoO 4solution and (c)E c ¼À1030mV of a 0.3mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7solution.Quiescent conditions.(B)Corresponding oxidation scans from À400mV.E.G o mez et al./Journal of Electroanalytical Chemistry 568(2004)29–3633to a fluffy appearance as the molybdenum percentage increased (Fig.9(B)).In all cases,the diffractograms of Co–Mo deposits of several microns (P 50l m)ranging from 3%to 10%Mo showed narrow peaks,revealing the crystalline nature of the deposits,which can be assigned to a close-packed hexagonal structure (hcp)with a (110)+(100)pre-ferred orientation (Fig.10).The cell parameters of this hexagonal structure were obtained after a fit profile and least square refinement,leading to values very similar to those of cobalt.The peaks of the hexagonal structure gradually shifted to lower values than those corre-sponding to cobalt as a consequence of the molybdenum incorporation in the deposit.Deposits showing a crys-tallographic direction parallel to the substrate surface (an hcp structure with hk 0main peaks)were obtained as the molybdenum percentage increased.The parameter c could not be determined for deposits in the range of the highest molybdenum percentages because no diffraction peaks with l ¼0were observed.The peak profile analysis was performed using pseu-do-Voight functions,and the full width at half maxi-mum (FWHM)was refined for every peak.Table 4lists the FWHM values for the different diffraction peaks and the adjusted cell parameters for two samples.A slight increase of the width of the peaks was observed by in-creasing the molybdenum percentage,probably as a consequence of the stress produced in the crystalline lattice when molybdenum was incorporated in the deposit.Table 2Molybdenum percentages (%Mo)and efficiency values (g )for Co–Mo deposits obtained galvanostatically [Co(II)](mol dm À3)[MoO 2À4](mol dm À3)Àj (mA cm À2)ÀE (mV)%Mo g (%)0.10.005 6.397091512.5118010230.30.0056.49203609.595535415.91015347231070<3560.30.0126.48809439.593574615.998056723.91015574j was the applied current density and E was the stabilised potential.[Na 3C 6H 5O 7]¼0.2mol dm À3.Table 3Molybdenum percentages (%Mo)of various Co–Mo coatings obtained galvanostatically,j being the applied current density and Q the re-duction charge [Co(II)](mol dm À3)Àj (mA cm À2)ÀQ (C cm À2)%Mo 0.16.36410670912.76494009670100.39.5373476315.92434203[Na 3C 6H 5O 7]¼0.2mol dm À3,[MoO 2À4]¼0.005mol dm À3.Fig.9.SEM micrographs of Co–Mo deposits obtained galvanostatically under stirred conditions (x ¼60rpm).(A)0.3mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.005mol dm À3Na 2MoO 4solution.j ¼À32mA cm À2,3%Mo.(B)0.1mol dm À3CoSO 4+0.2mol dm À3Na 3C 6H 5O 7+0.005mol dm À3Na 2MoO 4solution.j ¼À8mA cm À2,8%Mo.34 E.G o mez et al./Journal of Electroanalytical Chemistry 568(2004)29–36Magnetic measurements of the samples previously characterised by XRD were carried out by taking hys-teresis loops.Co–Mo deposits of %Mo <5%exhibited H c values very close to those of homologous pure-Co deposits,revealing that very low molybdenum percent-ages in cobalt deposits did not promote changes in the magnetic response.The coercivity clearly decreased as the molybdenum percentage increased in the range of 5–10%(Fig.11).At the same time,the saturation magnetisation decreased slightly from the M s value corresponding to a pure-cobalt deposit.Under these conditions,Co–Mo deposits obtained from different bath compositions but containing the same molybde-num percentage led to practically identical M s and H c values.4.ConclusionsThe voltammetric study allows us to choose the de-position potential range,the stirring conditions,and the molybdate concentration in order to prepare homoge-neous Co–Mo deposits with low molybdenum percent-ages successfully.A single oxidation peak involtammetric experiments revealed the formation of homogeneous deposits.For this purpose,solutions should be stirred moderately,especially when the mo-lybdate concentration is kept at quasi ‘‘homeopathic’’quantities (0.005mol dm À3)since depletion of molyb-date around the electrode is unavoidable when quiescent conditions are used.Moreover,hydrogen evolution was minimised at slightly negative potentials since,under these conditions,the process was more efficient and porous hydrogenated deposits did not form.The voltammetric study combined with galvanostatic experiments also provided experimental support for the previously suggested sequence of steps for Co–Mo electrodeposition [12].The initial formation of inter-mediate molybdenum oxides was demonstrated both by voltammetric and galvanostatic curves when working at low current densities.Moreover,the shoulder that ap-peared in the negative scan of the voltammetric curves was related to the subsequent nucleation of cobalt to induce the alloy deposition over the oxides.At pH 4.0,for a fixed 0.2mol dm À3citrate concen-tration,the fraction of free Co 2þcalculated from the corresponding complexation constants increases from $4%for [Co(II)]¼0.1mol dm À3to 40%forTable 4FWHM values for the diffraction peaks and cell parameters obtained from diffractograms corresponding to Co–Mo coatings of different molyb-denum contentFWHM (º)100002101110200112201a ( A)c ( A)3%Mo 0.63 1.32 2.46 1.02 1.47 1.67 1.96 2.504 4.1129%Mo0.671.52–1.311.51––2.513–Fig.10.X-ray diffractogram of Co–Mo deposits with a molybdenum percentage 36%Mo P 10.E.G o mez et al./Journal of Electroanalytical Chemistry 568(2004)29–3635[Co(II)]¼0.3mol dmÀ3.An increase of free Co2þcon-centration in solution caused an advance of the onset of the deposition process and an increase of the voltam-metric Q ox=Q red ratio.This resulted in a greater current efficiency for deposit preparation when[Co(II)]¼0.3 mol dmÀ3.For each bath composition,a potential range,in which Co–Mo deposits could be prepared with moder-ate or high current efficiency,was found.At deposition potentials below this range,molybdenum oxides form on the electrode,thereby hindering the alloy deposition [12].Moreover,deposition potentials over this optimum range should also be avoided since hydrogen evolution diminishes the current efficiency and the deposit homo-geneity considerably.Co–Mo deposits with a molybdenum percentage be-tween5and10%showed an excellent soft-magnetic behaviour.In comparison to Co–Mo deposits with higher molybdenum percentages($23%)obtained in previous work[11],we have here maintained the satu-ration magnetisation close to the value exhibited by pure-Co deposits.The morphology and structure of those Co–Mo coatings poor in molybdenum were quite similar to those of pure cobalt,although some changes were pro-moted when the molybdenum percentage was increased over5%.Morphological and structural changes were linked to changes in the magnetic response and it seemed that a minimum percentage of molybdenum was neces-sary to observe a clear diminution of the coercivity. AcknowledgementsThe authors thank the Serveis Cientificot e cnics (Universitat de Barcelona)and the Servei de Magnet-oqu ımica(Universitat de Barcelona)for the use of their equipment.This paper was supportedfinancially by contract MAT2000–0986from the Comisi o n Intermin-isterial de Ciencia y Tecnolog ıa(CICYT)and by the Comissionat of the Generalitat de Catalunya under Re-search Project2001SGR00046.E.Pellicer also thanks the DURSI of the Generalitat de Catalunya forfinancial support.References[1]M.Onoda,K.Shimizu,T.Tsuchiya,T.Watanabe,J.Mag.Mag.Mater.126(1993)595.[2]T.Osaka,Electrochim.Acta42(1997)3015.[3]T.Osaka,T.Sawaguchi,F.Mizutani,T.Yokoshima,M.Takai,Y.Okinaka,J.Electrochem.Soc.146(1999)3295.[4]F.E.Rasmussen,J.T.Ravnkilde,P.T.Tang,O.Hansen,S.Bouwska,in:Eurosensors XIV,14th European Conference on Solid State Transducers2000,Denmark,p.915.[5]T.Osaka,Electrochim.Acta45(2000)3311.[6]I.Tabakovic,S.Riemer,V.Inturi,P.Jallen, A.Thayer,J.Electrochem.Soc.147(2000)219.[7]Y.K.Kim,H.Y.Son,Y.S.Choi,K.S.Moon,K.H.Sunwoo,J.Appl.Phys.87(2000)5413.[8]H.-S.Nam,T.Yokoshima,T.Nakanishi,T.Osaka,Y.Yamazaki,D.N.Lee,Thin Solid Films384(2001)288.[9]I.Tabakovic,V.Inturi,S.Riemer,J.Electrochem.Soc.149(2002)C18.[10]W.P.Taylor,M.Schneider,H.Baltes,M.G.Allen,in:Proceedings of the International Conference on Solid-State Sensors and Actuators,Transducers’97,Chicago,1997.[11]E.G o mez, E.Pellicer,X.Alcobe, E.Vall e s,J.Solid StateElectrochem.,in press.[12]E.G o mez,E.Pellicer,E.Vall e s,J.Electroanal.Chem.556(2003)137.[13]E.G o mez,E.Pellicer,E.Vall e s,J.Electroanal.Chem.517(2001)109.[14]E.G o mez,E.Pellicer,E.Vall e s,J.Appl.Electrochem.33(2003)245.36 E.G o mez et al./Journal of Electroanalytical Chemistry568(2004)29–36。