2015青海选调生行测备考:解题技巧之不定方程解法

合集下载

行测答题技巧:不定方程固定解法

行测答题技巧:不定方程固定解法

⾏测答题技巧:不定⽅程固定解法 想要让考试的答题更加准确掌握答题技巧⾮常重要,下⾯由店铺⼩编为你准备了“⾏测答题技巧:不定⽅程固定解法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!⾏测答题技巧:不定⽅程固定解法 说起⽅程法⼤家都不陌⽣,从⼩到⼤它是我们解决数学问题的得⼒⼩助⼿,同时设未知数的思想也影响着我们为⼈处事。

但是你知道在公职类考试中我们还有不定⽅程么。

接下来⼩编就和⼤家⼀起来看看不定⽅程。

⾸先我们来了解⼀下什么叫做不定⽅程。

所谓不定⽅程,即未知数的个数多于独⽴⽅程个数。

常规的⽅法很难求解,因此我们需要重点关注未知数受到某些限制,这些限制主要是要求所求未知数是正整数、质数等,这些要求有的时候在题⺫中明确已知,有的时候隐含在⽅程中,有时候隐藏在题⺫中。

所以求解不定⽅程关键就是先找到等量关系列出⽅程,另外就是找到所求量的限制条件。

下⾯就结合⼏道题来详细解释不定⽅程组的求解吧。

例1、装某种产品的盒⼦有⼤、⼩两种,⼤盒每盒能装11个,⼩盒每盒能装8个,要把89个产品装⼊盒内,要求每个盒⼦都恰好装满,需要⼤、⼩盒⼦各多少个( )?A. 3,7B. 4,6C. 5,4D. 6,3 【答案】A。

解析:设⼤、⼩盒⼦的个数各为x,y。

则有,11x+8y=89。

有且仅有这样⼀个⽅程,⽽这⼀个⽅程就是不定⽅程,由不定⽅程的性质我们可以知道,其解得个数可以是⽆限多的,但是由于这⾥盒⼦的个数应该是整数,故其解应该是⽐较确定的值,但是依然⽆法直接求解,故此类不定⽅程我们采⽤带⼊排除的⽅式进⾏解题。

答案只有A满⾜。

故选择A。

例2.超市将99个苹果装进两种包装盒,⼤包装盒每个装12个苹果,⼩包装盒每个装5个苹果,共⽤了⼗多个盒⼦刚好装完。

问两种包装盒相差多少个?( )A.3B.4C.7D.13 【答案】D。

解析:设⼤盒有x个,⼩盒有y个,则可得12x+5y=99。

因为12x是偶数,99是奇数,所以5y是奇数,则y必须是奇数,则5y的尾数是5,可得12x的尾数是4,则可得x=2或者x=7。

选调生:2015选调生行测备考之不定方程考点分析

选调生:2015选调生行测备考之不定方程考点分析

选调生:2015选调生行测备考之不定方程考点分析选调生:2015选调生考试备考工作正在火热进行中,行测作为选调生考试的半壁江山,就必须掌握一些做题的策略和技巧。

本文帮助考生梳理选调生行测不定方程考点分析。

更多北京选调生考试内容等信息,请点击北京选调生网。

不定方程指的是未知数的个数要多于方程的个数,可用多种方法进行解答,如下所示:1、尾数法例:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。

为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是( )。

A.1辆B.3辆C.2辆D.4辆中公解析:显然27大的尾数是1,那哪个数乘以37得到的尾数是1呢,在四个选项中只有B符合,因此选B。

2、奇偶性例:超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?A.3B.4C.7D.13中公解析:3、质合性注意质数2的应用。

例:某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。

后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A.36B.37C.39D.41中公解析:又已知每位老师所带的学生数量都是质数,即是质数又是偶数的只有2,所以推出钢琴学员为2,则拉丁学员为11,那么目前培训中心还剩下学员4钢+3拉=8+33=41,所以选D。

总结:在题目中如出现质数这个词,首先应想到2。

生们要在掌握做题方法的基础上多总结、多反思,从而获得质的提升。

行测数量关系解题技巧:解不定方程

行测数量关系解题技巧:解不定方程

⾏测数量关系解题技巧:解不定⽅程 任何考试想要成功都离不开点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系解题技巧:解不定⽅程”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系解题技巧:解不定⽅程 题型介绍 1.不定⽅程定义:未知数的个数多于独⽴⽅程的个数(例:2x+3y=21,未知数个数2多于⽅程的个数1) 2.解不定⽅程:常见的有两个范围(正整数范围内即不定⽅程;任意范围内即解不定⽅程组);⽆论哪种情况其核⼼都为带⼊排除。

例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 若想求解其原则为带⼊选项选择符合等式即题⼲限制条件的答案,但在考试中若四个选项依次带⼊的话会浪费时间,所以有些解题技巧可以帮助快速排除选项;因此其解题核⼼为带⼊排除。

解题技巧 (⼀)正整数范围内1.整除:若某未知数系数与常数项存在公约数则可以⽤整除排除选项 例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】若想求x则需将等式中的y消除,其中常数项21与y前的系数3有公约数3则观察等式,⼀个能被3整除的数3y加上某数其和21也能被3整除,则某数2x也要能被3整除,因为2不能被3整除所以只能是x能被3整除,因此观察选项,选C。

2.奇偶性:未知数前系数为⼀奇⼀偶的情况可以⽤奇偶性排除选项 3.尾数法:某未知数前系数的位数为0或5的情况可以⽤尾数法排除选项 例:(奇偶性+尾数法)已知4x+5y=31;且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】观察等式,未知数前系数⼀奇⼀偶的情况,根据奇偶性4⼀定为偶数加上某数其和31为奇数则某数5y⼀定为奇数;y前系数为5则根据尾数法5y尾数为0或5,且5y为奇数的话则其尾数只能是5,则5y的尾数5加上某数的尾数的和是31的尾数1,那么某数4x尾数只能是6,观察选项,能使4x尾数是6的只有D项4,所以选D。

最新 2015年选调生考试行测数量关系:巧解不定方程-精品

最新 2015年选调生考试行测数量关系:巧解不定方程-精品

2015年选调生考试行测数量关系:巧解不定方程在选调生行测考试中,大家经常会遇到不定方程类的题目,不少考生都会有无从下手的感觉。

其实,这类题目,只要掌握了常考的类型和解题方法,在考场上解决掉这类题目还是很简单的,接下来就带大家一起来看看考试中经常遇到的不定方程类型与解法。

一、定义不定方程指的是未知数的个数大于方程的个数,且未知数受到某些限制(如要求是整数、质数等)的方程或方程组。

二、形式二元不定方程:ax+by=c;多元不定方程组。

三、方法二元不定方程:数字特性思想中的整数倍数、奇偶特性和尾数法。

多元不定方程组:整体消去法、特值代入法。

【例1】某汽车厂商生产甲、乙、丙三种车型,其中乙型产量的3倍与丙型产量的6倍之和等于甲型产量的4倍,甲型产量与乙型产量的2部之和等于丙型产量7倍。

则甲、乙、丙三型产量之比为:( )?A. 5∶4∶3B. 4∶3∶2C. 4∶2∶1D. 3∶2∶1【解析】由题意可知,3乙+6丙=4甲,发现左边都包含3这个因子,那么可以得出甲应为3的倍数。

,观察选项只有D项满足。

这里用到了数字特性的思想。

【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?( )A.3B.4C.7D.13【解析】设大盒有x个,小盒有y个,则12x+5y=99,从奇偶特性入手,12x为偶数,99为奇数,所以5y一定是奇数。

5y的尾数是0或5,那么只有尾数为5时5y是奇数。

5y的尾数为5,那么12x的尾数必须为4才能相加得到9。

这样知道这些条件,可以假设x=2,y=15。

因此y-x=13。

行测中不定方程解法都在这

行测中不定方程解法都在这

行测考试中不定方程解法都在这不定方程是公务员行测笔试题中经常出现的一类题型。

很多考生在面对这个拦路虎时,往往凭运气,能看出来的就做,不能看出来就放弃了。

然而实际上这类题型在解决的时候是有固定套路的,只要你能掌握好这些套路,基本上大部分的不定方程问题都能搞定。

今天专家就为各位考生梳理一遍:不定方程的那些解法。

不定方程的解法具体可以分为两类.第一类:代入排除法。

所谓的代入排除法就是将选项代入题干里面,看看能够符合题目意思。

这种方法相对简单,考生也非常容易掌握,下面以一道例题来稍微解释一下.【例题1】办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件.每个文件袋可以装7份文件,每个蓝色文件袋可以装4份文件.要使每个文件袋都恰好装满,需要、蓝色文件袋的数量分别为( )个。

A。

1、6 B.2、4C。

3、2 D。

4、1【华图解析】看完题目之后,大家浮现在脑海中的是不是就这么一句话,恰好装满,OK,那我们就可以根据这句话的逻辑关系去列式子了。

假设文件袋x个,蓝色文件袋y个,则有7x4y=29。

在这个式子中出现了x、y两个未知数,只有一个式子,典型的不定方程问题.考生如果能注意到题目中所要求的就是x、y的具体值,在有选项的情况的,直接进行代入排除即可,很容易得出C为正确选项。

当然需要给考生总结的一点是:在不定方程问题中,当题目直接求列出方程关系中的未知数,利用代入排除方法能快速代入选项,选出答案。

第二类:数字特性法.数字特性法又包括三类小方法:1。

奇偶性;2.尾数法;3。

倍数法。

【例题2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?()A。

3 B。

4C。

7 D.13【华图解析】根据题意,设大包装盒x个,小包装盒y个,可得12x5y=99。

此时题目中要求的是x-y的数值,代入排除法就不那么好用了.在这种情况下,要想快速解出该不定方程,就得从数字特性角度入手了。

行测数学运算:不定方程的求解方法汇总

行测数学运算:不定方程的求解方法汇总

行测数学运算:不定方程的求解方法汇总一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。

在这里解释一下独立方程。

看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。

二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数【例题】某学校购买桌凳,已知每张桌子单价70元,每张凳子单价40元,且购买凳子的数量大于购买的桌子的数量,购买桌凳共花费了430元,问购买凳子多少张?A.8B.9C.10D.11【解析】B。

设桌子和凳子的单价分别为x元、y元,得到式子:70x+40y=430,化简得7x+4y=43。

7x+4y=43。

性质:奇偶奇7x为奇数,x也为奇数。

x可能的取值有1、3、5。

当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。

任何正整数与5的乘积尾数只有两种可能0或5。

【例题】某单位分发报纸,共有59份。

甲部门每人分的5份,乙部门每人分的4份,且已知乙单位人员超过十人,问甲部门人数为多少?A.1B.2C.3D.4【解析】C。

设甲部门的人数为x人,乙部门的人数为y人,得到方程为:5x+4y=59,性质:奇偶奇5x为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。

但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。

3、整除法当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。

【例题】某单位分发办公笔用具,甲部门每人分的4个办公用具,乙部门每人分的3个办公用具,正好将32个办公用具分完。

不定方程求解方法

不定方程求解方法

不定方程求解方法一、不定方程是啥。

1.1 不定方程呢,就是方程的个数比未知数的个数少的方程。

比如说,x + y = 5,这里就两个未知数x和y,但是就一个方程。

这就像你要去猜两个东西是啥,但是只给了你一个线索,有点像雾里看花,摸不着头脑。

1.2 这种方程在数学里可是很常见的。

它的解不是唯一确定的,往往有好多组解。

这就好比一个大宝藏,有好多条路可以通向它。

二、求解不定方程的一些常用方法。

2.1 枚举法。

这就像一个一个去试。

比如说对于简单的不定方程2x + 3y = 10,我们可以从x = 0开始试。

当x = 0的时候,y就不是整数了;当x = 1的时候,y也不是整数;当x = 2的时候,y = 2。

就这么一个一个试,虽然有点笨,但是对于一些简单的不定方程还是很有效的。

就像我们找东西,有时候没有捷径,那就只能一个角落一个角落地找,这就叫笨鸟先飞嘛。

2.2 利用数的性质。

比如说奇偶性。

如果方程是x + y = 11,我们知道两个数相加是奇数,那么这两个数必定是一奇一偶。

这就像给我们开了一个小窗户,能看到一点里面的情况。

再比如说倍数关系,如果方程是3x + 6y = 18,我们可以先把方程化简成x + 2y = 6,因为6y肯定是3的倍数,18也是3的倍数,所以x也得是3的倍数。

这就像是在一团乱麻里找到了一个线头,顺着这个线头就能把麻理清楚。

2.3 换元法。

就拿方程x²+ y²+ 2x 4y = 20来说,我们可以设u = x + 1,v = y 2,这样方程就变成了u²+ v²= 25。

这就像给方程换了一身衣服,让它看起来更顺眼,更容易解决。

这就好比我们整理房间,把东西重新摆放一下,看起来就整齐多了。

三、实际应用中的不定方程求解。

3.1 在生活里有很多地方会用到不定方程求解。

比如说你去买水果,苹果一个3元,香蕉一根2元,你带了10元钱,设买苹果x个,买香蕉y根,那方程就是3x + 2y = 10。

2015年国家公务员行测备考:不定方程组的解法

2015年国家公务员行测备考:不定方程组的解法

不定方程及不定方程组的解法华图教育任小芳在公务员行政职业能力测试数量关系模块中,经常会运用到方程法解答各类文字应用题型,但是在运用方程法的过程中,常会遇到所设的未知数数量多于方程个数的情况。

未知数数量多于方程数量,这种方程我们称之为“不定方程(组)”。

解不定方程(组)最典型的方法为代入排除法,即直接将选项代入方程中,验证是否能使其他未知数都有符合题目要求的解。

【例1】有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小客车有20个座位。

为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是()?A.1辆B.3辆C.2辆D.4辆【答案】:B【解析】:每位游客均有座位且车上没有空座位,可知座位总数与游客人数相等。

假设需要大客车x辆,需要小客车y辆,根据题意列出方程:37x+20y=271。

未知数个数多于方程个数,此为不定方程问题。

20的倍数尾数一定为0,则37x的尾数应为1,代入四个选项,只有当x=3时,37x 的尾数为1,B选项正确。

【例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装 5个苹果共用了十多个盒子刚好装完。

问两种包装盒相差多少个?()A.3B.4C.7D.13【答案】:D【解析】:假设大包装盒用了x个,小包装盒用了y个,根据题意可列出方程:12x+5y=99。

题干中只有一个等量关系,2个未知数,1个方程,此为不定方程问题。

结合数字的奇偶特性,偶数的倍数一定是偶数,可知12x为偶数。

两个数的和99为奇数,这两个数的奇偶性一定相反,因此5y的值一定为奇数。

5的倍数尾数不是0就是5,因此可以确定5y尾数为5,12x尾数为9-5=4。

由此推出x=2,y=15。

或者x=7,y=3。

题目条件“共用了10多个盒子”,x=7,y=3不符合题意,结果为x=2,y=15,差是13。

D选项正确。

在解不定方程时可结合数字的奇偶特性、尾数特性等数字特性思想,然后通过代入选项得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

给人改变未来的力
1. 什么是不定方程
方程分为两类:一类是方程的个数等于未知量的个数,这类方程我们称为一般方程;另一类是方程的个数少于未知量的个数,该类方程我们称为不定方程,不定方程看起来貌似无法具体求解,但是公考特点是每道题都是带选项的,我们可以结合选项应用一些技巧快速的确定选项,下面将介绍几种常见的不定方程的解题技巧。

2. 不定方程的常见解题技巧
1)整除法:即利用不定方程中各数除以同一个数所得的余数关系来求解。

【例题】已知3x+y=100,x,y均为整数,求y=( )
A.30
B.31
C.32.
D.33
【答案】B
【解析】想求y的数值,若我们知道y的某些性质,结合选项则可确定答案。

而该式子我们两边同时除以‘x’前面的系数3,则3x项除以3余数为0,而100除以3余数为1,式子两边除以同一个数,余数应该相同,所以可判定y具有除以3余1的特点,结合选项答案为B.
2)奇偶性:即根据等号两端的奇偶性相同,来判断未知数的奇偶性,进而判断选项。

【例题】现有3个箱子,依次放入1、2、3个球,然后将3个箱子随机编号为甲、乙、丙,接着在甲、乙、丙3个箱子里分别放入其箱内球数的2、3、4倍。

两次共放了22个球。

最终甲箱中的球比乙箱:
A.多1个
B.少1个
C.多2个
D.少2个
【答案】A
【解析】甲乙丙最开始放入箱子的个数不确定谁是1,2或是3。

所以设这3个箱子中最开始放入的个数分别是x,y,z。

则x+y+z=6...(1);第二次放入三个箱子的个数分别为2x,3y,4z.所以两次共放了3x+4y+5z=22...(2),因为该题问的是最终甲乙两箱球数差,联合(1)、(2)两个式子消掉未知量z,得2x+y=8,此时2x为偶数,8为偶数,为了保证等号两端奇偶性相同,则y应该为偶数,因此y=2,x=3,所以最后甲中放了9个球,乙中放了8个球,甲比乙多1个,答案为A。

3)尾数法:根据等号两端尾数相同,确定未知数特征,结合选项做出答案。

【例题】现在有149个苹果往大小两种袋子里装,已知大袋子每袋装17个,小袋每袋装10个,每个袋子必须装满,则需多少个大袋子( )
A.5
B.6
C. 7
D.8
【答案】C
【解析】设需要大小袋子各x,y 个,则根据题意17x+10y=149,10y的尾数为0,而等号右边尾数为9,则需要17x的尾数为9,17x尾数为9,结合选项只有C符合,所以答案C.
以上是中公选调生考试网为大家介绍的几种常见的不定方程解题技巧,掌握好不定方程的解题技巧是十分有必要的,它可以帮助我们快速锁定选项。

希望各位考生在平时复习中多加练习,在选调生考试中能很好的运用,取得令人满意的成绩。

文章来源:中公选调生考试网(/)。

相关文档
最新文档