High strain rate induced embrittlement o
有关焊条专业英语

去氢 dehydrogenation
去氢热处理 heat treatment for dehydrogenation
脱硫 desulphurization
脱磷 dephosphorization
渗合金 alloying
微量合金化 microalloying
氢致准解理断口 hydrogen-embrittlement induced
沿晶断口 intergranular fracture
穿晶断口 transgranular fracture
疲劳断口 fatigue fracture
滑移面断口 glide plane fracture
断口形貌 fracture apperance
点热源 point heat source
线热源 linear heat source
面热源 plane heat source
瞬时集中热源 instantaneous concentration heat source
热效率 thermal efficiency
热能集中系数 coefficient of heat flow concentration
U形拉伸试验 U-tension test
缪雷克期热裂纹试验 Murex hot cracking test
菲斯柯裂纹试验 FISCO (type) cracking test
CTS裂纹试验 controlled thermal severity
拉伸拘束裂纹试验(TRC试验)tensile restraint cracking test
再热裂纹 reheat crack
《机械工程材料》杂志防诈骗公告

MATERIALS FO R M ECHANICAL ENGINEERING尚长沛,等:不同速率变形后WE 54合金的显微组织及力学性能[5] S H K O L N I K O V M B. Strain rates i n crashworthiness [C]//Proceedings of the 8th International L S -DYNA Users Conference. Dearborn. M I :[s . n.]» 2004:9-20.[6] E L -M A G D E, A B O U R I D A N E M. High speed forming of thelight-weight wrought alloys [ C ]//Proceedings of the 1s t International Conference on High Speed Forming ICHSF. Dortmund :[s . n .2004: 3-12.[7] LI J L »W U D ,C H E N R S,et a l . Anomalous effects of s trainrate on the room-temperature d u ctility of a cast Mg-Gd-Y-Zr alloy[J]. Acta Materialia»2018,159:31-45.[8] I S H I K A W A K ,W A T A N A B E H ’M U K A I T. High strain ratedeformation behavior of an AZ91 magnesium alloy a t elevated temperatures[J]. Materials Letters,2005,59(12) : 1511-1515.[9] W A N G M.L U L»LI C,et a l . Deformation and spallation of amagnesium alloy under high strain rate loading [J]. Materials Science and Engineering : A ,2016,661 : 126-131.[10] Y U J C» LIU Z» D O N G Y, e t a l . Dynamic compressiveproperty and f a i l u r e behavior of extruded Mg-Gd-Y alloy under high temperatures and high strain rates[J]. Journal of Magnesium and Alloys,2015»3(2) : 134-141.[11] 于金程,刘正,董阳,等.高应变速率下Mg-Gd-Y 镁合金动态拉伸性能与失效行为[J].沈阳工业大学学报,2015,37(6):650-655.Y U J C, LIU Z. EX)NG Y, e t a l . Dynamic tensile properties and f a i l u r e behavior of Mg-Gd-Y alloy a t high strain rates[J]. Journal of Shenyang University of Technology, 2015» 37(6): 650-655.[12] 毛萍莉,于金程,刘正,等.挤压态Mg-Gd-Y 镁合金动态压缩 力学性能与失效行为[J].中国有色金属学报,2013,23(4):889-897.M A O P L, Y U J C» LIU Z» e t a l . Dynamic mechanical property and f a i l u r e behavior of extruded Mg-Gd-Y alloy under high strain rate compression [J]. The Chinese Journal of Nonferrous Metals,2013»23(4):889-897.[13] 于金程•董芳,徐年宝,等.高温高应变率下E W 75镁合金动 态压缩性能与组织演变[J].稀有金属,2019,43(2): 14卜150.Y U J C» EX)NG F, X U N B, e t a l . Dynamic compressiveproperties and microstructural evolution of EW 75 magnesium alloy a t high temperatures and high strain rates[J]. Chinese Journal of Rare Metals ,2019,43(2): 141-150.[14] Z O U D L ,Z H E N L ,Z H U Y,et a l . Deformed microstructurcevolution i n A M 60B M g alloy under hypervelocity impact a t a velocity of 5 k m *s _1[J]. Materials Design, 2010,31 (8):3708-3715.[15] Z O U D L, Z H E N L, X U C Y, e t a l . Characterization ofadiabatic shear bands i n A M 60B magnesium alloy under b a l l i s t i c impact[J]. Materials Characterization, 2011,62(5): 496-502.[16] SHI X Y ,L U O A A ,S U T T O N S C-et a l . Twinning behaviorand l a t t i c e rotation i n a Mg-Gd-Y-Zr alloy under b a l l i s t i c impact[J]. Journal of Alloys and Compounds,2015,650:622 632.[17] LIU Y X,LI Y X, Z H A N G H,et a l . Influence of twinninginduced recrystallization on texture evolution i n a high s train rate compressed Mg-Zn alloy [J]. Materials Characterization. 2020,162:110192.[18] C H U N Y B, D A V I E S C H J . Twinning-induced negativestrain rate sensitivity i n wrought M g alloy AZ31 [ J ]. Materials Science and Engineering : A, 2011 ♦ 528 (18) : 5713^ 5722.[19] H O N G S G ,P A R K S H ,L E E C S . Role of {1012} twinningcharacteristics i n the deformation behavior of a polycrystalline magnesium alloy[J]. Acta Materialia ,2010, 58 ( 18): 5873- 5885.[20] G A L I Y E V A M ,K A I B Y S H E V R O ’G O T T S T E I N G. Grain refinement of ZK60 magnesium alloy during low temperature deformation [ M ]Magnesium Technology 2002. [S. 1.]:T M S ,2002.[21] S T A N F O R D N. Observation of {1121} 2 twinning i n a M gbased alloy[J]. Philosophical Magazine Letters* 2008,88(5): 379-386.[22] W A N G K, TAC) N R, LIU G, e t al . Plastic strain-induced grain refinement a t the nanometer scale i n copper[J]. Acta Materialia, 2006, 54: 5281-5291.《机械工程材料》杂志防诈骗公告近期,有不法单位和个人在网络上假冒我刊官网,或通 过电子邮件、电话等形式以本刊名义向作者收取一定的审稿 费或版面费,已有多人被骗200〜800元不等。
焊接专业英语词汇(3)

焊接专业英语词汇(3)焊接专业英语词汇(3)焊接专业英语词汇(3)焊接热循环weld thermal cycle焊接温度场field of weld temperature; weld temperature field准稳定温度场quasi-stationary temperature field焊接热源welding heat source点热源point heat source线热源linear heat source面热源plane heat source瞬时集中热源instantaneous concentration heat source热效率thermal efficiency热能集中系数coefficient of heat flow concentration峰值温度peak temperature瞬时冷却速度momentary cooling rate冷却时间cooling time置换氧化substitutionary oxydation扩散氧化diffusible oxydation脱氧desoxydation先期脱氧precedent desoxydation扩散脱氧diffusible desoxydation沉淀脱氧precipitation desoxydation扩散氢diffusible hydrogen初始扩散氢initial diffusible hydrogen100℃残余扩散氢diffusible hydrogen remained at 100℃残余氢residual hydrogen去氢dehydrogenation去氢热处理heat treatment for dehydrogenation脱硫desulphurization脱磷dephosphorization渗合金alloying微量合金化microalloying一次结晶组织primary solidification structure二次结晶组织secondary solidification structure联生结晶epitaxial solidification焊缝结晶形态solidification mode in weld-bead结晶层状线ripple多边化边界polygonization boundary结晶平均线速度mean solidification rate针状铁素体acicular ferrite条状铁素体lath ferrite侧板条铁素体ferrite side-plate晶界欣素体grain boundary ferrite; polygonal ferrite; pro-entectoid ferrite粒状贝氏体granular bainite板条马氏体lath martensite过热组织overheated structure魏氏组织widmannst?tten structurem-a组元martensite-austenite constituent焊件失效分析failure analysis of weldments冷裂判据criterion of cold cracking冷裂敏感系数cold cracking susceptibity coefficient脆性温度区间brittle temperature range氢脆hydrogen embrittlement层状偏析lamellar segregation愈合healing effect断口金相fractography断口fracture延性断口ductile fracture韧窝断口dimple fracture脆性断口brittle fracture解理断口cleavage fracture准解理断口quasi-cleavage fracture氢致准解理断口hydrogen-embrittlement induced 沿晶断口intergranular fracture穿晶断口transgranular fracture疲劳断口fatigue fracture滑移面断口glide plane fracture断口形貌fracture apperance断口试验fracture test宏观断口分析macrofractography放射区radical zone纤维区fibrous zone剪切唇区shear lip aone焊接性weldability使用焊接性service weldability工艺焊接性fabrication weldability冶金焊接性metallurgical weldability热焊接性thermal weldability母材base metal; parent metal焊接区weld zone焊态as-welded (aw)母材熔化区fusion zone半熔化区partial melting region未混合区unmixed zone熔合区bond area熔合线weld junction (英);bond line (美)热影响区heat-affected zone (haz)过热区overheated zone粗晶区coarse grained region细晶区fine grained region过渡区transition zone硬化区hardened zone碳当量carbon equivalent铬当量chromium equivalent镍当量nickel equivalent舍夫勒组织图schaeffler's diagram德龙组织图delong’s diagram连续冷却转变图(cct图)continuous cooling transformation 裂纹敏感性cracking sensibility焊接裂纹weld crack焊缝裂纹weld metal crack焊道裂纹bead crack弧坑裂纹crater crack热影响区裂纹heat-affected zone crack纵向裂纹longitudinal crack横向裂纹transverse crack微裂纹micro-crack; micro-fissure热裂纹hot crack凝固裂纹solidification crack晶间裂纹intercrystalline crack穿晶裂纹transcrystalline crack多边化裂纹polygonization crack液化裂纹liquation crack失延裂纹ductility-dip crack冷裂纹cold crack延迟裂纹delayed crack氢致裂纹hydrogen-induced crack焊道下裂纹underbead crack焊根裂纹root crack焊趾裂纹toe crack锯齿形裂纹chevron cracking消除应力处理裂纹stress relief annealing crack (sr crack) 再热裂纹reheat crack焊缝晶间腐蚀weld intercryctalline corrosion刀状腐蚀knife line attack敏化区腐蚀weld decay层状撕裂lamellar tearing焊接性试验weldability裂纹试验cracking testiiw裂纹试验iiw cracking testy形坡口裂纹试验slit type cracking test分块形槽热裂纹试验segmented circular groove cracking testh形裂纹试验h-type cracking test鱼骨形裂纹试验fishbone cracking test指形裂纹试验finger (cracking) testt形裂纹试验tee type cracking test环形槽裂纹试验circular-groove cracking test可调拘束裂纹试验varestraint testbwra奥氏体钢裂纹试验bwra cracking test for austenitie steel圆棒裂纹试验bar type cracking test; round bar cracking test里海裂纹试验lehigh restraint cracking test圆形镶块裂纹试验circular-path cracking test十字接头裂纹试验cruciform cracking testz向窗口拘束裂纹试验z-direction window type restraint cracking testg-bop焊缝金属裂纹试验g-bop weld metal crack test巴特尔焊道下裂纹试验battelle type underbead cracking testu形拉伸试验u-tension test缪雷克期热裂纹试验murex hot cracking test菲斯柯裂纹试验fisco (type) cracking testcts裂纹试验controlled thermal severity拉伸拘束裂纹试验(trc试验)tensile restraint cracking test 刚性拘束裂纹试验(rrc试验)rigid restraint cracking test插销试验implant testtigamajig 薄板焊接裂纹试验tigamajing thin plate cracking test焊道纵向弯曲试验longitudinal-bead test柯麦雷尔弯曲试验kommerell bead bend test肯泽尔弯曲试验kinzel test缺口弯曲试验notch bend test热朔性试验hot-ductility test热影响区冲击试验impact test of haz热影响区模拟试验synthetic heat-affected zone test最高硬度试验maximum hardness test落锤试验nrl (naval research laboratory)测氢试验hydrogen test焊接材料电极焊接材料welding consumables电极electrode熔化电极consumable electrode不熔化电极nonconsumable electrode钨电极tungsten electrode焊丝welding wire. welding rod实心焊丝solid wire渡铜焊丝copper-plating welding wire自保护焊丝self-shielded welding wire药芯焊丝flux-cored wire复合焊丝combined wire堆焊焊丝surfacing welding rod填充焊丝filler wire焊条electrode/ covered electrode焊芯core wire药皮coating (of an electrode)/ covering (of an electrode) 涂料coating flux/coating material造气剂gas forming constituents造渣剂slag forming constituents合金剂alloying constituent脱氧剂dioxidizer稳弧剂arc stabilizer粘接剂binder水玻璃water glass水玻璃模数modules of water glass酸性焊条acid electrode高钛型焊条high titania (type) electrode钛钙型焊条lime titania type electrode钛铁矿形焊条ilmenite type electrode氧化铁型焊条iron oxide type electrode/ high iron oxide type electrode高纤维素型焊条high cellulose (type) electrode石墨型焊条graphite type electrode碱性焊条basic electrode/ lime type covered electrode低氢型焊条low hydrogen type electrode高韧性超低氢焊条high toughness super low hydrogen electrode奥氏体焊条austenitic electrode铁素体焊条ferritic electrode不锈钢焊条stainless steel electrode珠光体耐热钢焊条pearlitic heat resistant steel electrode低温钢焊条low temperature steel electrode/ steelelectrode for low temperature铝合金焊条aluminum alloy arc welding electrode铜合金焊条copper-alloy arc welding electrode铜芯铸铁焊条cast iron electrode with steel core纯镍铸铁焊条pure nickel cast iron electrode球墨铸铁焊条electrode for welding spheroidal graphite cast iron铸芯焊条electrode with cast core wire镍基合金焊条nickel base alloy covered electrode蒙乃尔焊条monel electrode纯铁焊条pure iron electrode渗铝钢焊条alumetized steel electrode高效率焊条high efficiency electrode铁粉焊条iron powder electrode底层焊条backing welding electrode深熔焊条deep penetration electrode重力焊条gravity electrode立向下焊条electrode for vertical down position welding节能焊条saving energy electrode水下焊条underwater welding electrode耐海水腐蚀焊条seawater corrosion resistant steel electrode 低尘低毒焊条low-fume and harmfulless electrode/low-fume and low-toxic electrode堆焊焊条surfacing electrode耐磨堆焊焊条hardfacing electrode钴基合金堆焊焊条cobalt base alloy surfacing electrode碳化钨堆焊焊条tungsten carbide surfacing electrode高锰钢堆焊焊条high manganese steel surfacing electrode 双芯焊条twin electrode绞合焊条stranded electrode编织焊条braided electrode双层药皮焊条double coated electrode管状焊条flux-cored electrode气渣联合保护型药皮semi-volatile covering焊条工艺性usability of the electrode/ technicality of the electrode焊条使用性running characteristics of an electrode/ operating characteristics of an electrode焊条熔化性melting characteristics of an electrode焊条直径core diameter焊条偏心度eccentricity (of an electrode)药皮重量系数gravity coefficient of coating焊条药皮含水量percentage of moisture for covering焊条夹吃持端bare terminal (of an electrode)焊条引弧端striking end (of an elcetrode)焊剂welding flux/ flux熔炼焊剂fused flux粘结焊剂bonded flux烧结焊剂sintered flux/ agglomerated flux窄间隙埋弧焊焊剂flux for narrow-gap submerged arc welding低氢型焊剂low hydrogen type flux高速焊剂high speed welding flux无氧焊剂oxygen-free flux低毒焊剂low poison flux磁性焊剂magnetic flux电弧焊arc welding直流电弧焊direct current arc welding交流电弧焊alternating current arc welding三相电弧焊three phase arc welding熔化电弧焊arc welding with consumable金属极电弧焊metal arc welding不熔化极电弧焊arc welding with nonconsumable碳弧焊carbon arc welding明弧焊open arc welding焊条电弧焊shielded metal arc welding (smaw)重力焊gravity welding躺焊fire cracker welding电弧堆焊arc surfacing自动堆焊automatic surfacing躺板极堆焊surfacing by fire cracker welding带极堆焊surfacing with band-electrode振动电弧堆焊vibratory arc surfacing耐磨堆焊hardfacing埋弧焊submerged arc welding (saw)多丝埋弧焊multiple wire submerged arc welding纵列多丝埋弧焊tandem sequence (submerged-arc welding)横列多丝埋弧焊series submerged arc welding (saw-s)横列双丝并联埋弧焊transverse submerged arc welding热丝埋弧焊hot wire submerged-arc welding窄间隙埋弧焊narrow-gap submerged arc welding弧压反馈电弧焊arc voltage feedback controlling arc welding自调节电弧焊self-adjusting arc welding适应控制焊接adaptive control welding焊剂层burden; flux layer气体保护电弧焊gas shielded arc welding保护气体protective atmosphere惰性气体inert-gas活性气体active-gas惰性气体保护焊inert-gas (arc) welding氩弧焊argon arc welding熔化极惰性气体保护电弧焊metal inert-gas arc welding 钨极惰性气体保护电弧焊tungsten inert-gas arc welding 钨极氢弧焊argon tungsten arc welding脉冲氢弧焊pulsed argon arc welding熔化极脉冲氢弧焊argon metal pulsed arc welding钨极脉冲氢弧焊argon tungsten pulsed arc welding热丝mig焊hot wire mig welding热丝tig焊hot wire tig welding氨弧焊helium-arc welding活性气体保护电弧焊metal active-gas arc welding混合气体保护电弧焊mixed gas arc welding焊接专业英语词汇(3) 相关内容:。
大肠杆菌发酵经验总结

大肠杆菌发酵经验总结大肠杆菌发酵经验总结首先,补料速率与比生长速率直接影响着乙酸的生成速率和积累量(主要是补料速率与比生长速率影响发酵液中的残糖量,进而影响),所以适当的控制补料速率和比生长速率,对于控制乙酸的量有很好的效果。
其次,必须要保证充足的溶氧,并严格控制pH值,而且补酸碱的速率尽量缓和,不能太快;温度对于蛋白的表达也有很重要的影响,较低的发酵温度下所生产出的蛋白大多是有活性的,而较高的发酵温度下产生的蛋白大多一包涵体形式存在。
第三,选取合理的诱导时间非常重要,一般的诱导时间选在指数生长后期,而且诱导时的比生长速率最好能控制在0.2之内,选在此时诱导,1.将菌体的快速生长期与蛋白合成期分开,使这两个阶段互不影响,有利于蛋白的高表达;2.已经得到了大量的菌体,而且菌体的生物量基本接近稳定,不论是从动力学角度,还是能耗,物料成本方面,都比较合理。
第四,补料过程中的碳氮比也很重要。
若氮源过高,会使菌体生长过于旺盛,pH偏高,不利于代谢产物的积累,氮源不足,则菌体繁殖量少从而影响产量;碳源过多,则容易刑场较低的pH,抑制菌体生长,碳源不足,则容易引起菌体的衰老和自溶。
另外,碳氮比不当还会引起菌体按比例的吸收营养物质,从而直接影响菌体的生长和产物的合成。
根据自己的经验,一般情况下,对于一个稳定的发酵工艺下,如果总是在固定的发酵时间段出现溶菌现象,而且能排除噬菌体和染菌的可能性后,那就可能是因为碳氮比不合理造成的。
可以适当调整碳氮比。
大家讨论得较多的是关于代谢副产物乙酸对大肠杆菌发酵的影响,现总结以下几点,并作出相应解决措施。
一、代谢副产物-乙酸乙酸是大肠杆菌发酵过程中的代谢副产物,在多大的浓度下产生抑制作用各种说法不一,一般认为在好气性条件下,5~10g/L 的乙酸浓度就能对滞后期、最大比生长速率、菌体浓度以及最后蛋白收率等都产生可观测到的抑制作用。
当乙酸浓度大于10或20g/L 时,细胞将会停止生长,当培养液中乙酸浓度大于12g/L 后外源蛋白的表达完全被抑制。
自发团聚诱导高比例立方氮化硼微晶的水热合成

自发团聚诱导高比例立方氮化硼微晶的水热合成张晓;廉刚;谭淼;张顺杰;崔得良;王琪珑【摘要】Hydrothermal method was used to synthesize eBN. However, it was found that BN samples prepared by this method were usually mixtures of cBN, hBN and other phases of BN, which is a disadvantage for the further application. So, it is expected to explore new methods by which cBN can be easily separated from the mixture. The present paper deals with a method based on the serf-aggregation phenomenon of cBN crystallites to prepare pure millimmeter-size cBN agglomerates under specific hydrothermal conditions. The particle size and its uniformity of the agglomerates can be improved by increasing the reaction temperature, concentration of reactants, and the homogeneity of reaction solution. In contrast, increasing the pressure results in an opposite trend. A simple model was proposed to explain the mechanism of the serf-aggregation phenomenon.%利用水热法合成了立方氮化硼(cBN),利用立方氮化硼在特定反应条件下的自发团聚现象,提出了一种使混合物中的立方氮化硼在反应过程中自发纯化的新方法.提高原料浓度、反应温度和搅拌速度有利于获得较大粒径的立方氮化硼和尺寸分布均匀的团聚颗粒,但提高反应压力则会导致相反的结果.探讨了自团聚现象在生长大尺寸立方氮化硼晶体以及非均相合成中的潜在应用价值.【期刊名称】《高等学校化学学报》【年(卷),期】2011(032)003【总页数】7页(P655-661)【关键词】立方氮化硼;自发团聚;自发纯化;水热合成【作者】张晓;廉刚;谭淼;张顺杰;崔得良;王琪珑【作者单位】山东大学晶体材料国家重点实验室,济南,250100;山东大学化学与化工学院,济南,250100;山东大学晶体材料国家重点实验室,济南,250100;山东大学晶体材料国家重点实验室,济南,250100;山东大学晶体材料国家重点实验室,济南,250100;山东大学化学与化工学院,济南,250100;山东大学晶体材料国家重点实验室,济南,250100;山东大学化学与化工学院,济南,250100【正文语种】中文【中图分类】O614Abstract Hydrothermal method was used to synthesize cBN.However,it was found that BN samples prepared by this method were usually mixtures of cBN,hBN and other phases of BN,which is a disadvantage for the further application.So,it is expected to explore new methods by which cBN can be easily separated from the mixture.The present paper deals with a method based on the self-aggregation phenomenon of cBN crystallites to prepare pure millimmeter-size cBN agglomerates under specific hydrothermal conditions.The particle size and its uniformity of the agglomerates can be improved by increasing the reaction temperature,concentration of reactants,and the homogeneity of reaction solution.In contrast,increasing the pressure results in an opposite trend.A simple model was proposed to explain the mechanism of the self-aggregation phenomenon.Keywords Cubic boron nitride(cBN);Self-aggregation;Spontaneous purification;Hydrothermal synthesisCubic boron nitride(cBN),isostructural to diamond,has many outstanding advantages,such as super hardness,high thermal conductivity,chemical inertness,and so on[1—5].Besides,cBN is superior to diamond due to its lower solubility in ferrous metals,higher resistance to oxidation,wider band gap(6.2 eV)and good optical transparency in a wide range(infrared to UV)[6—10],which make it an excellent substitute for diamond in certain cases.Since cBN was firstly synthesized under high temperature and high pressure(HTHP)by Wentorf[11],intensive efforts have been made on optimizing synthesis method,for example,by utilizing new catalysts,thesynthesis of cBN has been performed under comparatively moderate conditions[12—14].However,the temperature and pressure for synthesizing cBN are still too high(usually >1000℃ and >1 GPa).In order to synthesize cBN under milder conditions,some new methods have been developed,namely,chemical vapor deposition(CVD)and physical vapor deposition(PVD)methods in fabricating cBN films[15—18],and solvothermal route for synthesizing cBN nano-and micro-crystals,and so on[19—22].Unfortunately,the samples prepared by solvothermal method are usually mixtures of hBN,oBN and cBN.This severely limits the application of the products from solvothermal route.Separating cBN from the mixture was quite a diffcult until we noticed that cBN crystallites usually aggregated automaticly under specific conditions,while similar phenomenon was not observed for hBN.In fact,the selective agglomeration has already been utilized in the separation of a specific component from a solid mixture[23—25].The different behavior of cBN and hBN provides a capable route to purify cBN,and we have performed a series of experiments to investigate the key factors affecting the aggregation phenomenon.On the basis of analyzing the experimental results,a model is proposed for the mechanism behind this phenomenon.1.1 ChemicalsH3BO3(A.R.grade)was purchased from Tianjin Bodi Chemical Holding Co.,Ltd.,NaN3(A.R.grade)was purchased from Tianjin No.3 Chemical Reagent Factory;N2H4·H2O(85%,A.R.grade)was purchased from Tianjin Kermel Chemical Reagent Co.,Ltd.;N(CH3)3(33%,C.P.grade)was purchased form Sinopharm Chemical Reagent Co.,Ltd..All reagents were used without further purification.1.2 SynthesisA mixture of 0.1 mol H3BO3,0.3 mol NaN3,5 mL N2H4·H2O and an appropriate volume of deionized water was mixed forming 500 mL solution(1),which was transferred into an autoclave with a capacity of 1000 mL.A second solution(2)was prepared by dissolving 0.1 mol NaN3,5 mL N2H4·H2O and 40 mL N(CH3)3in 80 mL deionized water and then introduced into an outer tank[solution(2)is called“secondary nitrogen source”,see Fig.1].The autoclave was heated to 300℃at a rate of0.5℃/min and k ept at this temperature for 12 h.Then the secondary nitrogen source was introduced into the autoclave and heated for another10 h at 300℃,followed by a cooling process at a rate of 0.5℃/min.When the autoclave was cooled to room temperature,the sample was taken out of the autoclave,filtered and washed with deionized water to remove the by-products.Having been dried at 80℃ for 8—10 h,BN sample was obtained for characterization.1.3 CharacterizationsThe phases of the samples were identified by their XRD patterns,collected with the step speed of 4°/min on a D/max-γA X-ray diffractometer with Ni filtered CuKα radiation(V=40 kV,I=50 mA).Micro-morphology and selective area electron diffraction(SAED)patterns of cBN crystallites were obtained under a Hitachi H-800 transmission electron microscope(TEM,150 kV).The morphology of cBN agglomerates was observed under an Olympus BX-51 microscope.The primary particle size distribution for cBN agglomerates was analyzed by LS-230 automatic laser particle size analysis equipment.2.1 Self-aggregation of cBN CrystallitesIn most cases,BN samples prepared by hydrothermal method are either a mixture of hexagonal and cubic phases with high yield or pure cubic phase with low yield.Fig.2 curveapresents the typical XRD pattern of such a mixed phase sample.By carefully observing their morphology,it is quite interesting that cBN crystallites aggregate themselves into rather large agglomerates,while hBN particles are still in dispersed form.As a result,cBN crystallites can be easily separated from hBN by sieving the sample.The XRD patterns of the resultant cBN and hBN samples arerespectively shown in Fig.2 curvesbandc.In Fig.2 curveb,all the peaks labeled with rhombus(◇)can be indexed tothe(002)and(004)diffractions(JCPDS No.34-0421)of hBN,while the peaks withdspacings of 0.209,0.181,0.128 and 0.109 nm in Fig.2curvec(marked by“▲”)are indexed to the(111),(200),(220)and(311)diffractions(JCPDS No.25-1033)of cBN respectively. Furthermore,the photographs of cBN agglomerates,prepared at 300 ℃ and 8.5 MPa,are shown in Fig.3(A)and(B).The cBNagglomerates(secondary particles),which are composed oflarger(brown)and smaller(black)cBN crystallites(primary particles),are as large as 0.5—0.6 mm in size[Fig.3(B)],and can be easily separated from the dispersed hBN nanocrystals.2.2 Key Factors Affecting the Self-aggregation of cBN CrystallitesIt is much easier for separating cBN crystallites from other phases when the size of the agglomerates is large and uniform.In order to control the size of cBN agglomerates,some key factors,i.e.,pressure(P),temperature(T),concentration of reactants(c)and stirring speed(N),have been investigated.The detail data are provided in Table 1.2.2.1 Influence of PressureComparing the samples S-1,S-2 and S-3 in Table 1 obviously shows that the average size of the agglomerates decreases from 0.85 mm to 0.35 mm with the pressure increasing from 7.5 MPa to 9.0 MPa.Analogous phenomenon has also been observed at low temperature(260℃).Along with the pressure rising from 4 MPa to 8.5 MPa,the average size of theagglomerates decreases from 0.45 mm to 0.2 mm(corresponding to S-5 and S-6,respectively).When the pressure is further increased to 11 MPa,no agglomerates can be observed in the sample(S-7).In one word,the pressure plays a key role in depressing the formation of cBN agglomerates.2.2.2 Influence of Temperature and ConcentrationBesides the pressure,the effects of reaction temperature and concentration of the reactants have been also investigated.It is noticedthat cBN agglomerates become larger with the increase of both the temperature and concentration of paring samples S-2 withS-6 clearly shows that the size of the agglomerates increases from 0.2 mm to 0.55 mm when the temperature increases from 260℃ to 300℃.Similarly,at 300℃and 10.5 MPa,no agglomerates can be observed in the sample prepared at a concentration of 0.2 mol/L.However,cBN agglomerates as large as 1.25 mm have been obtained when the concentration of reactants increases to 0.4 mol/L.This phenomenon can be easily seen by comparingS-4 with S-8.Because of the high specific surface energy,there is a great tendency for the small cBN crystallites to aggregate into larger particles.When the surface energy is high enough to overcome the potential barrierVbfor aggregation,they will get closer to form larger agglomerates.The aggregation rate of the crystallites increases with the increasing of cBN crystallites number density(i.e.,the number of cBN per volume),and so does the size of the cBN agglomerates.According to the crystal growth model,the formation rate of cBN crystallites is proportional to thetemperature in an exponential way,namely,the higher the temperature,the higher the cBN crystallites number density.In this case,more and larger cBN agglomerates will be obtained at a higher temperature.The aggregation rate of cBN crystallites can be expressed by the following equation[26,27].whereDis the diffusion coefficient of the crystallites in solution,Nis their number density,ais the radius of the crystallites,Tis temperature andVbis the potential barrier of aggregation.On the other hand,the aggregation rateJis also proportional to the number density of cBN crystallitesN,which should be rather high at ahigh concentration of reactants.On the basis of such a consideration,it is understandable that the size of agglomerates in sample S-8 is much larger than that in sample S-4.2.2.3 Influence of Homogeneous-stirring SpeedIn our experiments,the homogeneity has been controlled by adjusting stirring speed,so we directly discuss the effect of stirring speed on the aggregation of cBN crystallites in the following.The experiment results show that the convective diffusion in the reacting solution is fairly slow without stirring,as a result,both the homogeneity of the reacting solution and the yield of cBN are severely decreased,and no agglomerates can be found in the samples.At a stirring speed of 200 r/min,some agglomerates with poor size uniformity can be obtained(sample S-9 in Table 1).On increasing the stirring speed to 300 r/min,a large amountof agglomerates in uniform size have been observed in the sample(sampleS-1 in Table 1).However,due to the large shearing stress introduced by stirring,further increasing the stirring speed does not affect the aggregationphenomenon of cBN crystallites.In summary,higher temperature,high reactants concentration and homogeneous reaction solution are essential for preparing large and uniform sized cBN agglomerates,whereas the formation of cBN agglomerates will be suppressed by increasing the pressure.2.3 Size Distribution of Primary Particles in cBN AgglomeratesIt is well known that the aggregation modes can be classified into two types:soft aggregation and hard one.For the former,the secondary particles can be easily broken into its constitutional primary particles.In contrast,it is quite difficult to do so for the latter.Fig.4 displays the schematic diagram of the suspension obtained by ultrasonically treating cBN agglomerates in ethanol for 5 h.It shows that the agglomerates are easily broken into primary cBN crystallites by ultrasonic treatment,with the larger particles(in brown color)precipitate on the bottom and the smaller ones(in black color)suspend in the solution.This illuminates that the cBN agglomerates are formed by cBN crystallites through soft aggregation mode.For proving the black primary particles are cBN crystallites,they have been further characterized by TEM and SAED(Fig.5).From Fig.5(A),it is found that average particle size of the crystallites is about 30 nm and they are well dispersed in ethanol.By analyzing the corresponding SAED pattern in Fig.5(B),it is known that the four sets of diffraction rings can beindexed to the(111),(200),(220)and(311)planes of cBN,respectively,which is consistent with the conclusion obtained from XRD patterns.The above analysis indicates that cBN crystallites can be separated from the other impurity phases by utilizing self-aggregation phenomenon,thus pure cBN sample could be easily obtained by this method.This result provides us many advantages for further investigations on both the property and application of cBN nano-and micro-crystals.It is quite interesting to analyze the size distribution of cBN crystallites in the agglomerates,and the result may provide us some useful information for understanding the mechanism of the self-aggregation of cBN.After dispersing the agglomerates in ethanol,the resulted suspension was ultrasonically treated and then used for particle size distribution analysis.Fig.6(A)presents the size distribution of cBN crystallites.It is evident that the sizes of about 75%of cBN crystallites are in a range of 1—4 μm,which come from the surface of the agglomerates.Besides,the sizes of the other 20%of cBN crystallites,forming the core of the agglomerates,are in a range of 200—400 nm.In addition,the sizes of the remaining about 5%of cBN crystallites,which come from the inner core of the agglomerates,are smaller than 100 nm.The upper inset inFig.6(A)schematically shows the primary particles size distribution of cBN crystallites in single agglomerate.The above conclusion has also been supported by the photographs of cBN agglomerates.Besides the cBN nanocrystals,many sub-micron cBN crystals,with an average size of about 0.3 μm,can also be observed inthe agglomerates,two of such crystals are shown in Fig.6(B).Furthermore,a mass of even larger cBN crystals,with particles size of about 2 μm,have been found in the agglomerates.In Fig.6(A),the lower inset is a photograph taken by the optical microscope,which indicates that there are many yellow-brown microcrystals in the agglomerates.The TEM image of a cBN microcrystal is presented in Fig.6(C).2.4 Proposed Model for Explaining the Aggregation PhenomenonDuring the initial stage of the hydrothermal synthesis process,a large amount of small cBN crystallites appear in the solution.Because of the extremely high specific surface energy,they quickly aggregate with each other under the action of liquid bridge,van der Waals and capillary forces [28,29],thus the cores of agglomerates are formed.Asthe“secondary nitrogen source”is introduced into the autoclave and diffused to the surface of the existing cores to react with the B-containing compound(called“boron source”),some new cBN crystallites appear on the surface.At the same time,more BN forms on the surface of these cBN crystallites and results in the continuous growth of the crystallites(Fig.7).On the contrary,because the crystallites in the inner part of agglomerates was closely packed and almost all the reactants are consumed on the surface of the agglomerates,it is almost impossible for the crystallites to grow up.The final result of the above process is that the crystallites in the inner part are smaller and those on the surface are larger.2.5 Potential Applications of Self-aggregation Phenomenon in the Purification and Growth of cBN CrystalsFrom the above discussion,it is found that cBN crystallites synthesized by hydrothermal method aggregate into larger particles under some specific conditions,and spontaneously separate from other impurity phases.This phenomenon is undoubtedly useful to the purification of cBN and selective preparation of other importantcompound from multi-phases system,such as graphite-diamond,and so on.On the other hand,it is possible to control the growth process by the self-aggregation phenomenon,and grow larger and more perfect cBN crystals with a limited amount of reactants.Hydrothermal synthesis method is a newly developed route for synthesizing cBN,so intensive investigations are still required in order to improve it.At present,it is quite difficult to synthesize pure cBN by this route,however,the self-aggregation phenomenon of cBN in hydrothermal solutions provides us a new way to synthesize pure cBN crystallites.Furthermore,this phenomenon also makes it possible to control the growth process of cBN and grow larger bulk crystals.The authors wish to thank Prof.JING Hai-Peng,YU Xiao-Qiang and HAN Shu-Hua for their kindly help in the correction of this manuscript and characterization of the samples.[1]Leung K.M.,Chan C.Y.,Chong Y.M.,Yao Y.,Ma K.L.,Bello I.,Zhang W.J.,Lee S.T..J.Phys.Chem.B[J],2005,109:16272—16277[2]Wentorf R.H.,Devries R.C.,Bundy F.P..Science[J],1980,208:873—880[3]Kubota Y.,Watanabe K.,Tsuda O.,Taniguchi T..Science[J],2007,317:932—934[4]Huang J.Y.,Zhu Y.T..Chem.Mater.[J],2002,14:1873—1878 [5]Taniguchi T.,Kimoto K.,Tansho M.,Horiuchi S.,YamaokaS..Chem.Mater.[J],2003,15:2744—2751[6]Mishima O.,Era K.,Tanaka J.,Yamaoka S..Appl.Phys.Lett.[J],1988,53:962—964[7]Slack G.A..J.Phys.Chem.Solids[J],1973,34:321—335[8]Mclaren J.,Akasaka H.,Heberlein J..Plasma Process.Polym.[J],2007,4:S166—S170[9]Konyashin I.,Inkson B.,Bill J.,Aldinger F.,Khvostov V.,Bregadze A.,Guseva M.,Babaev V..Chem.Vapor Deposition[J],1998,4:125—129[10]Mishima O.,Tanaka J.,Yamaoka S.,Fukunaga O..Science[J],1987,238:181—183[11]Wentorf R.H..J.Chem.Phys.[J],1957,26:956[12]Solozhenko V.L.,Turkevich V.Z..J.Phys.Chem.B[J],1999,103:8137—8140[13]Singhal S.K.,Park J.K..J.Cryst.Growth[J],2004,260:217—222 [14]Singhal S.K.,Gonna J.V.,Nover G.,Meurer H.J.,SinghB.P..Diam.Relat.Mater.[J],2005,14:1389—1394[15]Mirkarimi P.B.,McCarty K.F.,Medlin D.L..Mater.Sci.Eng.R.[J],1997,21:47—100[16]Yu J.,Zheng Z.,Ong H.C.,Wong K.Y.,Matsumoto S.,LauW.M..J.Phys.Chem.B[J],2006,110:21073—21076[17]Spiesser A.,Chong Y.M.,Leung K.M.,Abel G.,Ross G.G.,Walzak M.J.,Jacklin R.,Lau W.M.,Zhang W.J.,Bello I..J.Phys.Chem.C[J],2007,111:12768—21076[18]Kester D.J.,Messier R..J.Appl.Phys.[J],1992,72:504—513 [19] Hao X.P.,Cui D.L.,Shi G.X.,Yin Y.Q.,Xu X.G.,Wang J.Y.,Jiang M.H.,Xu X.W.,Li Y.P.,Sun B.Q..Chem.Mater.[J],2001,13:2457—2459[20]Hao X.P.,Cui D.L.,Xu X.G.,Yu M.Y.,Bai Y.J.,Liu Z.G.,JiangM.H..Mater.Res.Bull.[J],2002,37:2085—2091[21]Yu M.Y.,Cui D.L.,Li K.,Chen S.G.,Wang Q.L.,Yin Y.S.,Wang X..Mater.Lett.[J],2007,61:76—78[22]Hao X.P.,Wu Y.Z.,Zhan J.,Xu X.G.,Jiang M.H..Cryst.Res.Tech.[J],2005,40:654—657[23]Skarvelakis C.,Autonini G..Powder Technol.[J],1995,85:135—141[24]Slaphuis J.H.,Ferreira L.C..Fuel[J],1987,66:1427—1430[25]Bensakhria A.,Sajet Ph.,Antonini G.,Auquier W..Chem.Eng.J.[J],2001,81:171—178[26]Hunter R.J..Foundations of Colloid Science[M],Oxford:Clarendon Press,1987:443[27]LU Shou-Ci(卢寿慈).Handbook of Powder Technology(粉体技术手册)[M],Beijing:Chemical Industry Press,2004,41[28] Kim D.W.,Kim D.S.,Kim Y.G.,Kim Y.C.,Oh S.G..Mater.Chem.Phys.[J],2006,97:452—457[29]Ganguli D.,Chatterjee M..Ceramic Powder Preparation:A Handbook [M],Boston:Kluwer Academic Publishers,1997【相关文献】[1]Leung K.M.,Chan C.Y.,Chong Y.M.,Yao Y.,Ma K.L.,Bello I.,Zhang W.J.,LeeS.T..J.Phys.Chem.B[J],2005,109:16272—16277[2]Wentorf R.H.,Devries R.C.,Bundy F.P..Science[J],1980,208:873—880[3]Kubota Y.,Watanabe K.,Tsuda O.,Taniguchi T..Science[J],2007,317:932—934[4]Huang J.Y.,Zhu Y.T..Chem.Mater.[J],2002,14:1873—1878[5]Taniguchi T.,Kimoto K.,Tansho M.,Horiuchi S.,Yamaoka S..Chem.Mater.[J],2003,15:2744—2751[6]Mishima O.,Era K.,Tanaka J.,Yamaoka S..Appl.Phys.Lett.[J],1988,53:962—964[7]Slack G.A..J.Phys.Chem.Solids[J],1973,34:321—335[8]Mclaren J.,Akasaka H.,Heberlein J..Plasma Process.Polym.[J],2007,4:S166—S170[9]Konyashin I.,Inkson B.,Bill J.,Aldinger F.,Khvostov V.,Bregadze A.,Guseva M.,Babaev V..Chem.Vapor Deposition[J],1998,4:125—129[10]Mishima O.,Tanaka J.,Yamaoka S.,Fukunaga O..Science[J],1987,238:181—183[11]Wentorf R.H..J.Chem.Phys.[J],1957,26:956[12]Solozhenko V.L.,Turkevich V.Z..J.Phys.Chem.B[J],1999,103:8137—8140 [13]Singhal S.K.,Park J.K..J.Cryst.Growth[J],2004,260:217—222[14]Singhal S.K.,Gonna J.V.,Nover G.,Meurer H.J.,Singh B.P..Diam.Relat.Mater.[J],2005,14:1389—1394[15]Mirkarimi P.B.,McCarty K.F.,Medlin D.L..Mater.Sci.Eng.R.[J],1997,21:47—100 [16]Yu J.,Zheng Z.,Ong H.C.,Wong K.Y.,Matsumoto S.,Lau W.M..J.Phys.Chem.B [J],2006,110:21073—21076[17]Spiesser A.,Chong Y.M.,Leung K.M.,Abel G.,Ross G.G.,Walzak M.J.,Jacklin R.,Lau W.M.,Zhang W.J.,Bello I..J.Phys.Chem.C[J],2007,111:12768—21076[18]Kester D.J.,Messier R..J.Appl.Phys.[J],1992,72:504—513[19] Hao X.P.,Cui D.L.,Shi G.X.,Yin Y.Q.,Xu X.G.,Wang J.Y.,Jiang M.H.,Xu X.W.,Li Y.P.,Sun B.Q..Chem.Mater.[J],2001,13:2457—2459[20]Hao X.P.,Cui D.L.,Xu X.G.,Yu M.Y.,Bai Y.J.,Liu Z.G.,Jiang M.H..Mater.Res.Bull.[J],2002,37:2085—2091[21]Yu M.Y.,Cui D.L.,Li K.,Chen S.G.,Wang Q.L.,Yin Y.S.,Wang X..Mater.Lett.[J],2007,61:76—78[22]Hao X.P.,Wu Y.Z.,Zhan J.,Xu X.G.,Jiang M.H..Cryst.Res.Tech.[J],2005,40:654—657[23]Skarvelakis C.,Autonini G..Powder Technol.[J],1995,85:135—141[24]Slaphuis J.H.,Ferreira L.C..Fuel[J],1987,66:1427—1430[25]Bensakhria A.,Sajet Ph.,Antonini G.,Auquier W..Chem.Eng.J.[J],2001,81:171—178[26]Hunter R.J..Foundations of Colloid Science[M],Oxford:Clarendon Press,1987:443[27]LU Shou-Ci(卢寿慈).Handbook of Powder Technology(粉体技术手册)[M],Beijing:Chemical Industry Press,2004,41[28] Kim D.W.,Kim D.S.,Kim Y.G.,Kim Y.C.,Oh S.G..Mater.Chem.Phys.[J],2006,97:452—457[29]Ganguli D.,Chatterjee M..Ceramic Powder Preparation:A Handbook[M],Boston:Kluwer Academic Publishers,1997(Ed.:Y,Z,N)。
高盐饮食上调跨膜蛋白16A致C57BL/6J小鼠脑动脉重构的机制

网络出版时间:2023-06-0816:26:15 网络出版地址:https://kns.cnki.net/kcms2/detail/34.1086.R.20230608.1343.014.html高盐饮食上调跨膜蛋白16A致C57BL/6J小鼠脑动脉重构的机制侯晓敏1,施熠炜2,孙 琳3,赵 旭3,郑志发4,常铭洋3,张明升1,秦小江3(山西医科大学1.药理学教研室、2.第一医院、3.公共卫生学院,山西太原 030001;4.山西白求恩医院,山西太原 030032)收稿日期:2023-01-06,修回日期:2023-03-28基金项目:国家自然科学基金资助项目(No82204042);山西省自然科学研究面上项目(No202103021224227);山西省归国留学基金资助项目(No2020 075,2020 087);细胞生理学教育部重点实验室(山西医科大学)开放基金资助项目(NoCPOF202117)作者简介:侯晓敏(1983-),女,博士,副教授,研究方向:心脑血管药理学,E mail:xiaominhou@sxmu.edu.cn;秦小江(1986-),男,博士,教授,硕士生导师,研究方向:微血管病变机制,通信作者,E mail:sph@sxmu.edu.cndoi:10.12360/CPB202209056文献标志码:A文章编号:1001-1978(2023)06-1042-06中国图书分类号:R 332;R151 2;R322 121;R341;R348 1摘要:目的 探讨高盐上调跨膜蛋白16A(transmembraneprotein16A,TMEM16A)致小鼠脑动脉重构的机制。
方法 40只C57BL/6J小鼠随机分为4组(10只/组,模型制备8周),空白对照组(正常饮水、摄食)、低盐组(2%高盐饲料)、中盐组(4%高盐饲料)和高盐组(8%高盐饲料)。
HE染色观察脑动脉形态学变化;血管渗透性实验比较脑组织颜色及吸光度值;免疫荧光检测脑动脉TMEM16A的表达;PCR和Westernblot检测脑动脉TMEM16A的mRNA和蛋白表达;离体肌张力检测脑动脉舒缩反应;膜片钳记录脑动脉平滑肌细胞钙激活氯通道(calcium activatedchloridechannels,CaCC)电流。
超高压杀菌对低盐切片腊肉风味及理化性质的影响

孙梦,冉佩灵,黄业传,等. 超高压杀菌对低盐切片腊肉风味及理化性质的影响[J]. 食品工业科技,2024,45(2):101−109. doi:10.13386/j.issn1002-0306.2023040209SUN Meng, RAN Peiling, HUANG Yechuan, et al. Effect of Ultra-high-pressure Sterilization on Flavor and Physicochemical Properties of Low-salt Sliced Bacon[J]. Science and Technology of Food Industry, 2024, 45(2): 101−109. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040209· 研究与探讨 ·超高压杀菌对低盐切片腊肉风味及理化性质的影响孙 梦1,冉佩灵1,2, +,黄业传2, *,李占阳1(1.西南科技大学生命科学与工程学院,四川绵阳 621000;2.荆楚理工学院生物工程学院,湖北荆门 448000)摘 要:为探究不同压力的超高压杀菌对低盐切片腊肉品质的影响,样品在22 ℃下分别经200、400、600 MPa 压力处理10 min ,以未杀菌组为对照,于4 ℃储藏的第0、60、120、180 d 测定理化指标、风味物质及菌落总数。
结果表明,超高压处理后,低盐切片腊肉的水分含量、亚硝酸盐含量、硬度、a *值、b *值及菌落总数均降低,pH 、POV 值、L *值、弹性、回复力及内聚性均升高。
储藏过程中,超高压增强了腊肉的持水性,减缓了脂肪氧化,有效抑制了微生物生长。
第180 d 时,超高压组的水分含量、L *值、a *值、弹性及内聚性均高于对照组,pH 、亚硝酸盐含量、硬度及菌落总数均低于对照组。
【超能陆战队】台词中英对照

【超能陆战队】台词中英对照起来起来Get up! Get up!赢家诞⽣完胜对⼿The winner! By total annihilation.催命阎王Yama!谁是下⼀个谁还有胆量在赛场上⼀决雌雄Who's next? Where's the guts to stop me in the ring?挑战我的⼩阎王With little Yama!我能试试吗Can I try?我有个机器⼈是我⾃⼰造的I have a robot. I built it myself.算了吧⼩⼦这⼉有规矩交钱才能⼊场Beat it kid! House Rules: You gotta pay to play.这些够了吗Oh, Is this enough?你叫什么⼩朋友What's your name, little boy?我叫⼩宏滨⽥宏Hiro, Hiro Hamada.准备好你的机器⼈⼩⾍Prepare your bot, Zero...两⽅对垒决⼀死战Two bots enter... One might leaves.准备好了吗Fighters ready?开战Fight!这是我第⼀次参赛能再试⼀次吗That was my first fight. Can I try again?没⼈喜欢输不起的⼈⼩朋友No one likes a sore loser little boy.回家吧Go home.我还有钱I've got more money...准备好了吗Fighters ready?开战Fight!磁⼒神Megabot!灭了他Destroy.- 再见了⼩阎王- 什么- Not more "Little Yama". - But what?这怎么可能This is not possible!我也没想到也许是新⼿运⽓好吧1Hey, I'm as surprised as you are. Beginner's luck.你还想再来⼀次吗Do you wanna go again?阎王Yama?- No one hustles Yama! - Wooh! Hey! 给他点颜⾊看看Teach him a lesson!伙计们有话好好说Hey fellas. Let's talk about this.- ⼩宏快上车- 阿正- Hiro, get on! - Tadashi!来得真是时候Ooh! Good timing.- Are you okay? - Yeah. - Are you hurt? - No!那你在想什么笨蛋Then, what are you thinking, knucklehead!你⼗三岁从⾼中毕业就是为了⼲这个You graduated high school and you're13 and this is what you're doing?抓紧了Hold on!机器⼈⽐赛是违法的你会被抓进监狱的Bot fighting is illegal. You're gonna getyourself arrested.机器⼈⽐赛不违法参与赌博才...才违法Bot fighting is not illegal. Betting on bot fighting..thats..that's illegal.但没⼈会注意到的我势头可猛了⽼哥But, so who could heed. I'm on a roll,big brother.谁也不能阻⽌我And there is no stopping me!哦不Oh, no.嗨卡斯阿姨Hi, Aunt Cass.你们还好吗快告诉我你们没事Are you guys okay? Tell me you'reokay...2- We're fine. - We're okay.那就好Oh good.那你们两个⼩笨蛋在想什么Then what were you two knuckle heads thinking?!过去的⼗年我含⾟茹苦把你们拉扯⼤For 10 years, I heed the best I could to raise you.我⼗全⼗美吗不Have I been perfect? No!我很会养⼩孩吗不Do I know anything about children? No! 我该找本育⼉⼿册来看吗也许吧Should I pick a book on parenting? Probably?我想说什么来着我本来想说...Where I was going with this? I had apoint...我也爱你I love you too!因为你们俩我不得不在节拍诗之夜早早收⼯I had to close up early because of youtwo fellons on beat poetry night.因为你们我都暴饮暴⾷了过来糯⽶Stress eating because of you! Come on,Moty!真的好好吃啊This is really good!你最好在卡斯阿姨吃光餐厅⾥的所有⾷物之前You'd better make this up to Aunt Cass,想办法补偿她before she eats everything in the cafe.那是⾃然For sure.我希望你能吸取教训⼩⼦And I hope you learn your lesson, bonehead.我会的Absolutely.你还要去参加机器⼈⽐赛是吗You're going fight boting, aren't you?⼩镇那边还有⼀场⽐赛There's a fight across town.3如果我现在预约还能赶得上If I book now, I could still make it.你什么时候做事前能⽤⽤你那聪明的⼤脑⽠啊When are you gonna start doing something with that big brain of yours? ⼲吗像你⼀样去上⼤学What? Go to college like you?好让别⼈教我我早就知道的东西So people can tell me stuff I already know?你简直不可理喻Unbelievable.⽼妈⽼爸会怎么说啊Ahh! What would Mom and Dad say? 我不知道他们已经过世了I don't know. They're gone.我三岁时他们就死了记得吗They died when I was 3, remember?- I'll take you. - Really?我阻⽌不了你但我不会让你⾃⼰去I can't stop you from going, but I'm notgonna let you go on your own.太棒了Sweet!我们来你的呆⼦学校做什么What are we doing at your nerd school?机器⼈⽐赛在那边Bot fights that way!我去拿点东西Gotta grab something.要⽤很长时间吗Is this gonna take long?淡定我的⼤宝贝拿完东西就⾛Relax, you big baby, we will be in andout.你还没见过我的实验室呢Anyway, you've never seen my lab.太棒了终于见到你的呆⼦实验室了Oh great! I get to see your Nerd Lab.- Heads up! - Wooh!电磁悬浮Electromag suspension?你是谁Who are you?神⾏御姐这是我弟弟⼩宏4Gogo, this is my brother, Hiro.欢迎来到呆⼦实验室Welcome to the Nerd Lab.是啊Yeah...我从未见过应⽤在⾃⾏车上的电磁悬浮呢I've never seen Electromag suspension on a bike before.零阻⼒骑得更快Zero resistance, faster bike.但...还不够快But... Not fast enough. 还不够Yet.别动站在线后⾯Ohh! Woohh! Do not move! Behind the line please.芥末⽆疆这是我弟弟⼩宏Hey, Wasabi. This is my brother, Hiro.你好啊⼩宏做好⼤吃⼀惊的准备Hello, Hiro. Prepare to be amazed.接好了Catch!- Laser induced Plasma? - Oh, yeah.运⽤⼀点磁约束技术来达到...With a little magnetic confinement for超精密程度Ultra precision.你怎么在这么多东西中找到⾃⼰要⽤的Wow, how did you find anything in thismess?我有个系统每样东西都放在各⾃的位置I have a system. There is a place foreverything, and everything in its place.- I need this! - You can't do that!你把这弄乱了社会需要秩序!This is anarchy! Society has rules!不好意思借过⼀下Excuse me! Coming through!阿正Tadashi!我的天哪你⼀定是⼩宏Oh my gosh, you must be Hiro!5久仰⼤名啊I've heard so much about you!来得正好Perfect timing! Perfect timing!全是碳化钨That's a whole lot of Tungsten Carbide. ⾜⾜四百磅400 pounds of it.过来你⼀定会喜欢这个的Come here! Come here! You're gonna love this.⼀点⾼氯酸A dash of per chloric acid.⼀点钴⼀点过氧化氢A smidge of cobalt, a hint Hydrogen Peroxide...加热⾄五百开尔⽂然后...super heated to 500 Kelvin, and...Tadah!很不错吧It's really great, huh?- So pink. - Here's the best part.很神奇吧I know right!化学试剂对⾦属的脆化作⽤Chemical metal embrittlement!不赖嘛哈妮柠檬Not bad, Honey Lemon.哈妮柠檬神⾏御姐芥末⽆疆Honey Lemon? Gogo? Wasabi?我把芥末洒在了衬⾐上就洒了⼀次I spilled wasabi on my shirt one time people. One time!外号都是弗莱德取的Fred is the one who comes up with the nicknames.谁是弗莱德Ah... Who's Fred?鄙⼈在此This guy right here!莫惊慌卡通服⽽已我真⼈可不长这6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract : Quasi2static and high st rain rate mechanical behavio r of t he Zr1. 25 Ti13. 75 Ni10 Cu12. 5 Be22. 5 bulk metallic glass was determined covering st rain rates f rom 1. 02 ×10 - 4 s - 1 to 3. 258 ×103 s - 1 . By use of split hop kinson p res2
To be an engineering material , t here are many p ractical sit uatio ns where it is subjected to high st rain rates , such as high speed machining , metal forming and so me impact co nditio ns. Custo marily , insight s into t his dynamic respo nse are o btained by split hop kinso n p ressure bar[ 7 , 8 ] .
Vol. 15 Special 2 Trans. Nonferrous Met. Soc. China Ap r. 2005
Article ID : 1003 6326 (2005) Special 2 0115 05
High strain rate induced embrittlement of
t he BM Gπs glassy nat ure make it meaningf ul to in2 vestigate whet her t here is an embrit tlement tend2 ency for t his alloy and what is t he real dynamic re2 spo nse. In t his paper , using t he S H PB equip ment t he dynamic respo nse of t his BM G is p resented to2 get her wit h quasi2static deformatio n for co mpari2 so n.
① Received date : 2004 12 15 ; Accepted date : 2005 01 28 Correspondence : SUN Jian2fei , Professor , PhD ; Tel : + 862451286418317 ; E2mail :
© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved.
nat ure of t he alloy and wit h caref ul analysis of t he f ract ure morp hology , dynamic damage accumulated in t he high
speed deformatio n period is suggested to be t he reason fo r t his embrittlement .
Zr2based
bul k
metall ic
①
gla ss
SU N Jian2fei (孙剑飞) , YAN Ming (严 明) , S H EN J un (沈 军) ( School of Material s Science and Engineering , Harbin Instit ute of Technology ,
High st rain rate experiment s were carried o ut o n a split hop kinso n p ressure bar ( S H PB ) wit h vaseline coated o n t he sample surfaces as t he lubri2 cant . Basically t he S H PB co nsist s of t wo elastic bars , which are t he incident bar o n o ne hand and t he t ransmissio n bar o n t he ot her. Samples wit h dimensio ns of d8 mm ×10 mm are placed between t he two bar s. When t he st riker bar impact s t he in2 cident bar , it will build a p ressure p ul se wit hin t he incident bar. The p ul se t hen passes t hro ugh t he sample and part of it reflect s into t he incident bar , part of it passes into t he t ransmissio n bar . The time2resolved signals of t hese p ulses will be recor2
Key words : bulk metallic glass ; SH PB ; high st rain rate ; embrittlement
CLC number : TQ 146. 414
Document code : A
1 INTROD UCTION
Recent innovatio ns in p rocessing bulk metallic glasses (BM Gs) have made t hem p ro mising to be used in many potential applicatio ns for t heir unique p roperties such as ext remely high st rengt h , high hardness and goo d to ughness[ 1 , 2 ] . A mo ng t hese bul k metallic gla sse s , Zr1. 25 Ti13. 75 Ni10 Cu12. 5 Be22. 5 BM G has received t he mo st at tentio ns for it s supe2 rior glass forming abilit y and mechanical p roper2 ties[ 3) equip ment , it is found t hat t he alloy f ract ures in t he high st rain rate period wit h a st rengt h well be2
low t hat of it s quasi2static co unterpart and t hus a st rain rate induced embrittlement happens. Co nsidering t he glassy
·116 ·
Trans. No nferro us Met . Soc. China Ap r. 2005
ded by t he st rain gages placed o n t he bars. When t he specimen deforms uniformly , t he st rain rate wit hin t he specimen is p roportio nal to t he reflected waveπs amplit ude. Similarly , t he st ress wit hin t he sample is p roportio nal to t he amplit ude of t he t ransmit ted wave. A nd t he p rincipal equatio ns fo r S H PB are as follow s[12 ] .
For t he reaso n talked above , a high st rain rate respo nse of t hi s Zr1. 25 Ti13. 75 Ni10 Cu12. 5 Be22. 5 BM G i s required. Because of limitatio ns in t he sample p reparatio n to p roduce specimen large eno ugh fo r t he dynamic experiment s and t he immat ure S H PB technique , o nly few st udies have involved in t his research field[9 11 ] . Bruck et al[9 ] may be t he fir st gro up which believed t hat t he yield st ress of t he Zr1. 25 Ti13. 75 Ni10 Cu12. 5 Be22. 5 allo y wa s insensitive to st rain rate and t his BM G retained it s elastic2 perfectly plastic behavior at high st rain rates. While recent result s o n t he Zr52. 5 Al10 Ni10 Cu152 Be12. 5 , Zr65 Al10 Ni10 Cu15 and Zr52. 5 Al10 Ni14. 6 Cu17. 92 Ti5 by Xiao et al[10] give t he evidences in t he change of t he f ract ure morp hology f ro m t ypical vein pat2 tern to t he microvoid2coalescence dimples wit h in2 creasing st rain rates. These different findings and